
slide 1

EJ Jung

Hash Functions

Integrity checks

slide 3

Integrity vs. Confidentiality

! Integrity: attacker cannot tamper with message
! Encryption may not guarantee integrity!

• Intuition: attacker may able to modify message under
encryption without learning what it is

– Given one-time key K, encrypt M as M!K… Perfect secrecy, but
can easily change M under encryption to M!M’ for any M’

– Online auction: halve competitor’s bid without learning its value

• This is recognized by industry standards (e.g., PKCS)
– “RSA encryption is intended primarily to provide

confidentiality… It is not intended to provide integrity”

• Many encryption schemes provide secrecy AND integrity

slide 4

More on Integrity

goodFile

Software manufacturer wants to ensure that the executable file
 is received by users without modification…
Sends out the file to users and publishes its hash in NY Times
The goal is integrity, not confidentiality

Idea: given goodFile and hash(goodFile),
 very hard to find badFile such that hash(goodFile)=hash(badFile)

BigFirm™ User

VIRUS

badFile

The Times

hash(goodFile)

Where to use hash functions

!Cookie
• H(server’s secret, client’s unique information,

timestamp)

! Password storage
• safe against server problems

Henric Johnson 6

Hash Functions
! Purpose of the HASH function is to produce

a ”fingerprint”.
! But, what do you mean by fingerprint??

Henric Johnson 7

Secure Hash Functions
! Properties of a HASH function H :

1. H can be applied to a block of data at any size
2. H produces a fixed length output
3. H(x) is easy to compute for any given x.
4. For any given block x, it is computationally

infeasible to find x such that H(x) = h
5. For any given block x, it is computationally

infeasible to find with H(y) = H(x).
6. It is computationally infeasible to find any pair

(x, y) such that H(x) = H(y)

xy !

Simple hash function

Example

slide 10

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’
y

hash function H

! H is a lossy compression function
• Collisions: h(x)=h(x’) for some inputs x, x’
• Result of hashing should “look random” (make this precise later)

– Intuition: half of digest bits are “1”; any bit in digest is “1” half the time

! Cryptographic hash function needs a few properties…

“message
digest”

message

slide 11

One-Way

! Intuition: hash should be hard to invert
• “Preimage resistance”
• Let h(x’)=y"{0,1}n for a random x’

• Given y, it should be hard to find any x such that
h(x)=y

!How hard?
• Brute-force: try every possible x, see if h(x)=y
• SHA-1 (common hash function) has 160-bit output

– Suppose have hardware that’ll do 230 trials a pop
– Assuming 234 trials per second, can do 289 trials per year
– Will take 271 years to invert SHA-1 on a random image

“Birthday Paradox”

!T people
! Suppose each birthday is a random number taken

from K days (K=365) – how many possibilities?
• KT (samples with replacement)

!How many possibilities that are all different?
• (K)T = K(K-1)…(K-T+1) samples without replacement

! Probability of no repetition?
• (K)T/KT # 1 - T(T-1)/2K

! Probability of repetition?
• O(T2)

slide 13

Collision Resistance

! Should be hard to find x, x’ such that h(x)=h(x’)
!Brute-force collision search is O(2n/2), not O(2n)

• n = number of bits in the output of hash function
• For SHA-1, this means O(280) vs. O(2160)

!Reason: birthday paradox
• Let T be the number of values x,x’,x’’… we need to look

at before finding the first pair x,x’ s.t. h(x)=h(x’)
• Assuming h is random, what is the probability that we

find a repetition after looking at T values?
• Total number of pairs?
• Conclusion:

O(T2)
O(2n)

T # O(2n/2)

slide 14

One-Way vs. Collision
Resistance

!One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

– h is one-way (to invert h, must invert g)
– Collisions for h are easy to find: for any x, h(x0)=h(x1)

!Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise

– Collisions for h are hard to find: if y starts with 0, then there
are no collisions, if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are
easy to invert (how?); random y is invertible with probab. 1/2

slide 15

Weak Collision Resistance

!Given randomly chosen x, hard to find x’ such
that h(x)=h(x’)
• Attacker must find collision for a specific x. By

contrast, to break collision resistance, enough to
find any collision.

• Brute-force attack requires O(2n) time

!Weak collision resistance does not imply
collision resistance (why?)

slide 16

Which Property Do We Need?

!UNIX passwords stored as hash(password)
• One-wayness: hard to recover password

! Integrity of software distribution
• Weak collision resistance
• But software images are not really random… maybe

need full collision resistance

!Auction bidding
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B
• Collision resistance: Alice should not be able to change

her mind to bid B’ such that H(B)=H(B’)

slide 17

Common Hash Functions

!MD5
• 128-bit output
• Still used very widely
• Completely broken by now

!RIPEMD-160
• 160-bit variant of MD-5

! SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95

– Also the hash algorithm for Digital Signature Standard (DSS)

slide 18

Basic Structure of SHA-1
Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

slide 19

Block Ciphers

Block of plaintext

S S S S

S S S S

S S S S

Key

repeat for several rounds

Block of ciphertext

For hashing, there is no KEY.
Use message as key and replace
plaintext with a fixed string.
(for example, Unix password hash is DES
applied to NULL with password as the key)

slide 20

SHA-1 Compression Function

Current message block
Current buffer (five 32-bit registers A,B,C,D,E)

Buffer contains final hash value

Very similar to a block cipher,
with message itself used
as the key for each round

Four rounds, 20 steps in each

Let’s look at each step
in more detail…

Fifth round adds the original
buffer to the result of 4 rounds

slide 21

A EB C D

A EB C D

+

+
ft

5 bitwise
left-rotate

Wt

Kt

One Step of SHA-1 (80 steps total)

Special constant added
(same value in each 20-step round,
4 different constants altogether)

Logic function for steps
• (B$C)%(¬B$D) 0..19
• B!C!D 20..39
• (B$C)%(B$D)%(C$D) 40..59
• B!C!D 60..79

Current message block mixed in
• For steps 0..15, W0..15=message block
• For steps 16..79,
 Wt=Wt-16!Wt-14!Wt-8!Wt-3

+

+

Multi-level shifting of message blocks

30 bitwise
left-rotate

slide 22

How Strong Is SHA-1?

! Every bit of output depends on every bit of input
• Very important property for collision-resistance

!Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

! Some recent weaknesses (2005)
• Collisions can be found in 263 ops

SHA-512 big picture

SHA-512 zoom in

slide 25

 network

Authentication

!Authenticity is identification and assurance of
origin of information
• We’ll see many specific examples in different scenarios

slide 26

Authentication with Shared
Secrets

msg, H(SECRET,msg)

Alice wants to ensure that nobody modifies message in transit
(both integrity and authentication)

Idea: given msg,
 very hard to compute H(SECRET, msg) without SECRET;
 easy with SECRET

Alice Bob

SECRET
SECRET

slide 27

Authentication Without
Encryption

Integrity and authentication: only someone who knows KEY can
 compute MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

slide 28

HMAC

!Construct MAC by applying a cryptographic hash
function to message and key
• Could also use encryption instead of hashing, but…
• Hashing is faster than encryption in software
• Library code for hash functions widely available
• Can easily replace one hash function with another
• There used to be US export restrictions on encryption

! Invented by Bellare, Canetti, and Krawczyk (1996)
!Mandatory for IP security, also used in SSL/TLS

slide 29

Structure of HMAC

Embedded hash function
(strength of HMAC relies on
strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

