
Simulating Network Link Compression in Loss-less
Wireless Sensor Networks (WSNs) Environment

Rozita Teymourzadeh
Computer Science Department

University of San Francisco
San Francisco, USA

rteymourzadeh@usfca.edu

Ramona Carmen Stoica
Computer Science Department

University of San Francisco
San Francisco, USA

rstoica@usfca.edu

Robert Chang
Simulation and Evaluation

Waymo LLC
Mountain View, USA

bobbychang@waymo.com

Vahab Pournaghshband
Computer Science Department

University of San Francisco
San Francisco, USA
vahab.p@usfca.edu

Abstract—Communication among wireless sensor networks
(WSNs) utilize high power consumption and therefore the signif-
icant efforts have been taken to minimize the usage for low-
power wireless applications. With the advent of the network
compression algorithm, loss-less compression wireless solution
attracts significant attention due to its property of reducing
resources to store and transmit data and perfectly reconstruct the
original data from the compressed data in a loss-less environment.

To allow network researchers to simulate currently deployed
networks, Network Simulator 3 (NS-3) needs to incorporate as
many standard networking technologies as possible. One such
technology is lossless payload compression in wireless network
environments such as WSNs. While compression has been em-
ployed in various network environments, unfortunately, there
is not yet an implementation for NS-3, a powerful, extensible,
and popular simulator used for network research. This paper
presents a verification of loss payload compression for the
NS-3 environment. We strongly believe that the proposed tool
contributes significantly to grow wireless researches and projects
by simulating, analyzing, testing, and validating the network
behavior.

Index Terms—wireless sensor networks (WSNs), loss-less com-
pression, compression, zLib

I. INTRODUCTION

Wireless sensor network (WSN) is designed to handle
a large number of sensor data in the industry and home
automation fields and it finds a significant application in the
industry such as sensor monitoring, health check monitoring,
inventory, and location-based service monitoring, factory and
home automation and etc [1], [2].

Since more and more industries adapt to the wireless sensor
networks solution and generate WSNs nodes, loss-less data
compression is an essential solution to efficiently use the
energy and to speed up the channel air traffic (frequency 2.4
GHz). Historically, data compression [3] topic has been in the
research and the industry field for the past decades and has
been attracted significant attention due to its efficiency and
capability in data transmission and storage. It has been widely
used to minimize disk utilization, decrease bandwidth con-
sumption on the networks, and reduces energy consumption
in the hardware [4].

Furthermore, network researchers and developers require to
design and implement the compression communication system
with no direct comparison data unless if they implement
all competing mechanisms within every simulator that is a
costly and time-consuming operation. It requires creating a
comprehensive and advanced networking simulation environ-
ment. This limitation often causes simulations constructed
by different groups to lack standardization and reputability.
Unfortunately, as of today, NS-3 does not support a native
implementation of compression and decompression algorithm
on its network library which causes a slow-down on wireless
and network research projects [5]. Hence, in this research
work, we replicate the prior research work [6] to validate
and verify compression library functionality and to enrich the
simulation framework, as a benefit to the others researchers to
concentrate on their own research and make use of compres-
sion extended simulation library for their research purposes.
To enrich the simulation library, we target NS-3 [7] simulation
environment and concentrate on the data compression, since
data compression shows a lot of interest among the wireless
network researchers.

On the other hand, NS-3 software is an open-source
discrete-event network simulator that targets primarily research
and educational use. NS-3 is available for research and devel-
opment and a suitable tool for developing and extending the
library under the C++ programming language.

In the recent research work and in the field of the data
transmission and the networking area, Shimamura et al. [7]
proposed a compression strategy meant to reduce the packages
lost between the network based on the hypothesis that the
advanced relay nodes are located inside the network, and they
had computational, storage and network resources nodes [9].

In 2013, Songbin Liu et al. proposed a versatile compression
method for floating-point data. They claimed their design can
achieve much higher compression ratios than existing general-
purpose compression methods with promising throughput and
it can support asymmetric decompression [8].

Later, in 2016 Shamieh et al. [9] introduced an adaptive
and distributed compression/decompression scheme. The new

201

2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS)

978-1-6654-6667-7/21/$31.00 ©2021 IEEE
DOI 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00043

adaptive scheme was needed because of the unexpected growth
of the traffic which triggered a set of incentives/challenges
such as high congestion in the networks, high loss rates of
the packets, and latency. The previously mentioned challenges
had a higher impact on the performance of the network and
at the same time had a negative impact on Quality of Service
(QoS). The author suggested an adaptive and distributed com-
pression/decompression model for reducing the congestion in
the network and at the same time support/maintain the QoS.

