
End-to-End Detection of Middlebox Interference
Vahab Pournaghshband

Computer Science Department
University of San Francisco

San Francisco, USA
vahab.p@usfca.edu

Peter Reiher
Computer Science Department

University of California, Los Angeles
Los Angeles, USA
reiher@cs.ucla.edu

Abstract—Internet middleboxes are an increasingly common
network element. They can significantly alter the handling of
traffic streams. Therefore, it is beneficial—and in some cases,
crucial—to enable end-hosts to detect them. While transparent
middleboxes interfere with the traffic, they do not change traffic
content, giving the appearance that the data have merely been
routed. This transparency makes end-to-end detection of such
intermediaries particularly challenging. While existing ad hoc
detection approaches apply only to a specific middlebox type,
we present a general framework to detect a broad class of
middleboxes. We use detecting transparent middleboxes as an
example to illustrate our idea. We demonstrate our results
by detecting three common middleboxes: network compression,
traffic prioritization, and traffic shaping, using analysis, network
simulations, and live Internet experiments with a real middlebox.

Index Terms—Middlebox, Detection, Internet measurement.

I. INTRODUCTION

Abstractly, the Internet adheres to the end-to-end princi-
ple, characterized by smart endpoints and a simple network.
However, the real Internet landscape is much more intricate,
primarily due to the widespread deployment of middleboxes at
various network points [1]. Extensive research has shed light
on the prevalence and functionality of these middleboxes [1],
[2]. Other studies [3] show that the number of different mid-
dleboxes in an enterprise network often exceeds the number of
routers. Today’s enterprise networks rely on a diverse range
of specialized middleboxes. These middleboxes manifest in
various forms, including proxies, firewalls, intrusion detection
systems, WAN optimizers, network address translation (NAT)
devices, and application gateways. They represent an integral
component of today’s Internet and significantly contribute to
delivering high levels of service for many applications.

A middlebox—defined as “any intermediary device per-
forming functions other than the normal, standard functions
of an IP router on the datagram path between a source host
and destination host” [4]—manipulates traffic for purposes
other than packet forwarding. This interference extends beyond
mere routing and can seriously impact traffic flow, resulting
in significant implications for both senders and receivers.

Detecting the presence of middleboxes is important for
several reasons, including enhancing performance, improving
security and privacy, and debugging network issues. Several
practical examples highlight the significance of middlebox
detection. For instance, detecting middleboxes that impose

traffic differentiation can unveil potentially discriminatory be-
havior by some ISPs. This is particularly crucial in the context
of net neutrality, the principle advocating for equal service
treatment of all network traffic by ISPs. Moreover, ISPs typ-
ically do not publicly disclose such discriminatory behavior,
emphasizing the need for detection mechanisms. In the realm
of performance, detecting compression in network traffic can
save resources on constrained devices by identifying redundant
double compression [5]. In the context of debugging, having
knowledge about what is present along the communication
path is fundamentally important in handling network issues.
Generally, tools and methodologies that assist in mapping the
Internet prove valuable.

We define transparent middleboxes as a class of middle-
boxes that make no changes to the content of traffic, giving
the appearance that nothing has been done to the traffic stream
other than routing it to the destination. Either they do not
modify the payload of packets or they reverse their changes
before the packets reach the receiver. Transparent middleboxes
can perform many functions, such as eavesdropping, delaying
packets, compressing or decompressing payloads, encrypting
or decrypting payloads, combining or splitting packets, and
modifying link, IP, and transport layer headers. The trans-
parency property of transparent middleboxes makes end-to-end
detection of such intermediaries harder in most cases, raising
the question, “Can end hosts determine whether something of
this kind has been done if they pay attention?”

The existing literature has proposed mechanisms to detect
several transparent middleboxes, such as network compression
[5], TCP/IP header modification [6], and various forms of
traffic differentiation [7]–[12], including traffic blocking [13],
[14], traffic shaping [15]–[19], and traffic prioritization [20]–
[22]. But these detection mechanisms focus on detecting only
a specific middlebox by presenting a dedicated tool for that
purpose. Therefore, they lack studies that explore the detection
of a broad set of middleboxes. Moreover, it may be beneficial
to determine whether a middlebox is detectable without the
necessity of developing a specialized tool for that detection.

Our contribution is novel in two key aspects:
• Detecting a broad class of middleboxes.
• Introducing a reduction framework to determine if a

middlebox MB is detectable via only analytical means.
Specifically, we reduce the problem of “is MB de-
tectable” to the problem of “is MB′ detectable,” by

showing that (1) MB’s behavior can be analytically
described as MB′ and (2) MB′ is detectable.

We illustrate our approach through a concrete example. We
define an abstract class of transparent middleboxes termed
discriminators in Section II, and show they are detectable
(Section III). In Sections IV, V, and VI, we show that three
distinct middleboxes—network compression, traffic shaping,
and traffic prioritization—are detectable by showing that their
behavior can be described analytically as a discriminator.
Subsequently, we demonstrate how our detection framework
enabled us to design detection tools for these middleboxes. We
implemented these tools and present the results obtained from
our Internet evaluations in Section VII. Section VIII outlines
potential directions for future work and concludes the paper.

II. PRELIMINARIES

In this section, we introduce the notations, formal defini-
tions, and terminologies that we will use throughout the paper.

A. Notations

• SND: The sending host.
• RCV: The receiving host.
• PA: A packet with predefined property A and size |PA|.
• PB : A packet with predefined property B and size |PB |.
• MB: The middlebox in question.
• td(P): Departure time (time to transmit the first bit of

packet P into the wire).
• ta(P)1: Arrival time of the last bit of packet P to the

middlebox.
• dMB(P) := td(P)− ta(P): Total delay imposed by the

middlebox on packet P .
• tT : Transmission time (time to transmit the entire packet

P into the MB’s outbound link to the destination).
• cp: The path capacity—the link capacity of the narrow

link between SND and RCV .
• Z: The link capacity of the outgoing link from MB.
• r: SND’s sending rate of the probe packets as perceived

by MB. This is the minimum of the sending rate at the
sender and the capacity of the narrow link between SND
and MB.

