
Entailing Security Mindset in Foundational CS
Courses: An Interactive Approach
Vahab Pournaghshband

Computer Science Department
University of San Francisco

San Francisco, USA
vahab.p@usfca.edu

Hassan Pournaghshband
Software Engineering Department

Kennesaw State University
Atlanta, USA

hpournag@kennesaw.edu

Abstract—The integration of computer security courses into
computing curricula has become standard practice. However,
these courses are often deferred to later stages of the curriculum
due to the perceived need for advanced computer science knowl-
edge. This deferral perpetuates the lack of a security mindset,
leading to overlooked security vulnerabilities in students’ code.
This study advocates for the early introduction of security-related
courses, ideally in introductory computing courses, by proposing
an interactive teaching approach to instill a security mindset in
students. We present a method employing a security-oriented
programming assignment graded primarily on understanding
conventional computing concepts. This approach progressively
introduces critical security principles and practices through the
interactive assignment, inherently security-sensitive, involving the
implementation of application programming interfaces for rou-
tine software operations. The paper outlines our approach’s steps,
discusses essential security concepts and their integration, and
outlines an evaluation methodology to measure the effectiveness
of our approach.

Index Terms—Security education, computer security, security
mindset

I. INTRODUCTION

The rapid integration of software into various aspects of
modern life has been accompanied by a surge in cyber threats
and malicious activities. Hackers have significantly enhanced
their capabilities to exploit software vulnerabilities, resulting
in substantial disruptions to technological infrastructures. The
annual cost of global cybercrime is now estimated to be $600
billion, up more than $100 billion from 2016 [1]. Recent
incidents, such as the massive data breach affecting 37 million
T-Mobile customers and the extensive downtime of the Pacific
island nation of Vanuatu’s government digital networks, under-
score the criticality of addressing software security [2], [3].
Moreover, the intersection of geopolitics and the cyber-attack
landscape, as evident in conflicts like the Russia-Ukraine war,
reinforces the necessity for proactive cybersecurity measures
[4].

Software security vulnerabilities are the most common
cause of software security breaches [5]. As highlighted in [6],
simply relying on security patch management and distribution
to fix these bugs could present challenges. This makes early
detection of security bugs in the pre-release versions of
programs an effective strategy [5]. Although there are various
reasons for a program to fail and the programmers’ inability to

anticipate how these failures can be potentially exploited, the
absence of a security mindset significantly hinders the early
detection of exploitable bugs in software development. Bruce
Schneier defines the security mindset in the following excerpt
from his blog [7]:

“Security requires a particular mindset. The security
mindset involves thinking about how things can be
made to fail. It involves thinking like an attacker, an
adversary or a criminal. You don’t have to exploit
the vulnerabilities you find, but if you don’t see the
world that way, you’ll never notice most security
problems.”

Teaching early programmers this security mindset is a
pivotal step toward reducing cyberattacks and enhancing the
security of future technological systems. Therefore, it is crucial
for students to acquire the necessary skills and knowledge
early in their academic programs to effectively handle these
problems. Although learning the security concepts generally
requires a more advanced knowledge of computer science,
learning the security mindset, with careful planning and prepa-
ration, is feasible within foundational programming courses.
While the primary focus of introductory programming courses
is on foundational programming concepts, integrating teaching
the security mindset into these courses is valuable [8].

In this paper, we propose an interactive approach to promote
the security mindset among students in introductory computer
programming courses. We outline a methodology to develop
and teach this mindset within such a course, utilizing carefully
crafted programming assignments that align with intended in-
troductory course objectives. The core idea of our approach is
to utilize a programming assignment with this matter in mind
while not compromising other required subjects in the course.
This assignment should be security-sensitive by nature, with
application programming interface (API) implementation for
the corresponding software that performs routine operations
expected from such software system. Through our proposed
process, at different steps, the students are introduced to
major security concepts and practices. The assignment should
be merely graded based on students’ understanding of only
conventional computing concepts.

This paper is organized as follows: Section II describes

1) Release the assignment specification to students. Students implement the assignment according to the given specifica-
tions.

2) Instruct students on exploiting inherent security vulnerabilities in their code, causing program crashes or undesired
behavior.

3) Facilitate a discussion forum with students to explore their understanding of the program’s failure and identify the
parts of their code responsible for the abnormal behavior.