Dong Tian [10] found the geometry distortion of point cloud
measurement is a challenging task and proposed using point
to plane distances as a measure of geometric distortions on
point cloud compression. The intrinsic resolution of the point
clouds was proposed as a normalized model to convert the
mean square error to PSNR numbers [10].

By observing high utilization of data compression and
data communication [11], [7], [12] and understanding the
necessity of the data compression performance technique [13],
[14], in this research work, the effort is taken to replicate a
network compression link and validate compression function-
ality with zLib compression library. The NS-3 [5] simulation
environment was targeted for further development and embed
simulation library.

We provided a simulation tool by developing a wireless
packet compression model in the NS-3 tool for wireless
applications. We utilized a compression detection mechanism
presented in section II, that detects effective compression by
sending two packet trains with high and low entropy data.
Finally, we reported a preliminary design of the compression
network (section III) and the evaluation of our work, con-
sisting of several tests that validate the implementation. The
simulation result was shown and discussed (section IV).

II. SYSTEM ARCHITECTURE

While simulating wireless network link compression is
implemented to avoid major modifications to the existing NS-
3 code base, several modifications are introduced to support
the compression functionality. In total, our implementation
compression simulation requires modification in data-gram
protocol (UDP) mostly in the ns-3-allinone/ns-3-dev/src/point-
to-point/model library and in the following models:

.udp-client.cc

.udp-server.cc

.point-to-point-net-device.cc

.point-to-point.cc (application)

The transmit starts by wrapping the packet in the point-
to-point-net-device model and sending it through the chan-
nel. This model is called on the channel to inform the
physical device that has virtually started sending the sig-
nals. An event is scheduled for the time at which the bits
have been completely transmitted. Here, PointToPointNetDe-
vice::SetCompressProtocolNumber set the compress protocol
number and in the receive method, the protocol number is
checked for the possible match in order to conduct com-
pression. AddHeader() and RemoveHeader() helper functions

assist to remove outer layer of the packet and access to the
protocol function.

Fig. 1. Five nodes topology.

Figure 1 depicts the control flow for the compression algo-
rithm in relation to other components in the NS-3 environment.
The function in used and the helper functions are shown in
the figure. isCompress() function get access to the protocol
to send the control signal for compression. Based on the
isCompress() return value, the packet is compressed using
zLib library or is sent without alteration. In the other hand
PointToPointNetDevice::Receive (Ptr¡Packet¿ packet) function
controls the received packet to distinguish if the received
packet is in compressed format. If the answer is TRUE the
decompress process starts retrieving the compressed data in
the R1 node shown in Figure 1.

Except for node S1 and S2 that always act as client and node
R that acts as a server, the remaining nodes perform client
and server and point to point node tasks. We have developed
the ’application/model’ directory of the NS-3 environment
to simulate network link compression. Among the available
models, we have implemented compression features in the
UDP client and UDP server library model. In our implemen-
tation, the server echo feature is not supported, hence, the
UDP server without the echo feature provides a suitable server
environment for the development. Therefore, udp-server.cc and
udp-client.cc were targeted to support compression. On the
client-side, the Entropy attribute was implemented as shown
here:

.AddAttribute ("Entropy",
"Boolean Value",
BooleanValue(true),
MakeBooleanAccessor(&UdpClient::m_entropy),
MakeBooleanChecker());

In addition, std::vector <bool> generateRandomSequence()
function was implemented to support high entropy packet
train and placed in the client model for testing purpose.
Generate random sequence model utilized Linux utility to
produce random sequences. Generated data were wrapped
with the packet layers and several packet headers were added
sequentially.

In order to send the packets via the network, Udp-
Client::Send (void) method was modified to provide sup-

202

port for compression link. On the other hand, udp-server.cc
was responsible to handle receiving the packets and hence,
UdpServer::HandleRead (Ptr<Socket>socket) was introduced
to provide the read functionality. Time recording was handled
in the HandleRead() function to generate the arrival time of
the packet trains and generate a timestamp from local Linux
time.