B. Definitions

An influence indicates the observable and measurable effects
of the third party’s middlebox interference on the path proper-
ties. For instance, in the case of interference involving packet
encapsulation, where packets become larger, the influence
manifests as the additional delay resulting from the increased
transmission time of each packet.

An influence I is detectable if there exists an approach to
detect I under normal network conditions,2 using the existing
measurement tools available to typical hosts, considering the
inherent accuracy and precision limitations of these tools.

1ta(P) and td(P) are based on relative clocks in a single system, MB;
thus, synchronization is not required.

2Normal network condition entails that none of the following is present for
a long duration: network failure, network instability, or persistent cross traffic.

We define network flow discriminators (or simply discrimi-
nator) as middleboxes that influence traffic flows by delaying
(or dropping) packets of different flows in a discriminatory
way. In the case of two network flows, one with property
A and the other with property B, a discriminator introduces
additional delays to each packet in the flow with property A
compared to the flow with property B. Below, we formally
define discriminators:

An ordered pair of sets of packets (P̃A, P̃B) are said to be
delay-discriminatory if:

• | P̃A | = | P̃B | ̸= 0.
• ∃PAi

∈ P̃A,∃PBj
∈ P̃B :

δi := dMB(PAi
)− dMB(PBj

) ≥ δmin > 0 3

and
tT (PAi) ≥ tT (PBj)
and
(P̃A − {PAi

}, P̃B − {PBj
}) is also delay-discriminatory

or is (∅, ∅).
This definition implies the existence of at least one bijective

mapping between the elements of set P̃A and set P̃B , such
that when dMB(PAi

) and dMB(PBi
) are compared, a positive

delay is observed. Furthermore, this definition guarantees that
the transmission delay for PAi is greater than or equal to that
of PBi .

This definition also includes middleboxes that drop packets
in a discriminatory way since δi = +∞. Common examples
of such middleboxes are traffic policers and routers that
employ discriminatory buffer management mechanisms such
as WRED [23]. Note that this definition excludes cases where
both PAi

and PBi
are dropped.

Network Flow Discriminator: A middlebox MB is a
network flow discriminator if, given dMB(), there exists a
pair of non-empty sets of packets (P̃A, P̃B) that is delay-
discriminatory.

III. DETECTING DISCRIMINATORS

In this section, we first show that discriminators are de-
tectable by presenting a detection approach. We then introduce
a framework to show that any middlebox whose influence can
be analytically described as a discriminator is also detectable,
provided certain requirements are met.

A. Assumptions

In our analysis in this section, we make several simpli-
fying assumptions. The rationale behind them is to avoid
unnecessary complexity in describing discriminators’ influence
deterministically and in presenting the fundamental aspects of
our analytical presentation.

We assume that the network comprises a series of store-
and-forward nodes, each of them equipped with a FIFO
queue and has a constant service rate. We further assume
that the transmission delay is linear with respect to packet
size. In addition, we assume all packets in the network flow
between the end-hosts go through the middlebox and that

3Following this definition: δmin := min∀i δi,

other traffic does not cause the measurement packets to queue.
Furthermore, we assume the length of all PAs and PBs is
fixed and equal to |P |. Lastly, we assume that dMB(PAi) and
dMB(PBi

) are constant for all i’s, so we simply refer to them
as dMB(PA) and dMB(PB).

B. Approach Overview

In this section, we introduce our proposed approach for
detecting discriminators, followed by an elucidation of its
underlying rationale.

To detect discriminators, we use active probing in two
rounds. In each round, a packet train consisting exclusively
of packets with property either only A or B is sent. To detect
discrimination, the loss rate in each round is measured and
then compared.

To investigate the detectability of discriminators, we look
at the problem from a unique perspective. We imagine that
the imposed delay by the discriminator can be analogously
likened to the effects of transmission delays introduced by a
virtual link inside the middlebox. In this conceptualization, the
middlebox is represented as two virtual nodes, denoted as C
and D, connected by a link of bandwidth S (as depicted in
Figure 1). Notably, it is crucial to recognize that C and D are
not actual routers. Therefore, C has a receive buffer but not a
transmission queue, and D has a transmission queue but does
not have a receive buffer.

SND C D RCV

MB

r S Z

Fig. 1: Decomposition of the discriminator node into two
virtual nodes connected by a virtual link.

Recall from Section III.A, we assume dMB(PAi
) and

dMB(PBi
) are constant for all i’s. Therefore,

∀i, δi = δmin = dMB(PA)− dMB(PB)

For arriving packets with property A and B, their respective
link capacities of the virtual link are4

SA =
8 · |P |

dMB(PA)
, SB =

8 · |P |
dMB(PB)

To facilitate the creation of discriminatory effects by MB,
we focus on the following scenario: SA < r < SB . This is
because when packets are sent at the rate r, some PAs are
expected to be dropped at MB, since SA < r. Conversely,
all PBs are unaffected by the middlebox interference since
SB > r. This observation suggests a loss-based approach to
detect discriminators.