4) Educate students on the security consequences stemming from the identified vulnerabilities, enhancing their awareness
of security issues.

5) Conduct a class discussion on effective strategies to mitigate or eliminate these vulnerabilities in their code.
6) Conclude the process by presenting and demonstrating widely recognized practices for mitigating or eliminating these

vulnerabilities.

Fig. 1: Teaching the Security Mindset: A Structured Process.

the existing literature. In Section III, we provide a detailed
description of our approach and discuss how it can be effec-
tively employed in an early computer programming course.
We explain the characteristics of a suitable programming
assignment for our approach, along with an explanation of
each of the steps of the process. We demonstrate how we can
effectively teach basic programming concepts, which is the
primary goal of any programming course, while developing the
necessary security mindset for the students. We also show how
our approach which is naturally interactive plays a significant
role in engaging our students in the whole process, which
ultimately helps them to benefit from it and appreciate the
notion of computer security. Section IV provides an example
of such an assignment. In Section V, we outline an evaluation
methodology to assess the effectiveness of this approach.
Finally, Section VI concludes the paper.

II. RELATED WORK

The issue of teaching the security mindset in introductory
courses has been examined first in [8]. In [8], we demonstrated
how to teach the security mindset through a set of carefully
crafted examples in lectures. Extensive literature advocates
for incorporating security concepts into early programming
courses [9]–[11], with an increasing focus on integrating se-
curity education into undergraduate computer science curricula
[12]–[14]. While some suggest a comprehensive approach of
teaching security concepts within a single course [13], others
recommend effective track approaches involving a sequence
of specialized security-focused courses [14]. Authors in [8],
[15] argue not only for the inclusion of the security mindset
in foundational computing courses but also for its continuous
emphasis throughout the student’s undergraduate program.
Other studies propose introducing security concepts in upper-
division courses by augmenting security design components
into existing projects [16].

Various studies have also dealt with the challenge of incor-
porating security education into the undergraduate curriculum
of computer science or related disciplines [13]. In response to
the growing demand for cybersecurity education, a range of
educational initiatives has emerged. Notably, the ACM/IEEE

computing curricula were updated in 2013 to incorporate
cybersecurity [17]. Building upon this, the Joint Task Force
on Cybersecurity Education (JTF) released extensive curricular
guidance [18] to assist educators in developing cybersecurity
courses.

III. METHODOLOGY

In Section I, we emphasized the importance of computer
security and the role of vigilant programmers in this domain.
Furthermore, in Section II, we highlighted the widespread
recognition of the need to integrate computer security edu-
cation into the established curriculum for computer security.
Therefore, it is crucial for computing students to have a
foundational understanding of computer security as early as
possible, aligning with the existing institutional curriculum.
In this section, we present our methodology and demonstrate
how to teach this security mindset in an interactive fashion,
which has proved to be very effective in fostering our students’
curiosity and interest in this critical domain.

The main idea behind our approach is to present the students
with an assignment evaluated only based on their understand-
ing of traditional computing concepts. But through a process,
at different steps, the assignment strategically introduces them
to major security concepts and practices. To illustrate our
approach, we focus on the “Banking Software” assignment
as a representative example, which has proven successful
in our courses. Importantly, any analogous assignment with
inherent security sensitivities would yield similar outcomes.
The Banking Software project involves the development of an
API for software handling routine banking transactions like
deposits, withdrawals, account inquiries, new account creation,
and transaction displays—operations that inherently require
a security-sensitive approach. Fig. 2 provides the list of the
functions students are tasked with implementing. Through a
process, the students are introduced to crucial concepts such
as one-way hash functions and symmetric encryption. They
are provided with blackbox APIs to execute vital security
operations, employing SHA-1 for one-way hash functions and
AES for symmetric-key encryption.

bool makeDeposit(const char account_no[], const char passphrase[], double amount)
bool makeWithdrawal(const char account_no[], const char passphrase[], double amount)
double getBalance(const char account_no[], const char passphrase[])
void printTopTenTransactions(const char account_no[], const char passphrase[])
bool addNewAccount(const char account_no[], const char passphrase[])
bool log(ofstream& log_file_stream, const char log_message[])

Fig. 2: Required utility functions for the banking software.