A list of the available application programming interface
(API) is provided here. The introduced APIs allow developers
to inherit the library and implement their applications on
top of our implemented simulink models. Provided APIs
help to enrich the NS-3 library for network simulation link
compression.

bool isHighEntropy; /* entropy flag */
bool m_entropy; /* entropy flag */
virtual void SetEntropy(bool

isHighEntropy); /* Set entropy flag */
void Send (void); /* Send the packet after

packet preparation */
uint32_t m_count;/* Maximum number of

packets the application will send */
Time m_interval; /* Packet inter-send time

*/
uint32_t m_size; /* Size of the sent

packet */
uint32_t m_sent; /* Counter for sent

packets */
uint64_t get_received (void) const; /*

Receive the packet in server side */
void handle_read (Ptr<Socket> socket); /*

Handle parsing packet after receiving
*/

uint64_t m_received; /* Number of received
packets */

void Receive (Ptr<Packet> p); /* Receive
packets */

virtual bool Send (Ptr<Packet> packet,
const Address &dest, uint16_t
protocolNumber);

/* Send packets */
bool doCompress = false; /* Compress flag

*/
bool doDecompress = false; /* Compress

flag */
virtual void SetDecompressFlag (bool

isRouter1); /* Set flag */
virtual void SetCompressFlag (bool

isRouter1); /* Set flag */
int compressProtocolNumber=0;
virtual void SetCompressProtocolNumber

(int protocolNumber); /* Set protocol
*/

Detail implementation is provided in the system verification.

III. SYSTEM DESIGN

Here, we provide a topology to verify and validate a
compression functionality for model testing and system ver-
ification. To simulate network link compression, a network
topology was implemented in the Point-to-Point Protocol (PPP,
RFC 1661) [5] model library. The native PPP link is assumed
to be established and authenticated at all the time.

At first, four nodes topology was designed that failed to send
high entropy and low entropy packet trains concurrently for
measurement purposes and automation. Hence, the five nodes
topology with two senders was replaced with the original
design.

Essentially, the topology of a communication compression
network determines the path by which the packets travel
from the source to the destination when compression links
are enabled. connections between the communication nodes
and the network are implemented in one batch, rather than in
an incremental manner to validate the compression effect on
the packet size. In addition, the proposed topology assumed
that the physical infrastructure of the communication network
already exists. In this implementation, the high-speed appli-
cation becomes considerable especially when there is high
traffic in the network. In order to generate high traffic, a single
topology with five nodes was implemented using point to point
protocol [6] standard library in the NS-3 environment [5].

Figure 2 shows the topology used in this project. The middle
link was used to generate the bottleneck link. First, two nodes
and the last node act as client and server applications where
the senders send two sets of 6000 user UDP packets back-to-
back as packet train, and the receiver records the arrival time
between the first and last packet in the train. The first packet
train consists of all of the size 1100 bytes in the payload,
filled with all zeros, while the second packet train contains
a random sequence of bits. This configuration generates high
traffic in the middle point-to-point link that makes it a suitable
environment to implement data compression on the top of the
application.

In the subsequent project, a brief introduction to compres-
sion is provided as the main methodology to design a high-
speed network. Then the smart algorithm for optimizing the
topology is implemented. Finally, the statistical analysis is
conducted to verify the functionality of the proposed design.

In order to extend NS-3 simulation library with the data
compression feature, we need to implement and verify the
compression functionality in the compression link topology.
Furthermore, to fully utilize the network path for high-speed
application, especially in the bottleneck of the network data
compression is implemented and integrated.

Compressing network data is called deflating, and the algo-
rithm is called DEFLATE. In this project zLib external library
was implemented to compress data in the pre-link path. The
zlib [16] is a software library used for data compression and is
an abstraction of the DEFLATE compression algorithm used
in their gzip file compression program. It is a loss-less data
compression algorithm based on the principle of a dictionary-
based encoding scheme.

The zlib library is also a crucial component of many
software platforms as the compressed data format is itself
portable across platforms. The side benefit of the compression
algorithm is to reduce the memory footprint, speed up the
packet transmission and regularization.

The compression link application was embedded and built
using an NS-3 simulation environment with Lempel-Ziv-Stac

203

(LZS) [16] compression algorithm. It is a sliding-window
compression algorithm and fixed Huffman coding and is
responsible for compression and decompression of incoming
and outgoing packets. The LZS algorithm follows RFC 1974
PPP Stac LZS Compression Protocol [16] requirement.