To ensure that the observed packet losses are solely at-
tributable to the interference introduced by MB, we make
the assumption that r ≯ cp. This ensures that there are no
other queue buildups (and hence no packet losses) because

4The factor “8” matches the byte-to-bit unit.

of a fast sender. We thus assume r = cp
5, and consequently,

SA < cp < SB .
Since cp < SB , the loss rate attributed to MB for PBs is

0, whereas for PAs, it is 1 − SA/cp, considering cp > SA.
These loss rates are denoted as lA and lB . Consequently, the
difference in loss rate (denoted as ∆l) equals to 1 − SA/cp.
This suggests that if a threshold—say τ— exists so that it
distinguishes normal Internet loss and induced loss of this
kind by MB, then for the discriminator to be detectable, it
is sufficient to show that the following holds:

∆l = 1− SA

cp
≥ τ (1)

In Section III.C, we show that such a threshold exists. Note
that the Inequality (1) demonstrates the relationship between
δmin (since δmin = f(SA, SB)), cp, and MB’s detectability.

C. Implementation Details

In Section III.B, we showed that a loss-based approach to
detect discriminators exists. In this section, we present the
details pertaining to our proposed approach.

In summary, the detection process comprises four distinct
phases: pre-probing, probing, post-probing, and detection. The
pre-probing phase involves the construction of packets for the
probing phase. In the probing phase, the sender sends back-
to-back packets with property A, followed by a brief pause to
avoid inter-measurement bias, and then sends a train of packets
with property B. In the post-probing phase, the receiver
forwards information about the collected measurement data
back to the sender. The three probing phases are iterated 24
times (once every hour). The rationale behind repeating the
experiment in a span of 24 hours is that, on average, the
presence of cross traffic differs at certain times of the day and
follows particular patterns [25]. By conducting measurements
throughout the day, we hope to identify and eliminate the
effects of non-persistent network failures, instabilities, and
time-dependent cross traffic variations from our detection
results. Once all measurement rounds are completed, in the last
phase, the end-hosts make the detection decision by analyzing
the collected measurement data.

1) Pre-Probing Phase: In this phase, the sender constructs
the detection packet-train-like probe. The detection probe con-
sists of two probe sequences. The first probe sequence consists
of ρ packets with property A. These packets are denoted as
(PAj

)ρj=1, where (PAj
)ρj=1 := (PA1

, PA2
, ..., PAρ

) is a finite
sequence of ρ-ordered elements. The second probe sequence,
denoted as (PBj)

ρ
j=1, consists of packets with property B. It

is important to note that while, in this instance, all packets
within each probe sequence are identical and share the same
property, this may not always be the case (for an alternative
scenario, refer to Section VI, for example).

In the next phase (probing phase), the sender sends the
constructed packets in the exact order in which they are
organized within each sequence.

5In practice, to ensure r = cp, the sender first estimates cp using existing
tools such as pathrate [24]. The sender then reduces its sending rate to cp.

Recall from Section II.B that the probe sequences are
meticulously crafted so that (P̃A, P̃B) is delay-discriminatory.
Since dMB(PAi) − dMB(PBi) ≥ δmin, (P̃A, P̃B) should
be constructed to achieve the largest δmin. This is because,
as Inequality (1) shows, δmin and MB’s detectability are
positively correlated.

Lastly, during the pre-probing phase, the sender and receiver
establish a TCP connection to exchange the measurement
parameters required for the subsequent probing phase.

2) Probing Phase: In this phase, SND transmits the pack-
ets in (PAj

)ρj=1, with each packet being separated by a time
interval of γ. It then pauses for a Λ period of time, before
sending the packets in (PBj)

ρ
j=1, with each packet in the probe

γ apart.
We chose a very small Inter-Departure Time (γ), ensuring

that the packets in each probe sequence are sent back-to-back.
This results in the perceived sending rate, r, being the highest
possible value. Furthermore, the Inter-Measurement Time (Λ)
must be configured to maintain independence between mea-
surement probes, preventing any form of inter-measurement
bias. Λ should be set to a value that is sufficiently large to
allow MB’s queue to dissipate from the preceding experi-
ment’s probes. However, it should not be excessively high to
maintain relatively consistent network conditions across both
measurements. We choose Λ to be 30 seconds to meet these
criteria effectively.

3) Post-Probing Phase: In this phase, through a TCP
connection, RCV shares with SND the information regarding
the receipt of each packet in each measurement round. This
information is used in the detection phase.

4) Detection Phase: In this phase, the end-hosts use the
collected data from the 24 measurement rounds to calculate
∆l from the loss rates, lA and lB , for PAi

s and PBi
s in each

round. If the median of ∆l is larger than a threshold, τ , then
discrimination is detected.

To generate a correct threshold, we need to understand the
root causes of loss on the Internet and what is considered
normal loss—and, in contrast, what is considered an unusually
high loss rate. Studies measuring normal loss on the Internet
[26] suggest 20% as a suitable value for τ . Losses larger than
that may not be attributable to normal Internet variabilities.

D. Simulation Results

We used ns-3 [27] to simulate the discriminator and our
proposed approach to detect them. Figure 2 demonstrates the
loss rates caused by MBs that introduce dMB delays. Recall
that δmin is the difference in dMB values. Figure 2 illustrates
an important observation: when dMB(PA) and dMB(PB) are
configured such that lA > τ and lB = 0 for a particular
MB, then the loss rate ∆l = lA − lB = lA. In this scenario,
discriminators with ∆l values exceeding the 20% threshold
(τ) are detectable. Therefore, Figure 2 demonstrates how
specific values of dMB and cp impact the ability to detect
discriminators.

To summarize, the simulations confirmed that the discrimi-
nator is detectable under the following conditions:

0 100 200 300 400 500
0

20

40

60

80

100

Fig. 2: The relationship between dMB and cp in detecting a
discriminator (∆l > τ), where ρ = 1000, cp = r.

(1) We observe that when δmin ≥ 1ms, MB is detectable
for nearly all values of cp. We refer to this threshold as Θ.

