
Locating Link-Layer Compression
Links on the Internet
Vahab Pournaghshband (vahab.p@usfca.edu)
Xiuhui Wang (xwang247@dons.usfca.edu)

Network and Security Research Laboratory
University of San Francisco

IARIA Congress 2024

Introduction

● Internet routers or nodes sometimes compress traffic flows at the link-layer or IP-level without knowledge of
the end-hosts.

● When end-host applications are aware of intermediary compression, they can save time and resources by
not applying compression themselves.

● We introduce a probing technique to detect compression of traffic flows and determine the distance of the
compression link from the sender, if it exists.

● This technique is non-intrusive and does not require changes to or information from intermediate nodes.
● Detection relies solely on packet inter-arrival times and does not require receiver cooperation.
● The effectiveness of this technique is validated in a simulated environment using ns-3.

Detection Methodology

TC
P

TC
P UDPUDP UDP…

RS
T

RS
TICMPICMP ICMP …

𝝙t

● In one round, sender transmits a single head SYN
packet, followed by a train of n UDP packets, and
then a tail SYN packet.

● Subsequently, the sender receives a head RST
packet, a series of ICMP packets, and a tail RST
packet.

● For each round, we measure the time difference
between the two RST packets as 𝝙t.

One Round

Detection Methodology

RS
T

RS
T…

𝝙tH

Round One: High Entropy Data

● Round 1: Send packets containing high-entropy data (e.g., random characters).
● Round 2: Repeat round 1, but with identical-sized packets containing low-entropy data (e.g., zeros).
● Measure the difference in arrival times between the first and last RST packet for both data types.
● Compressed low-entropy data packets are expected to be smaller than high-entropy packets, resulting in shorter

transmission delays.

RS
T

RS
T…

𝝙tL

Round Two: Low Entropy Data

UDP Payload
jTb9E….zL8p (insensitive to compression)

UDP Payload
0000…0000 (sensitive to compression)

Detection Methodology

RS
T

RS
T…

𝝙tH

Round One: High Entropy Data

● If 𝝙tH - 𝝙tL is greater than a threshold 𝛕, then compression is likely occurring.

● The threshold 𝛕 is used to eliminate normal Internet variability and is empirically set to 100 msec.
● The value of the threshold depends on the time precision and resolution of the machine performing the

measurement.

● Our approach relies on RST responses instead of ICMP, as ICMP responses are not always generated, or they often
are sent to the router’s slow path or rate-limited.

RS
T

RS
T…

𝝙tL

Round Two: Low Entropy Data

𝝙tH - 𝝙tL > 𝛕

Parameters

● We tested the proposed approach using the topology above.
● Link 1 and link 3 are set to 100 Mbps. We assumed the compression is applied on the bottleneck link,

which is a widely accepted network practice
● Compression link capacity is tested with discrete values from 5Mbps to 100Mbps.
● The number of UDP packets in the train is tested with discrete values from 10 to 1000.
● Each UDP packet size is set to 1100 Byte.
● The detection threshold is set to 100 ms.

Link 1 Link 3

Validation Results

As the packet number of the UDP packet train
increases, a linear increase in 𝝙tH - 𝝙tL is observed

in the presence of a compression link.
For trains exceeding a length slightly over 110, a
significant time difference exceeding the threshold is
consistently observed, indicating the presence of
compression.

The more packets, the easier to detect compression.

Compression link capacity = 10 Mbps
Packet Size = 1100 B
Number of Packets = 10, 20, 50, …, 1000

Validation Results
As the compression (bottleneck) link capacity increases, the 𝝙tH -

𝝙tL will rapidly decrease and gradually approach 0, meaning that

we won't see significant differences in transmission time between
high entropy data and low entropy data.

This implies that if the link where the compression intermediary
resides is narrower, we will be more likely to detect it.

Compression link capacity = 20, 30, …, 100 Mbps
Outer link capacity = 100 Mbps
Packet Size = 1100 B
Number of Packets = 6000
* For compression link capacity smaller than 20, the difference is even larger

Locating Methodology

By increasing the TTL of UDP packets, we are able to locate a compression link in a network.
● Gradually increase the TTL value in the UDP header starting from 1.
● When the TTL is not enough to reach the compression link, neither high entropy nor low entropy

packets will be compressed, resulting in a very small 𝝙tH - 𝝙tL .
● When the TTL is large enough, 𝝙tH - 𝝙tL will change significantly, at which point the distance of the

compression link from the sender can be determined.
Verification:
● Build an 8-node link and verify the following three cases: no compression link, compression link at link

4, and compression link at link 7.
● For each case, increase the TTL from 1 to 7 gradually and record the change of the 𝝙tH - 𝝙tL .

Link 4 Link 7

Validation Results - Locating the compression Link

TTL ΔtH ΔtL ΔtH - ΔtL

Compression
on 4th Link

3 0.543 0.543 0

4 5.477 0.543 4.934

5 5.477 0.543 4.934

Compression
on 7th Link

5 0.543 0.543 0

6 0.543 0.543 0

7 5.477 0.543 4.934

No
Compression

1 0.542 0.542 0

4 0.543 0.543 0

When compression locates at link 4, the
difference is 0 when TTL ≤ 3.

All TTLs > 4 allow packets to be compressed,
and the difference shows that the transmission
delay of low entropy data is significantly smaller
than that of high entropy data.

Same effect was observed when compression
was placed on link 7.

For no compression case, no difference is
detected between 𝝙tH and 𝝙tL for all TTL values.

Units: second

Conclusion

● This work explores the feasibility of detecting compression performed by intermediaries on the
network path.

● We introduced an end-to-end packet-train-like method that functions in uncooperative but
responsive environments.

● We also provided an approach utilizing TTL to locate the compression link.
● Future work includes developing a practical tool with minimal measurements (ideally one) for

detection. This tool should be lightweight for mobile applications with limited resources.