For the purposes of this project, the entire packets are
inspected upon arrival for checking the protocol number.
Matched protocol packet then is pushed for the compression
process. The pre-processing finds the matched packet to re-
place the original protocol number with the LZS protocol
number, here is 0x4021.

Fig. 2. Implemented 5 nodes topology with point-to-point compression link.

In the compressed structure, the original protocol number
is appended to the original data, and compress that whole
bit-string and replace it with the original data section in the
original packet, as illustrated in Figure 2.

On the other hand, decompression, at the other side of the
compression link then reverses all the pre-processing steps
performed at the compression in the post-processing stage, to
retrieve the original incoming packet, before pushing it to the
next interface. The assumption is the two routers have already
reached an Opened state and LZS [17] has been negotiated
and removed the original header as the primary compression
algorithm. Similarly, the decompression stage negotiates and
appends the removed header in the compression stage to
retrieve the original packet.

The compression and decompression algorithm is imple-
mented in PointToPointNetDevice to enable compression and
decompression on the point-to-point links in the NS-3 envi-
ronment with the integrated LZS algorithm and supports full
features of the zLib library.

The higher level of compression and decompression imple-
mentation model is shown in Figure 3.

IV. SYSTEM VALIDATION

To verify and validate the compression functionality, we
replicated network compression detection introduced by Pour-
naghshband et al. [6] only in the cooperative environment as
described. Therefore, our system validation topology, imple-
mentation details, and the parameters are completely based on
the approach introduced in [6].

Fig. 3. The specified method to implement for assembling compressed
packets, as specified in RFC 1974 [16].

The proposed network application is implemented as a
client/server application where the sender sends two sets of
6000 UDP packets as a packet train one zero payload and
the other random generated payload. The random sequence
generator is implemented using /dev/random library in a Linux
environment. In order to detect compression, a threshold
value is introduced as described in prior research work for
compression [6].

Although, there is no threshold for success for compression
detection and the compression classification has never been
attempted as a machine learning problem [18], [19] based
on the prior research work criteria [6], we have selected 100
ms threshold for the compression detection. If the difference
in arrival time between the first and last packets of the two
trains is more than a fixed threshold of 100 ms, the application
reports a compression detection event, whereas when the time
difference is less than 100 there is probably no compression
link on the path and the application reports no compression
event is detected.

∆tHHighEntropy = TFirstPktArrival − TLastPktArrival

∆tLLowEntropy = TFirstPktArrival − TLastPktArrival

DetectionFactor = ∆tH −∆tL (1)

The compression algorithm is configured with one
command-line argument, Compression Link Capacity, which
specifies the maximum bandwidth across the link between
the two routers. compression link capacity is tuned to find
the compression efficiency. The implementation of the add-on
feature in SEND() packet model in the NS-3 library is shown
here:

204

/*
* Compression Model Implementation
*/
if(this -> doCompress){

PppHeader header;
packet-> RemoveHeader(header);
if(header.GetProtocol()==this->
compressProtocolNumber){
/* Remove IPV4 Header */
Ipv4Header ipHeader;
packet-> RemoveHeader(ipHeader);
/* Remove UDP Header */
UdpHeader udpHeader;
packet-> RemoveHeader(udpHeader);
/* Add Data & protocol and copy to inData

*/
int protocolSize = 2;
int dataSize = packet-> GetSize();
uLongf size = dataSize + protocolSize;
uint8_t *inData = new uint8_t[size];
inData[0]=0x00;
inData[1]=0x21;
packet-> CopyData(&(inData[2]),size);
uint8_t *compressData = new uint8_t[size];
uLongf new_size;
int returnValue =

compress2((uint8_t*)compressData,
&new_size, (uint8_t*)inData

(uLongf)size,Z_BEST_COMPRESSION);
size = new_size;
packet = new Packet(compressData,size);
size = size + BYTE;
udpHeader.ForcePayloadSize(size);
packet-> AddHeader(udpHeader);
ipHeader.SetPayloadSize(size);
packet-> AddHeader(ipHeader);
header.SetProtocol
(COMPRESSED_PROTOCOL_NUMBER);
}
packet->AddHeader(header);

}

Fig. 4. Compression model implementation.

System testing and validation is conducted to ensure the
correctness of the compression model library as an extended
NS-3 library element.