(2) We also observe that the requirement δmin = Θ ≥ 1ms
alone, however, is not sufficient to guarantee that the discrim-
inator is detectable. This is because, in some cases, although
the introduced loss rate is substantial, the difference in loss
rate may not meet the detectable threshold. For instance, if
dMB(PA) = 4ms and dMB(PB) = 3ms, resulting in δmin =
1ms, ∆l might fall below τ , rendering it undetectable. Hence,
there should be a complementary requirement governing the
maximum value of dMB(PB). To address this, we introduce
a different threshold, θ, requiring dMB(PBi

) < θ ∀i. Figure 2
illustrates that for all practical path capacities (cp ≤ 500Mbps),
the delay of 10µs imposed by MB has minimal impact on the
traffic.

E. Detection Framework

In this section, we present the main contribution of our
paper: a reduction framework to determine if a middlebox
MB is detectable via only analytical means. Essentially, we
reduce the problem of “is MB detectable” to the problem
of “is discriminator detectable” by showing that MB is
a discriminator. Given the premise that a discriminator is
detectable under certain conditions, we only need to show that
MB is a detectable discriminator.

To show that a particular middlebox MB, which influences
network flows by imposing discriminatory delays (or drops),
is detectable, it is sufficient to show:

1) MB is a discriminator. In other words, there exists a pair
of non-empty sets (P̃A,P̃B) that is delay-discriminatory.

2) δmin ≥ Θ, where δmin := min{δi : 1 ≤ i ≤ ρ}.
3) ∀i, dMB(PBi) ≤ θ.
Alternatively, these conditions can be described as follows:

∃P̃A,P̃B , such that
∀i, (dMB(PAi

)− dMB(PBi
) ≥ Θ and dMB(PBi

) < θ).
We empirically choose Θ=1ms and θ=10µs.

F. Discussions

In this section, we presented a straightforward detection
approach to illustrate the detectability of middleboxes that

cause discriminatory delays. We acknowledge that a more
sophisticated detection engine can be developed to employ
complex statistical tools to enhance robustness against outliers
and normal network variations while requiring fewer rounds
than 24—ideally just one. However, this paper’s objective is
not to devise such optimal detection approach but rather to
demonstrate that a solution for detecting discriminators exists.

In the remaining sections, we use the demonstrated fact that
“discriminators are detectable under specific conditions” as the
premise to determine the detectability of different MBs via
analytical means.

IV. DETECTING NETWORK COMPRESSION

Routers and nodes within the Internet, including WAN
optimizers, often implement compression techniques at the
link-layer or IP-level to enhance network throughput and re-
duce latency between endpoints. These compression methods,
whether at the link layer [28], [29] or IP level [30], typically
involve compressing both the payload and upper-layer header
information of traffic flows. In this section, we show that
network compression is a discriminator and thus detectable
by demonstrating that it discriminates between packets with
high entropy payloads and those with low entropy payloads.

A. Notations

• PL, PH : The packets with a low entropy (e.g., filled
with zero) and a high entropy (e.g., filled from
/dev/urandom) payload, both with size |P |.

• P ′
L, P

′
H : The resulting packet after compression is applied

to PL and PH . Their respective sizes are |P ′
L| and |P ′

H |.
• αP :=

|P |
|P ′| : Compression efficiency for P .

• dc(P): Processing delay to compress P .
• |Q|: Size of transmission queue at the compressing side.
• td(P): Departure time (time to transmit the last bit of

packet P into the wire).6

B. Network Compression is Detectable

To confirm that network compression is detectable, we show
that the three conditions in the detection framework detailed
in Section III.E hold.

1) Network Compression is a Discriminator: We achieve
this by constructing (P̃A, P̃B) that is delay-discriminatory. P̃A

is a set of ρ packets of PHi
. In contrast, P̃B is a set of ρ packets

of PLi
. This construction allows us to create a scenario where

packets with high entropy payloads (PH) and packets with low
entropy payloads (PL) are subjected to network compression,
ultimately highlighting the delay discrimination characteristic
of network compression.

It is widely acknowledged that an effective compres-
sion algorithm should uphold the following two statements:

6Notice that we slightly modified the definition of td(P) from its orig-
inal definition in Section II.A. With this revised definition of td(P) and
considering the characteristics of the compression process: dMB(P) =
dc(P) + tT (P). This accounts for the specific impact of compression on
the delay experienced by the packet P as it passes through MB.

dc(PH) ≥ dc(PL), and |P ′
H | > |P ′

L|. Recognize that the
second statement implies tT (P

′
H) > tT (P

′
L):

δi = dMB(PHi
)− dMB(PLi

)

= {dc(PHi
)− dc(PLi

)}+ {tT (P ′
Hi

)− tT (P
′
Li
)} > 0

Therefore, ∀i, δi > 0; hence, network compression is a
discriminator.

2) δmin ≥ Θ and ∀i, dMB(P
i
B) ≤ θ: First, we assume

Z = cp, with this assumption arising from the widely accepted
understanding that implementing link-layer compression on
non-bottleneck links is a poor network management practice
since it degrades network performance. Additionally, we as-
sume the following conditions hold:

cp · αPH
< r < cp · αPL

(2)

cp·αP should be viewed as the perceived link capacity of the
compression link for P . Given that |P ′

H | ≈ |P |, it follows that

αPH
=

|P ′|
|P | = 1. Conversely, αPL

is typically significantly

larger for any effective compression algorithm. For instance,
consider a packet with a payload consisting only of zeros and
a size of 1100 bytes. When compressed with LZ Deflate [31],
it reduces to 56 bytes, resulting in αPL

≈ 20.
The left side of (2) holds because Z = cP < r. The right

side of (2) holds since the sender is able to reduce its sending
rate to ensure r < cp ·αPL

, in case αPL
is still not sufficiently

large. Since r < cp · αPL
, PL’s do not experience queuing

delay. Therefore, PH ’s queuing delay is the only contributing
factor in calculating δi.