The rationale behind our interactive teaching approach is
to actively engage students through a series of discussions
and debates centered around their own submitted code. Fig. 1
illustrates our six-step process, each accompanied by a brief
description.

IV. AN EXAMPLE: BANKING SOFTWARE

In this section, we present an assignment we used to imple-
ment our proposed interactive approach—Banking Software.
The programming language used in our introductory Computer
Science courses is C. This assignment can be used as an
example to incorporate the six-step process proposed in this
paper.

In the assignment specification, we first include the defini-
tion of security tools used in the assignment (i.e., encryption
and one-way hash functions), which also includes a brief
overview of how they will be used in the implementation of
the banking software. This is a challenging step for instructors
because, besides introducing the security concepts and tools
to their students, they need to educate them on how those
concepts and tools should be applied to what they are imple-
menting. The overall design of the system is presented in Fig.
3. In this part of the assignment specification, the students
will learn about the overall design of a secure system and
how to apply the security concepts they just learned in the
implementation of the system. The next part of the assignment
explains what the students are to implement thoroughly. Fig.
2 lists the utility functions the students are to implement for
this assignment. In the last part of the assignment, students
are introduced to software testing, which requires writing a
set of unit tests to test their implemented functions. They
are expected to come up with test cases and descriptive
scenarios. Students’ submissions for the testing component of
the assignment will also be used in assessing our methodology
(Section V).

The remaining sections present the security concepts intro-
duced and discussed in banking software.

A. Buffer Overflow

In this particular segment, students are tasked with inputting
a significantly lengthy passphrase. Given that the assignment
inherently involves receiving user input on various occasions,
requesting students to provide a passphrase is a standard
request. However, considering a scenario where the user’s
passphrase is stored as a C string, a potential buffer overflow

vulnerability exists within the students’ code. Requiring stu-
dents to input an exceedingly long passphrase can cause their
programs to crash. While a program crash is an undesirable
outcome, it pales in comparison to the potential catastrophic
consequence of a malicious user exploiting this vulnerability
to gain complete control over the host machine running the
vulnerable code. It is crucial to explain to the students that a
program crash, in this context, represents a best-case scenario.

In this context, emphasis is placed on input validation and
the utilization of secure functions, both being common prac-
tices to mitigate buffer overflow vulnerabilities. Students are
guided to understand the importance of robust input validation
techniques and the use of secure functions to eliminate the
risk of buffer overflows, thereby fortifying their code against
potential security threats.

B. Denial of Service Attack

In the assignment, critical account information is stored
in an encrypted file linked to each user account, which
the program accesses to retrieve data. However, a potential
vulnerability arises if a malicious entity tampers with the
corresponding file associated with a specific user, deliberately
inflating its size substantially. This can result in a denial-of-
service (DoS) attack when the program tries to read from
the corrupted file. The primary concern here is resource
exhaustion, particularly regarding common readline APIs (e.g.,
getline), which are susceptible to DoS attacks when dealing
with excessively large files.

Here, the students are guided to incorporate a file size check
before reading from the file, thereby mitigating the potential
for such attacks.

C. Integer Overflow

In the assignment, students are instructed to use a dy-
namically created array to store the transaction history for
each account. However, a critical vulnerability arises if the
number denoting the size of the array at the time of creation,
representing the total transactions, is too large. In such a
scenario, the integer variable responsible for holding this value
(expected array size) may overflow. This overflow can lead
to the allocation of an insufficient memory buffer to accom-
modate the entire transaction history. Subsequently, when the
array is populated with transactions, data might be written
beyond the buffer’s end. This could potentially enable the

Overall Design:

You are to write six utility functions for banking systems to use that follow a specific design. In this design, every bank
account is associated to a file that holds information about the bank account’s transaction history as well as some sensitive
personal information about the account’s holder (including the passphrase required for authorizing any transactions on that
account). Every bank account is in this format “XXXXX-XXXXX”, where X’s are digits. For example, “12345-67890”
is a valid account number, while “1234567890” and “ab234-56789” are not. Each bank account file follows the following
format:

passphrase
account holder’s personal information\n
transaction 1\n
transaction 2\n
...
transaction n\n
<EOF>

Since the machine that is designed to hold this highly sensitive information could potentially be vulnerable to attacks
by hackers, we need to augment our system with some security. We use both encryption and one-way hash functions to
improve the security of our system.