As discussed earlier, the network topology was implemented
in the point-to-point protocol library. The proposed project
was run under a 5-nodes topology in an NS-3 environment as
shown in Figure 2.

Nodes sender and receiver are the end-hosts running the
network application. Nodes R1 and R2 are the intermediate
routers where the link between them is compression-enabled.
The project topology includes four logically separate simula-
tions, each doing one of the following:

• Transmit low entropy data over a network topology
without a compression link.

• Transmit high entropy data over a network topology
without a compression link.

• Transmit low entropy data over a network topology with
a compression link.

• Transmit high entropy data over a network topology with
a compression link.

The control for confounding variables across the simulations
was defined precisely, as it ultimately is comparing the time
between the simulation types to detect the compression link.
The whole system is automated to run the first low entropy
packet train followed by the high entropy packet train.

The middle capacity link (router A, router B) then varies
and tuned with different capacity parameters from 1 to 10
Mbps, reporting each ∆tH - ∆tL. The link capacity of the
two routers (non-compression) links on the four-node topology
were set persistently to 5 Mbps. The proposed two senders in
the topology support low and high entropy respectively. Sender
and receiver nodes are the UDP server and client. Receiver
nodes record the arrival time between the first and last packets
in the simulation. Four main components are implemented in
the validation architecture.

• Configuration Management System
• Topology Management System
• Compression System
• Synchronization and Output Recorder

Protocol check, payload management, compression and de-
compression features were hosted in the point-to-point-net-
device class library. The UDP-client model class was modified
to generate a random payload in high entropy traffic and UDP-
server model class hosts the entire calculation and compres-
sion detection algorithm.

The external zLib [16] - An abstract of the DEFLATE
compression algorithm - embedded with the project to perform
compression task and as such, the output data length of
compression link altered due to compression process.

In order to build the project, ./waf build system was
implemented. the following commands built the project while
the compression system was enabled.

/*
* To compile and build the project
*/
$ cd workspace/Transport-Layer-Security

/ns-3-allinone/ns-3-dev
$./waf configure
$./waf build
$./waf --run "scratch/point2point

--IsHighEntropy=1 --IsCompress=1
--MaxPacketCount=2"

In the topology management, two UDP clients, a UDP server,
and point-to-point net devices were initiated. The Initialized
class implementation is shown for low entropy UDP clients.
The device attribute for the link between router one and router
two was set for data rate, delay and maximum transmit unit
(MTU).

The compression and decompression flag were set while
initializing the topology. The point-to-point net device library
was developed to support the following features:

205

• Protocol Checker
• Payload Management
• Compression and Decompression

SEND() method in point-to-point net device hosts compression
algorithm, while RECEIVE() method hosts decompression
algorithm. The arriving point-to-point protocol packets were
parsed to capture protocol for possible matched protocol
numbers. The payload will be taken to compress based on
zLib library if the checked packet type matches one in the
configuration file. The protocol will be replaced with LZS
protocol number to indicate data compression. The newly
generated packet is sent to the decompression router through
the link.

In the other hand, RECEIVE() function decompresses the
packet payload data after removing all necessary header files.

Fig. 5. Embedded add-on zlib library.

The implemented system is smart to detect and target the
compressed packets for the decompression process. Figure 5
shows the involved header files with the arriving packets and
e compression process on the packet. The second UDP client
is then in charge to generate high entropy trained packet and
run it through the network.

DetectionFactor = ∆tH −∆tL (2)

The same process takes place for high entropy trained pack-
ets. On the other hand, the UDP server counts the incoming
packets and calculates the delta high entropy and the delta low
entropy based on the equation 2.
To detect the compression, a threshold value of 100 ms is
defined. The delta time difference more than the threshold
value triggers a detection flag and vice versa. The timing report
of the delta is logged and stored in the repository.

The verification process starts in the client and server
application code. The sender nodes send 6000 UDP packet
trains and the receiver records the arrival time between the
first and the last packet in the trains. The first packet train
consists of all packets of size 1100 (Figure 6) bytes in their
payload and it is filled with zeros. On the other hand, the
second packet train contains a random sequence of bits.

The arrival time of the first packet and the last packet
(packet number 6000) were captured and plotted, whilst the
capacity link data rate was increased from 1 Mbps to 10 Mbps.

Figure 7 shows the different timing between the first and the
last packet when the compression is applied. It clearly shows

Fig. 6. Successful arrival of all 12000 packets with the length of 1100 bytes.