To compute δi, we initially assume that the queue at the
compression link has become saturated in the case of PH ’s
(due to r > cp). Consequently, for each PHi , δi can either be
+∞ (indicating that the packet is dropped because the queue
is full) or (|Q|− 1)|P ′

H |/cp (representing the time required to
transmit all packets preceding the last queued packet). Given
that the value of |Q| is typically unknown to the end-hosts, we
introduce and employ the concept of super-packets to ensure
our analysis remains independent of this variable.
λ-super-packets: The j-th λ-super-packet (Ṗj) comprises

the j-th grouping of λ consecutive packets within the probing
packet sequence: Ṗj := (Pλj , Pλj+1, . . . , Pλ(j+1)−1).
We then define dMB(Ṗj) as follows:

dMB(Ṗj) :=

{
0 if all packets in the group are received
∞ if at least one packet in the group is lost

Hence, we evaluate the discriminatory impact of compres-
sion on the super-packets instead of the original low and high
entropy packets. Recognizing that the loss rates for PL and PH

are 0 and 1− cp/r, respectively, our objective is to determine
the smallest natural number, λ, where at least one packet is
lost in every ṖHj

:
cp
r

≤ λ− 1

λ

Solving for λ,
λ ≥

⌈
1

1− cp
r

⌉
(3)

(3) shows the existence of such λ so that ∀j, dMB(ṖHj
) =

+∞. Simultaneously, ∀j, dMB(ṖLj) = 0, demonstrating
that δmin ≥ Θ since δmin = +∞. Additionally, since
∀i, dMB(ṖLi

) = 0, ∀i, dMB(P
i
B) ≤ θ also holds.

In conclusion, all three steps in the detection framework
hold; therefore, network compression is detectable.

V. DETECTING TRAFFIC SHAPING

Traffic shaping is widely used to help optimize performance
and improve latency by controlling the amount of data that
flows into and out of the network. Many access ISPs deploy
traffic shaping to limit the peak network traffic on their transit
links and thereby reduce their wide-area bandwidth costs [15].

A traffic shaper employing the token bucket algorithm
with shaping profile (σ,Σ) functions as a forwarding module
with the following behavior: Consider a link with a capacity
of νbps, associated with a token bucket of size Σ tokens.
Whenever the bucket is not full, tokens are generated at a rate
of σ tokens per second, where σ < ν. The link can transmit
an arriving packet of size m bits only if the token bucket has
at least m tokens; upon the transmission of the packet, the
shaper depletes m tokens from the bucket, equivalent to the
size of the transmitted packet.

In this section, we show that traffic shaping is a discrimi-
nator and thus detectable.

A. Notations

• Pσ: The packet (with size |P |) that is being shaped
adhering to the shaping profile (σ,Σ).

• Pν : The packet (with size |P |) that is not being shaped
and consequently serviced at the link capacity rate, ν.

• |Q|: The size of the transmission queue at the shaper’s
outbound link.

B. Traffic Shaping is Detectable

To confirm that traffic shaping is detectable, we show that
the three conditions in the detection framework detailed in
Section III.E hold.

1) Traffic Shaper is a Discriminator: We achieve this by
constructing (P̃A, P̃B) that is delay-discriminatory. P̃A is a set
of ρ packets of Pσ , and P̃B is a set of ρ packets of Pν .7

In our analysis, we assume the following scenario:

σ < r ≤ ν (4)

The left side of (4) stems from the fact that if r ≤ σ, in
the absence of cross traffic, the shaper is not interfering with
the traffic flow, and thus there is no interference to detect. The
right side of (4) holds because if r > ν, then the sender can
reduce its sending rate to ν.

We further assume that a packet train consists of shaped
traffic that has been sent with the objective of depleting all
tokens at the shaper and saturating the shaper’s queue.

We extend our assumption to consider a packet train com-
prising shaped traffic intentionally sent to deplete all tokens at

7Pσs are constructed to match the alleged classification criteria at shaper.

the shaper and fill its queue to capacity. Consequently, each
subsequent Pσ encounters some queuing delay or face a drop
if the queue is already full. In contrast, under the assumption
r < ν, Pνs are promptly served without any delays. Thus,
there exists a positive delay between each packet of Pσ and
Pν , demonstrating that the traffic shaper is a discriminator.

2) δmin ≥ Θ and ∀i, dMB(P
i
B) ≤ θ: In our analysis, we

maintain the assumption of constant normal forwarding and
routing for all packets. Thus, the queueing delay remains the
only contributing factor in our calculation of δi. Given r < ν,
Pνi

s are serviced immediately, implying dMB(Pνi
) = 0. Con-

sequently, for the calculation of δi, our focus is on determining
dMB(Pσi).

Under the assumption of a full queue and depletion of
all tokens, each incoming Pσ results in δi being either +∞
(indicating a drop due to the full queue) or (|Q| − 1)|P |/σ
(representing the time required to transmit all packets ahead
of the last queued packet). As |Q| remains unknown to SND
and RSV , similar to our approach in the analysis presented
in Section IV.B, we employ the concept of super-packets to
ensure that the analysis is independent of this variable.

Furthermore, our objective is to find the minimum λ such
that dMB(Ṗσj

) = +∞ for all j’s. Given that the loss rate
for Pσs is 1 − σ/r, employing a similar analysis to the one
presented in Section IV.B, the following inequality validates
the existence of such λ:

λ ≥
⌈

1

1− σ
r

⌉
Lastly, since r < ν, in the absence of cross traffic,

Pνs are never lost, hence ∀j, dMB(Ṗνj
) = 0. Therefore,

∀i, dMB(P
i
B) ≤ θ holds.

In conclusion, all three steps in the detection framework
hold; therefore, traffic shaper is detectable.