Every bank account file is encrypted by an independent passphrase, specified by the account holder at the account creation
time. Note that we assume that the passphrase cannot contain white spaces (‘ ’, ‘\t’, or ‘\n’). For every transaction to
take place, the following steps should take place in order:

1) The file should be decrypted.
2) It should check if the passphrase used to decrypt the file was valid. Technically, matching it with the first line of the

account file should confirm that.
3) Make the transaction.
4) Encrypt back the file using the same passphrase.

This certainly adds some security to our system, since the content of the files are scrambled. So any hacker that breaches
into the system should only see a bunch files with useless scrambled content. That is not entirely the case, if we leave
the account numbers on the file names. To protect the account numbers from the hackers, we need to scramble them as
well. However, we cannot simply encrypt them, as any encryption requires a key. That is where one-way hash functions
can become useful. By making each account file name to be the MD5 hash of the account number, we can protect the set
of account numbers while accessing the right file by just calculating the hash value of the account number. Remember
that one-way hash functions are designed to be irreversible, hence knowing the hash values is worthless information.
Below is an example of a file for bank account “12345-67890” (note that negative values indicate a withdrawal transaction):

Filename: d32fe4f1ca27cc145e359bdf0c8a3797

mypassphraseisweak
Alan Smith, SS#: 111-11-1111
0
20
100
-10
100
-200

One scenario that could describe this transaction history is that Alan wanted to withdraw $200 after making deposits $20
and $100, but since it was insufficient, a $10 overdraft penalty was applied to his account. He then deposits $100 before
withdrawing $200 from his account some time later.

Fig. 3: Overall design of the banking software as presented in the assignment specification.

execution of malicious code residing in attacker-controlled
memory, posing a significant security threat.

In this case, the students are introduced to the importance
of implementing proper checks and mechanisms to handle
potential integer overflow scenarios.

D. Memory Leak

The assignment guides the students to allocate memory
dynamically at different points in their program, such as when
reading a particular user’s transaction history. However, it is
crucial to emphasize the proper deallocation of dynamically
allocated memory. Failure to free memory appropriately can
result in a memory leak. A memory leak can be exploited by
an attacker to launch a DoS attack, intentionally triggering
the leak. This can cause the program to exhibit unexpected
behavior due to low memory conditions. Hence, educating
the students to correctly handle and deallocate dynamically
allocated memory is important to mitigate the potential vul-
nerability to DoS attacks.

E. Clear Memory before Deallocating Memory

Memory allocated throughout a program’s runtime often
holds highly sensitive data, including users’ personal infor-
mation, passwords, and cryptographic keys, as demonstrated
in the context introduced in our programming assignment.
Access to this information by unauthorized processes running
on the same system is a significant security concern. When
memory is deallocated or freed, the freed memory chunk can
be allocated to other processes, potentially exposing old data
stored in memory. It is essential to highlight to the students
that certain languages like C/C++ do not automatically clear
the memory that a process frees, primarily for performance and
efficiency reasons. Consequently, the responsibility of securely
clearing memory that contains sensitive information rests with
vigilant programmers.

In this assignment, students are first instructed that using
memset() to fill the allocated memory with zeros just be-
fore freeing the memory is ineffective. Compiler optimization
can remove this statement during the dead code elimination
process. Subsequently, students are introduced to common
data-scrubbing practices aimed at preventing the leakage of
sensitive information in this context. These practices in-
clude the utilization of functions like memset_s() and
explicit_bzero() to securely clear memory, ensuring
that sensitive data remains protected even after deallocation.

V. EVALUATION METHODOLOGY

In this Section, we outline how we plan to evaluate our
proposed methodology. We are currently conducting a longitu-
dinal study over multiple offerings of the course. We will then
analyze the collected data, and share and publish the results.
To assess the effectiveness of our approach, we employ the
following measures:

1) Measuring students’ attitudes towards computer security
2) Students’ test scenarios
3) Examining log file

4) Surveying the pleasantness of the experience
In the remaining part of this section, we present the details

of each of the above measures.