Fig. 7. Compression effect on the network in NS-3 library.

the compression is effective only and only if the bottleneck
exists in the capacity compression link.

If the difference in arrival time between the first and the last
packets of the two trains is more than the fixed threshold of
100 ms, the application reports compression detected, whilst
when the time difference is less than the threshold value, there
is probably no compression link in the path and the application
reports no compression is detected. The middle link data rate
was modified within the range of 1 Mbps up to 10 Mbps to
generate a bottleneck of data on the link.

Fig. 8. High and low entropy train on the server node arrival time in NS-3
library.

Figure 7 shows the timing reported on the link capacity
with low entropy packet train and high entropy packet train,
while two outer links on the node topology were set to 8
Mbps consistently. The compression capacity link was altered
to realize the compression behavior in different data rate
configurations.

The time difference between high and low entropy packet
trains is shown in Figure 8. While network bandwidth is
steadily increasing, the arrival time of the low entropy packet
train does not show much timing difference in compression

206

link. On the other hand, there is significant behavior change is
observed when high entropy packet train is located in the high
bandwidth capacity link that proves the compression effect in
the bottle-neck of the capacity link.

This effect has a high impact on wireless networks commu-
nication to utilize the wireless channels efficiently and allows
high traffic wireless packets to travel in multiple wireless
channels.

V. ACKNOWLEDGMENTS

This research was supported by funding from Craig New-
mark Philanthropies.

VI. CONCLUSIONS

Wireless sensor networks have reached about two billion in
2021 [20] worldwide and wireless efficiency and reliability is a
challenging task among wireless researchers. This research has
concentrated on extending the NS-3 simulation environment
with a wireless data compression feature. We implemented
and verified the data compression for WSNs application and
we strongly believe our verified library extension benefits the
wireless researchers and supports their project simulation.

We have replicated a prior research [6] embedded com-
pression and fast decompression model to enhance the speed
of data transferring in the bandwidth and to increase com-
munication efficiency in the wireless network path. We have
conducted testing and verification to validate the compression
and decompression integrated model.

The external zlib library was embedded with the imple-
mented topology to perform compression tasks in qualified
wireless packets.

The two packet trains with low and high entropy were
generated to be transferred via the compression capacity
link for data evaluation and system verification. It is critical
for analytic queries that repeatedly and synchronously read
compressed packet data arrival time for analytic purposes and
hence, The arrival time of the first packet train and the last
packet train of each series were captured and plotted precisely.
The result shows that compression uses the bandwidth effi-
ciently when high load traffic is observed. However, the data
compression is only effective when the capacity link turns to
be a bottleneck.

Compression has no effect on the data transmission speed if
there is no bottle-neck exists in the capacity compression link.
The Compression and decompression model was implemented
and validated for the NS-3 simulation library and the function-
ality was tested and verified for loss-less WSN applications.

REFERENCES

[1] J. Gana Kolo, S. Anandan Shanmugam, D. Wee Gin Lim, L. Ang,
K. Phooi Seng, “An Adaptive Lossless Data Compression Scheme for
Wireless Sensor Networks”, No. 37, Journal Sensors, Hindawi,Jul 2012,
pp. 20.

[2] R. Teymourzadeh, A. Salah Addin, K. W. Chan, M. V. Hoong, “Smart
gsm based home automation system”, 2013 IEEE Conference on
Systems, Process Control (ICSPC), 2013, IEEE, DOI: 10.1109/SPC.
February 2013.6735152, pp.306–309.

[3] D. Lelewer, D. Hirschberg, “Data compression”, ACM Computing
Surveys (CSUR), 3rd ed., Vol. 19. ACM, September 1987, DOI:
296https://doi.org/10.1145/45072.45074, pp.261–296.

[4] B. Welton, D. Kimpe, J. Cope, C. Patrick, K. Iskra, R. Ross, “Im-
proving i/o forwarding throughput with data compression”, 2011 IEEE
International Conference on Cluster Computing, September 2011, DOI:
10.1109/CLUSTER.2011.80 , pp. 438–445.

[5] U.S. National Science Foundation (NSF), “A discrete-event net-
work simulator for internet systems, NS-3 Network Simulator”,
https://www.nsnam.org/, 2011-2021.