VI. DETECTING TRAFFIC PRIORITIZATION

This rise in the popularity of bandwidth-hungry appli-
cations, coupled with resource-constrained networks, has
reignited discussion about how different applications’ network
traffic is treated (or mistreated) by ISPs. Strict Priority Queu-
ing (SPQ) is one of the widely-known methods of providing
traffic differentiation on edge networks [32].

In a simple two-class model, SPQ classifies network packets
as either high priority or low priority traffic, which are then
filtered into separate FIFO queues. The SPQ scheduler then
ensures that higher priority traffic (if present) is always served
before lower priority. In other words, the high priority queue
must be completely empty before the regular queue is served.

In this section, we show that SPQ is a discriminator and
thus detectable.

A. Notations

• PH : The packet (with size |P |) that is prioritized.
• PL: The packet (with size |P |) that is not prioritized.
• QH , QL: High and low priority queues with their respec-

tive sizes: |QH |, |QL|.

Fig. 3: Illustration of packet probe train to detect SPQ con-
structed in pre-probing phase for the low priority probing
phase. (Green) High priority packets. (Blue) Low priority
packets. Lis represent the packets of interest.

B. SPQ is Detectable

To confirm that SPQ is detectable, we show that the condi-
tions in the framework detailed in Section III.E hold.

1) SPQ is a discriminator: To show that SPQ is a discrim-
inator, we create interleaving patterns of packets in our probe
sequences involving two distinct phases: low priority phase
(LP) and high priority phase (HP). In LP , the sender sends
ρ low priority packets (referred to as packets of interest), each
separated by N ′ high priority packets (referred to as separation
packet train). Figure 3 illustrates the pattern used to construct
the probe sequence during the low priority phase. In contrast,
in HP , the priority class of the packets is flipped. Specifically,
ρ high priority packets of interest are sent, each separated by
N ′ low priority packets.

Now we show that if P̃A and P̃B consist of the ρ low
and high priority packets of interests during the LP and HP
phases, respectively, then (P̃A, P̃B) is delay-discriminatory. To
achieve this, our aim to create significant discriminatory effects
is twofold: (1) during HP , QH never to build up, hence no
PHi

is dropped at QH , (2) during LP , QH never to be empty,
hence few PLi

s are either starved at QL or dropped when QL

is full. We seek to determine if there exist values for ρ and
N ′ that satisfy these objectives.

Assuming r > Z,8 to accomplish these objectives, the
following conditions must hold:

(i) High priority packets in HP are sent at the rate of r
N ′+1 .

Hence, for QH to never build up, r
N ′+1 ≤ Z must hold.

(ii) High priority packets in LP are sent at the rate of
N ′

N ′+1r. Therefore, for QH to never be empty, the
condition N ′

N ′+1r ≥ Z must be satisfied.
Combining conditions (i) and (ii), we have r

N ′+1 ≤ Z ≤
N ′

N ′+1r. We can now solve for N ′:

N ′ ≥
⌈
max

{
r − Z

Z
,

Z

r − Z

}⌉
(5)

Therefore, there exists a value for N ′ that satisfies both (i)
and (ii). In this scenario, PHis in HP are serviced immedi-
ately, while PLi

s in LP experience starvation, hence delayed
or dropped. This effect shows that SPQ is a discriminator.

2) δmin ≥ Θ and ∀i, dMB(P
i
B) ≤ θ: Assuming that (i)

and (ii) are met, ∀i, dMB(P
i
B) ≤ θ holds, since all PHi in

HP are served immediately, experiencing negligible delay.

8If r ≤ Z, then there will be no observable discrimination by SPQ.

0 2 4 6 8 10
0

20

40

60

80

100

Fig. 4: The effects of the separation packet train length (N ′)
and the sending-rate-to-bottleneck ratio (r/Z) on detection
accuracy, where r = 10Mbps, |QH | = |QL|= 75, and ρ = 1000,
using a simple topology SND → MB → RCV .

As for δmin ≥ Θ, to compute δmin, we need to calculate
δi values. We make the assumption that normal forwarding
and routing are constant for all packets, hence excluding them
from the calculation of δi. Therefore, in LP , δi = dMB(PLi).

Assuming that condition (ii) is met (hence PLi
s experience

starvation), PLis are either dropped (if QL is full), or queued.
In the former scenario, δi = +∞. In the latter case, δi is the
time required to transmit all high priority packets in all sepa-
ration packet trains in LP . Specifically, δi ≥ N ′ · ρ · tT (PH).
Selecting suitably large values for N ′ and ρ will guarantee
δmin ≥ Θ.

In conclusion, all three steps in the detection framework
hold; therefore, SPQ is detectable.

C. Simulation Results

Through simulations (ns-3), we illustrate how network
characteristics (r/z) and the parameter N ′ can impact the
detectability of SPQ. We chose SPQ in our simulation because,
unlike network compression and traffic shaping, multiple pa-
rameters can affect the tool’s detection rate.

Inequality (5) shows the relationship between N ′ and r/Z
in detecting SPQ. Figure 4 demonstrates this relationship for
a range of values for N ′ and Z, while r is constant. If r/Z is
too large (Z < 2Mbps in this scenario), then the high priority
packets of interest are also lost, because the link is too slow. As
shown in Figure 4, this can potentially affect the detection rate,
as the difference in loss rate between high and low priority
packets of interest decreases. On the other hand, if r/Z is too
small (Z > 8Mbps in this case), then the high priority packets
in the separation packet trains in LP are processed so fast that
they are unable to keep the high priority queue constantly busy.
This allows most low priority packets of interest to exit the
low priority queue. This leads to a decrease in ∆l, which can
degrade the detection accuracy. In this case, however, where
r/Z is close to 1, the end-hosts do not noticeably experience
the effects of SPQ. To summarize, simulation has confirmed
that our approach detects only effective SPQ.