A. Measuring Students’ Attitudes Towards Computer Security

We measure attitudes and behaviors toward cybersecurity
prior to and after the assignment to see if their attitudes
changed positively or negatively (or not at all) toward com-
puter security. We accomplished this through pre-/post- test
questionnaires to measure students’ attitudes towards computer
security. The format of this questionnaire is inspired by those
used in other disciplines [19]. The questionnaire was given to
the students before the assignment specification was presented
to them, and a post-test was conducted after all discussions
regarding the assignment were concluded. The purpose of this
questionnaire is to identify students’ perceptions and attitudes
toward computer security. These questions are a number of
Likert scale (strongly agree, agree, neutral, disagree, and
strongly disagree) and some yes/no questions to evaluate the
individuals’ confidence, interest, usefulness, and professional
constructs. Responses are converted to numerical scores for
later analysis.

Below are sample questions in the questionnaire:
• I am eager and willing to understand computer security

concepts.
• I value understanding the rationale behind cyber attacks

and defense.
• I am confident I can learn to understand computer

security concepts.

B. Students’ Test Scenarios

The assignment consists of two phases: implementation and
testing. In the assignment specification for the second phase,
we describe “Software Testing” and introduce the students to
fundamentals concepts and practices in this domain such as
like unit testing and integrate testing. The following paragraph
is an excerpt from the specification:

“There might be features that are not supported by
the current design, but if you feel that given such
API for developing a banking system, you expect
certain situations to be handled in certain ways, then
we would like to hear them from you, so include
them in your test cases as well. Keep in mind, the
purpose of testing is to ensure that the program
behaves correctly and rather predictably in all cases,
not just most cases! It is good coding and testing
practice to come up with all possible scenarios and
identify even those that the program will not behave
as expected, even if we do not provide a fix for that
now (perhaps because we have not yet learned how
to). So, include such scenarios in your test file as
well.”

As part of our evaluation methodology, we examine the stu-
dents submitted test scenarios carefully and check specifically
if they include scenarios where the input from users are not
in an expected format, more specifically seemingly malicious.

Logs provide a way to monitor your systems and keep
a record of security events, information access and user
activities. Log everything that you feel is important and
seem critical to you for a log auditor (or system ad-
ministrator or a forensic analyst) to examine in critical
situations. Also, overlogging could be problematic too,
since it hides useful log entries among a bunch of stuff
that is of no importance or interest. We leave that almost
entirely up to you, what to log and how (in what format)
you log these incidents. There is only one situation that
we mentioned explicitly in this specification that you
should log, but nevertheless there are more instances that
you may consider logging.

Fig. 4: Introducing students to logging in the assignment
specification.

C. Examining the Log File

As part of the assignment, the students are introduced to
the importance of logging and tasked to log suspicious events
(Fig. 4). We then examine students’ submissions to see what
information they included in the log file. More specifically,
we look for scenarios in which their programs generate log
entries and how they log those events. For instance, are they
considering multiple failed logging attempts as suspicious
activity and log this event appropriately?

Furthermore, Log files are known to be attractive to ma-
licious entities since they are often in plaintext. Therefore,
we also examine if the generated log entry includes any
sensitive information in its entirety (e.g., whether the actual
corresponding account number is logged or not), or if the
student was more vigilant about what information is being
included in the log file (e.g., the leading digits of the account
number is redacted in the log file).

D. Pleasantness of Experience

The primary objective of the introductory course still is
to emphasize learning the basic concepts of programming.
By incorporating simple attack/defense scenarios to teach and
verify program correctness interactively, we make learning
those concepts more attractive to our students.

As stated by Fanelli et al. [20], “Security can make the other
stuff more interesting. Studying security can lead students to
a deeper understanding of computer science and information
technology concepts. In many cases a thorough understanding
of how a program works is needed to effectively attack or
defend it.” Therefore, we ask the students about about their
perceptions of the assignment and the proposed methodol-
ogy—whether it was an enjoyable and engaging experience.
We use a scale ranging from 1 (low) to 5 (high) in this survey.

VI. CONCLUSIONS

We advocate for integrating computer security into early
computer programming courses—an idea with substantial po-

tential. While acknowledging the challenges for both students
and instructors, we firmly believe that the significant benefits
for students outweigh these hurdles. In this paper, we outlined
a six-step process to teach the security mindset interactively.
Additionally, we introduced an ongoing evaluation methodol-
ogy, incorporating pre- and post-test questionnaires, along with
a thorough examination and analysis of students’ test scenarios
and log implementations.