[6] V. Pournaghshband, A. Afanasyev, P. Reiher, “End-to-end detection of
compression of traffic flows by intermediaries”, 2014 IEEE Network
Operations and Management Symposium (NOMS), May 2014, DOI:
10.1109/NOMS.2014.6838247 , pp.1–8.

[7] M. Shimamura,H. Koga, T. Ikenaga, M. Tsuru, “Compressing packets
adaptively inside networks”, IEICE transactions on communications,
The Institute of Electronics, Information and Communication Engineers,
July 2010, Vol. 93, No. 3, DOI: 10.1109/SAINT.2009.23, USA, pp.501–
515.

[8] S. Liu, X. Huang, Y. Ni, H. Fu, G. Yang, “A versatile compression
method for floating-point data stream”, 2013 Fourth International Con-
ference on Networking and Distributed Computing, December 2013,
DOI: 10.1109/ICNDC.2013.32, IEEE, pp.141–145.

[9] F. Shamieh, A. Akhtar, X. Wang, “Adaptive distributed com-
pression technique utilizing intermediate network nodes”, 2016
IEEE Canadian Conference on Electrical and Computer Engineer-
ing (CCECE), ISBN: ISBN:978-1-4673-8722-4, May 2016, DOI:
10.1109/CCECE.2016.7726610 , IEEE, Canada, pp.1–4.

[10] D. Tian, H. Ochimizu, C. Feng, R. Cohen, A. Vetro, “Geometric
distortion metrics for point cloud compression”, 2017 IEEE International
Conference on Image Processing (ICIP), September 2017, IEEE, DOI:
10.1109/ICIP.2017.8296925, pp.3460–3464.

[11] R. Serfozo, “Little Laws, Introduction to Stochastic Networks”, Part of
the Applications of Mathematics book series(SMAP), 1999, Vol. 44,
Springer, pp.135–145.

[12] T. Ling Sun, L. Sei Ping, T. Chong Eng, “Enhanced compression
scheme for high latency networks to improve quality of service of
real-time applications”, 8th Asia-Pacific Symposium on Information and
Telecommunication Technologies, June 2010, ISBN: 978-4-88552-244-
4, IEEE, pp.1–6.

[13] O. Shadura, B. Bockelman, “Root I/O compression algorithms and their
performance impact within Run 3”, Journal of Physics: Conference
Series, Vol. 1525, No. 1, Apr 2020, IOP Publishing, DOI: 10.1088/1742-
6596/1525/1/012049, Ser. 012049.

[14] A. Bulent, B. Bart, R. John, K. Matthias, M. Ashutosh, A. Craig
, S. Bedri, B. Alper, J. Christian, S. William, M. Haren, W.
Charlie, “Data Compression Accelerator on IBM POWER9 and
z15 Processors : Industrial Product,” 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), DOI:
10.1109/ISCA45697.2020.00012, May 2020, Spain, pp. 1–14.

[15] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham,
T.L. Rodeheffer, E.H. Satterthwaite, C.P. Thacker, “Autonet: a high-
speed, self-configuring local area network using point-to-point links”,
IEEE Journal on Selected Areas in Communications, Vol. 9, Issue. 8,
October 1991, DOI: 10.1109/49.105178, IEEE, pp.1318-1335.

[16] P. Deutsch, J. Gailly,“ZLIB Compressed Data Format Specification
Version 3.3” 1996 RFC Editor, DOI: https://doi.org/10.17487/RFC1950,
USA, 1996.

[17] A. Turpin, Y. Tsegay, D. Hawking, H. Williams,“Fast generation of result
snippets in web search”, Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval (SIGIR), DOI: 10.1145/1277741.1277766, July 2007, pp.127–
134.

[18] D. Hahn, N. Apthorpe, N. Feamster,“Detecting Compressed Cleartext
Traffic from Consumer Internet of Things Devices”, Cornell University,
DOI: 1805.02722v1 arxiv, May 2018, pp.1–7.

[19] J. Azar, A. AMakhoul, R. Couturier, J. Demerjian, “Robust IoT time
series classification with data compression and deep learning”, Neuro-
computing, Vol. 398, 2011-2021, DOI: 10.1016/j.neucom.2020.02.097,
2020, Elsevier, pp. 222–234.

[20] P. Harrop, R. Das,“Wireless Sensor Networks 2011-2021”, The new
market for ubiquitous Sensor Networks (USN), IDTechEx report,
www.IDTechEx.com/wsn, 2011-2021, pp. 340.

207