VII. INTERNET EVALUATION

In this section, we present our Internet evaluation conducted
to confirm the effectiveness of our detection methods to detect
network compression, traffic shaper, and SPQ.

A. Experiment Setup

The experiment environment and topology setup are de-
picted in Figure 5. To enable the effect of shaping and SPQ,
we used a Cisco Catalyst 3750 switch, which has both QoS
features: SPQ and traffic shaping. To enable the effect of
network compression, we emulated network compression by
implementing our own,using Click Modular Software Router
[33]. The switch and receiver were located in our institution
network. The senders, however, are a set of four geographically
distributed remote PlanetLab [34] nodes, connected via the
open Internet [35]. Notably, we reduced the sending transmis-
sion rate from the middlebox, thereby making MB → RCV
link the narrow link of the path. To confirm that this link
is indeed the bottleneck, we used the capacity estimation tool
Pathrate [24]. Pathrate has been proven experimentally to work
well with PlanetLab nodes [36].

InternetPlanetLab Node 1

PlanetLab Node 4

...
Middlebox Test Server

/ Target IP

Research controlled

Fig. 5: Environment used in our experiments.

We could have placed both the sender and the receiver
remotely and simulated a single bottleneck link on the path
by routing the traffic stream through our local network. But
by using a remote sender and a local receiver, we simulated
a more common scenario in which such middleboxes are
typically present in the edge network.

We used the following parameters in our Internet exper-
iments: in the switch, we set Z = 2Mbps, and we used
the default setting of 60 packets for the queue size in Cisco
Catalyst 3750 [37]. VM Slices in PlanetLab nodes are typically
rate-limited to 10Mbps [36]—thus, r = 10Mbps. We set the
total number of packets of interest, ρ, to be 1000. Moreover,
when constructing the SPQ detection probe, we used N ′ = 4.
Lastly, we used λ = 1 in our calculations involving network
compression and traffic shaping.

B. Results

We uniquely define an experiment scenario by pairing a
remote PlanetLab node with the specific middlebox the end
hosts are trying to detect. As outlined in Section III.C, each
measurement scenario consists of 24 individual measurement
conducted over a 24-hour period, executing one measurement
per hour. We record the median ∆l for each of the 24-round
measurements and compare it against the detectable threshold.

In our experiment, we conducted each measurement sce-
nario ten times. The normal distribution of recorded medians

60

70

80

90

100

Compression Shaping SPQ

Fig. 6: Summary of the Internet experiments results in normal
distribution form. All median values are above the 20%
detectable threshold. (PL1 : planetlab2.cs.ucla.edu (USA),
PL2 :pl1.uni-rostock.de (Germany), PL3 :pl1.sos.info.hiroshi
ma-cu.ac.jp (Japan), PL4 :planetlab.research.nicta.com.au
(Australia)).

for each scenario is depicted in Figure 6. The results con-
firmed the existence of a significant gap exceeding the 20%
threshold, in the presence of the middlebox interference for all
tested scenarios. On the other hand, in the absence of these
middleboxes, none of the median ∆ls values surpassed the
detectable threshold.

It is important to note that in the case of traffic shaping,
our tool excludes the packets used to deplete the tokens at the
shaper in the loss rate calculations during the detection phase.

Recalling from Section III.F, while a more robust detection
approach could mitigate biases introduced by factors such as
cross traffic, routing dynamics, and load balancing, in fewer
rounds, the primary objective of this paper is to demonstrate
the existence of a solution rather than an optimal one.

VIII. CONCLUDING REMARKS

In today’s Internet landscape, middleboxes are ubiquitous
and can significantly alter the handling of traffic streams. In
this paper, we presented a general framework to detect a broad
class of middleboxes. While this work constitutes a significant
advance, we view it as just the initial step in a continued
exploration of this research direction.

In this paper, we showed an example of one abstract class—
network discriminator, along with one solution to detect the
abstract class. We also identified three middleboxes whose
interference are described as this abstract class. Our ongo-
ing research encompasses the exploration of various avenues
within each of these categories. This includes the formulation
of additional abstract classes, the exploration of alternative
solutions for detecting discriminators, and the identification
of more middleboxes that exhibit characteristics of discrimi-
nators.

Furthermore, our approach assumes a static third party
middlebox whose discriminatory behavior remains unchanged
during the course of the probing (measurement) phase. Our on-
going research investigates addressing dynamic environments
where third parties actively attempt to evade detection by
closely monitoring traffic, identifying measurement traffic, and
potentially introducing bias into the measurement results.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold
story of middleboxes in cellular networks,” in Proceedings of the
ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11. New
York, NY, USA: ACM, 2011, pp. 374–385. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018479

[3] J. Sherry, S. Ratnasamy, and J. S. At, “A survey
of enterprise middlebox deployments,” 2012. [Online]. Avail-
able: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
24.pdf

[4] B. E. Carpenter and S. W. Brim, “RFC 3234: Middleboxes: Taxonomy
and Issues,” vol. 3234, pp. 1–27, 2002.

[5] V. Pournaghshband, A. Afanasyev, and P. L. Reiher, “End-to-end detec-
tion of compression of traffic flows by intermediaries,” in IEEE/IFIP
Network Operations and Management Symposium, ser. NOMS ’14.
IEEE, 2014.

[6] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proceedings of
the 2013 Conference on Internet Measurement Conference, ser. IMC
’13. New York, NY, USA: ACM, 2013, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/2504730.2504757

[7] T. Garrett, L. E. Setenareski, L. M. Peres, L. C. Bona, and E. P. Duarte,
“Monitoring network neutrality: A survey on traffic differentiation
detection,” IEEE Communications Surveys & Tutorials, 2018.