REFERENCES

[1] McAfee, “Annual report on economic impact of cyber
crime.” [Online]. Available: https://www.mcafee.com/enterprise/en-
us/assets/reports/restricted/rp-economicimpact-cybercrime.pdf

[2] U. TODAY, “In latest t-mobile hack, 37 million cus-
tomers have personal data stolen, company says.” [Online].
Available: https://www.usatoday.com/story/tech/2023/01/20/tmobile-
data-hack-37-million-customers/11088603002/

[3] NPR, “The pacific island nation of vanuatu has been
knocked offline for more than a month.” [Online]. Avail-
able: https://www.npr.org/2022/12/06/1140752192/the-pacific-island-
nation-of-vanuatu-has-been-knocked-offline-for-more-than-a-mo

[4] NPR, “Russia bombards ukraine with cyberattacks,
but the impact appears limited.” [Online]. Avail-
able: https://www.npr.org/2023/02/23/1159039051/russia-bombards-
ukraine-with-cyberattacks-but-the-impact-appears-limited

[5] J. Heffley and P. Meunier, “Can source code auditing software identify
common vulnerabilities and be used to evaluate software security?” in
Proc of Annual International Conference on Systems Sciences, 2004.

[6] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Security patch manage-
ment: Share the burden or share the damage?” Management Science,
vol. 54, no. 4, pp. 657–670, 2008.

[7] B. Schneier, “Schneier on security: The security mindset,”
https://www.schneier.com/news/archives/2016/02/bruce schneier the s
.html, 2008.

[8] V. Pournaghshband, “Teaching the security mindset to CS1 students,” in
Proceeding of the 44th ACM technical symposium on computer science
education, ser. SIGCSE ’13. ACM, 2013.

[9] T. Dimkov, W. Pieters, and P. Hartel, “Training students to steal: a
practical assignment in computer security education,” in Proceedings
of the 42nd ACM SIGCSE, 2011, pp. 21–26.

[10] T. Kohno and B. D. Johnson, “Science fiction prototyping and security
education: cultivating contextual and societal thinking in computer
security education and beyond,” in Proc of ACM SIGCSE. ACM, 2011.

[11] V. Pournaghshband and H. Pournaghshband, “Teaching security notions
in entry-level programming courses,” in Proceedings of IEEE Interna-
tional Conference on Engineering, Technology, and Education, 2021.

[12] K. Nance, “Teach them when they aren’t looking: Introducing security
in cs1,” IEEE Security Privacy, vol. 7, no. 5, pp. 53–55, Sept 2009.

[13] L. F. Perrone, M. Aburdene, and X. Meng, “Approaches to undergraduate
instruction in computer security,” in Proceedings of the American Society
for Engineering Education Annual Conference and Exhibition, 2005.

[14] S. Azadegan, M. Lavine, M. O’Leary, A. Wijesinha, and M. Zimand,
“An undergraduate track in computer security,” SIGCSE Bull., vol. 35,
no. 3, pp. 207–210, Jun. 2003.

[15] K. Nance and B. Hay, “Computer security-focused programming assign-
ments in foundational cs courses,” 2009.

[16] V. Pournaghshband and H. Pournaghshband, “Appending security theo-
ries to projects in upper-division cs courses,” in Proc of International
Conference on Computer Science and Information Technology, 2021.

[17] ACM Joint Task Force on Computing Curricula and IEEE Computer
Society, “Computer science curricula 2013: Curriculum guidelines for
undergraduate degree programs in computer science,” 2013.

[18] Joint Task Force on Cybersecurity Education, “Cybersecurity curricular
guideline,” Computers & Education, 2017. [Online]. Available:
http://cybered.acm.org/

[19] N. F. Tahar, Z. Ismail, N. D. Zamani, and N. Adnan, “Students’ attitude
toward mathematics: The use of factor analysis in determining the
criteria,” Procedia-Social and Behavioral Sciences, vol. 8, 2010.

[20] R. L. Fanelli and T. O’Connor, “Experiences with practice-focused un-
dergraduate security education.” in Proceedings of the 3rd international
conference on Cyber security experimentation and test (CSET’10), 2010.