[8] R. Ravaioli, G. Urvoy-Keller, and C. Barakat, “Towards a general
solution for detecting traffic differentiation at the internet access,” in
2015 27th International Teletraffic Congress, Sept 2015, pp. 1–9.

[9] M. M. B. Tariq, M. Motiwala, and N. Feamster, “NANO: network access
neutrality observatory,” in HotNets. ACM SIGCOMM, 2008, pp. 127–
132.

[10] M. Dischinger, M. Marcon, S. Guha, P. K. Gummadi, R. Mahajan, and
S. Saroiu, “Glasnost: Enabling end users to detect traffic differentiation.”
in NSDI, 2010, pp. 405–418.

[11] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani,
D. Choffnes, P. Gill, and A. Mislove, “Identifying traffic differentiation
in mobile networks,” in Proceedings of the 2015 Internet Measurement
Conference, ser. IMC ’15. New York, NY, USA: ACM, 2015, pp. 239–
251. [Online]. Available: http://doi.acm.org/10.1145/2815675.2815691

[12] Z. Zhang, O. Mara, and K. Argyraki, “Network neutrality inference,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 63–74, aug
2014. [Online]. Available: http://doi.acm.org/10.1145/2740070.2626308

[13] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi,
“Detecting bittorrent blocking,” in Proceedings of the 8th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’08.
New York, NY, USA: ACM, 2008, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/1452520.1452523

[14] S. B. R. Beverly and A. Berger, “The Internet Is Not a Big Truck:
Toward Quantifying Network Neutrality.” pp. 135–144., Springer Berlin
Heidelberg, 2007.

[15] F. Li, A. A. Niaki, D. Choffnes, P. Gill, and A. Mislove, “A large-scale
analysis of deployed traffic differentiation practices,” in Proceedings
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’19. Association for Computing Machinery, 2019, p.
130–144.

[16] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim,
E. Katz-Bassett, and R. Govindan, “An internet-wide analysis of traffic
policing,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser.
SIGCOMM ’16. ACM, 2016, p. 468–482.

[17] P. Kanuparthy and C. Dovrolis, “Shaperprobe: End-to-end detection of
isp traffic shaping using active methods,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, ser.
IMC ’11. New York, NY, USA: ACM, 2011, pp. 473–482. [Online].
Available: http://doi.acm.org/10.1145/2068816.2068860

[18] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting traffic differentiation
in backbone isps with netpolice,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement. ACM, 2009, pp. 103–
115.

[19] U. Weinsberg, A. Soule, and L. Massoulie, “Inferring traffic shaping and
policy parameters using end host measurements,” in INFOCOM, 2011
Proceedings IEEE. IEEE, 2011, pp. 151–155.

[20] Kanuparthy and C. Dovrolis, “Diffprobe: Detecting isp service discrim-
ination,” in 2010 Proceedings IEEE INFOCOM, Mar 2010, pp. 1–9.

[21] G. Lu, Y. Chen, S. Birrer, F. E. Bustamante, and X. Li, “Popi: a user-
level tool for inferring router packet forwarding priority,” vol. 18, no. 1.
IEEE Press, 2010, pp. 1–14.

[22] V. Pournaghshband, “Identifying Traffic Prioritization on the Internet,” in
Proceedings of IEEE International Conference on Metaverse Computing,
Networking and Applications (IEEE MetaCom), ser. IEEE MetaCom ’23,
2023.

[23] Cisco, “Qos: Congestion avoidance configuration guide,”
2016. [Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/qos conavd/configuration/xe-16/qosconavdxe16book.pdf

[24] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?” vol. 2. USA: IEEE, 2001, pp. 905–914.

[25] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft, “How to
identify and estimate the largest traffic matrix elements in a dynamic
environment,” in Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’04. ACM, 2004, pp. 73–84.

[26] H. X. Nguyen and M. Roughan, “Rigorous statistical analysis of internet
loss measurements,” IEEE/ACM Transactions on Networking, vol. 21,
no. 3, pp. 734–745, 2013.

[27] “ns-3: An Open Simulation Environment,” https://www.nsnam.org/.
[28] R. Friend and W. Simpson, “RFC1974: PPP Stac LZS Compression

Protocol,” 1996.
[29] D. Rand, “RFC1978: PPP Predictor Compression Protocol,” 1996.
[30] A. Shacham, B. Monsour, R. Pereira, and M. Thomas, “RFC3173: IP

payload compression protocol (IPComp),” 2001.
[31] R. Pereira, “RFC2394: IP payload compression using DEFLATE,” 1998.
[32] M. Rahimi and V. Pournaghshband, “An improvement mechanism for

low priority traffic tcp performance in strict priority queueing,” in 2016
International Conference on Computer Communication and Informatics
(ICCCI), 2016, pp. 1–5.

[33] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” Trans. on Comp. Systems, vol. 18, no. 3, pp.
263–297, 2000.

[34] “PlanetLab: An Open Network Platform,” https://www.planet-lab.org/.
[35] P. Kirth and V. Pournaghshband, “Pldetect: a testbed for middlebox

detection using planetlab,” in EAI International Conference on Testbeds
and Research Infrastructures for the Development of Networks Com-
munities (TRIDENTCOM), 2019.

[36] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, “Measuring
bandwidth between planetlab nodes,” in Proceedings of the 6th Inter-
national Conference on Passive and Active Network Measurement, ser.
PAM’05. Berlin, Heidelberg: Springer-Verlag, 2005, p. 292–305.

[37] Cisco System, “Cisco IOS Quality of Service Solutions Configuration
Guide,” https://www.cisco.com/c/en/us /td/docs/ios/qos/configuration
/guide/12 2sr/qos 12 2sr book.pdf, November 2009.

