
HOW TO DETECT MIDDLEBOXES:
GUIDELINES ON A METHODOLOGY

VAHAB POURNAGHSHBAND
1
, SEPIDEH HASHEMZADEH

2
 AND PETER REIHER

3

1
Computer Science Department, California State University, Northridge, USA

vahab@csun.edu

2
IEEE Member

hashemzadeh.s.h@ieee.org

3
Computer Science Department, UCLA, Los Angeles, USA

reiher@cs.ucla.edu

ABSTRACT

Internet middleboxes such as VPNs, firewalls, and proxies can significantly change handling of traffic

streams. They play an increasingly important role in various types of IP networks. If end hosts can detect

them, these hosts can make beneficial, and in some cases, crucial improvements in security and

performance But because middleboxes have widely varying behavior and effects on the traffic they

handle, no single technique has been discovered that can detect all of them.

Devising a detection mechanism to detect any particular type of middlebox interference involves many

design decisions and has numerous dimensions. One approach to assist with the complexity of this

process is to provide a set of systematic guidelines. This paper is the first attempt for introducing a set of

general guidelines (as well as the rationale behind them) to assist researchers with devising detection

methodologies to detect middleboxes by the end-hosts.

The presented guidelines take some inspiration from previous work of other researchers using various

and often ad hoc approaches. These guidelines, however, are mainly based on our experience from

conducting research in this area to detect such middleboxes. To assist researchers for using these

guidelines we also provide an example of how to bring them into play for detection of network

compression.

KEYWORDS

Detection, Middlebox, Guidelines

1. INTRODUCTION

Abstractly, we often assume that the Internet follows the end-to-end principle, with smart

endpoints and a dumb network. However, this general picture is very different from capabilities

of the latest technologies and the actual Internet is far more complex, with the emergence and

rapidly growing prevalence of middleboxes deployed at various points in the network.

Middleboxes are defined as intermediary devices which take actions other than the normal,

standard functions of an IP router on the datagram path between a source host and destination

host [1]. They manipulate traffic for purposes other than simple packet forwarding. In addition

to routing the traffic, middleboxes can make serious changes to network flows, from altering the

user-data to more transparent effects such as imposing additional delay on the traffic. These

influences by third party middleboxes could be for malicious, security, or performance reasons.

mailto:vahab@csun.edu
mailto:hashemzadeh.s.h@ieee.org
mailto:reiher@cs.ucla.edu

A wide variety of middleboxes have been proposed, implemented, and deployed during the last

decade [2]. Today's enterprise networks rely on a wide spectrum of specialized applications of

middleboxes. Middleboxes come in many forms such as proxies, firewalls, IDS, WAN

optimizers, NATs, and application gateways, and are used for various purposes including

performance and security improvement and compliance. They are an integral part of today's

Internet and play an important role in providing high levels of service for many applications.

Recent papers have shed light on the deployment of these middleboxes [2, 3] to show their

prevalence. And a recent study [4] shows that the number of different middleboxes in an

enterprise network often exceeds the number of routers. Trends such as proliferation of

smartphones and wireless video are set to further expand the range of middlebox applications

[5].

In some cases, middleboxes do indeed exert a real influence on traffic. In others, they merely

act as if they were simple routers. Knowing the presence of middleboxes is most critical in the

former case, when they are actually doing something to the traffic. This is also the easier case

to detect, since a middlebox that does nothing leaves no traces of its presence. We concentrate

on this more important case.

Knowing the existence of the influence of middleboxes could be beneficial to the end-hosts.

Sometimes the end-hosts would behave differently based on what they sense about what is

happening to their traffic. In such cases, an accurate detection of what is happening to their

traffic is the first step. Here, to illustrate this idea, we present a number of scenarios from

different categories.

Scenario I:

Assume a sender is about to send sensitive data, making encryption necessary. In this case, the

sender will check if a strong end-to-end encryption (VPN) on the path is deployed. If he detects

that strong encryption is already in place, to save energy and resources, he might choose not to

encrypt the traffic stream, since encryption is a relatively expensive operation.

Scenario II:

The sender detects that the receiver is using a wireless connection, but is unsure if that

connection is secure. If he detects that the last link is unencrypted, he would either refrain from

sending sensitive information or would apply end-to-end encryption to the channel. For

example, Amazon does not provide end-to-end SSL encryption to its users who are not logged

in and does not require them to log in until they are about to make the payment. This is perhaps

due to lack of available resources required to encrypt all users' contents for all users. Amazon

servers, to use their resources effectively while protecting users' privacy from profiling, could

first sense whether the user is using a secure wireless connection or not, and then apply end-to-

end encryption only if the user needs that protection. Conversely, the receiver would mark the

incoming data as untrusted if he detects the sender's wireless link is insecure.

Scenario III:

An Internet user in an oppressive country might detect Internet censorship imposed by his ISP

and then chooses to use a proxy to bypass it. In a different scenario, an Internet user detects

wiretapping on his network and uses evasive techniques such as Tor or a VPN.

Devising a detection mechanism for middleboxes can be difficult. For instance, detecting a third

party middlebox that does not alter the user data, from the end hosts’ point of view, is

particularly challenging, since the effect of middleboxes of this class seems transparent to the

end hosts. This is true if either the third party undoes the changes made to the data before

passing it to the receiver (e.g., VPN gateways or link-layer compression) or it does not alter the

data at all and affects the traffic stream similarly to normal network variation (e.g., the delay-

attack [6] by a compromised node in sensor networks or the Shrew attack [7] that selectively

drops packets).

There have been numerous works to detect various types of middleboxes in the past [8, 9, 10,

11]. However, the proposed approaches are ad hoc and mostly designed to detect only specific

types of middleboxes. Despite these differences, nevertheless, there are common elements in the

process leading to the design of such methods. These common elements could be identified and

summarized into general guidelines.

The ultimate objective of this paper is to assist the researchers who intend to conduct research

on detecting the interference of middleboxes and introduce them to potential challenges they

might face in the process. In addition, we present some recommendations on how to overcome

them in certain situations. In other words, the desirable outcome we seek here is to assist with

devising an accurate detection mechanism in an efficient manner with the help of a systematic

guideline that has been drawn from past experiences. To the best of our knowledge this is the

first attempt to devise systematic guidelines for the purpose of assisting other researchers.

While introducing the phases and steps of our proposed guideline, we demonstrate each by

applying it to an example: end-to-end detection of network compression on the path. The

network compression detection approach and the corresponding results have been presented in

[12] as part of our prior work on this subject.

Detecting Network Compression: A Case Study
One way to increase network throughput is to compress data that is being transmitted. Network

compression may happen at different network layers and in different forms: application layer,

TCP/IP header [13], IP payload [14], and link layer [15, 16].

Except for application-layer compression, compression happens at intermediate nodes, often

without the knowledge of end-users. For example, in January 2013, a researcher discovered that

Nokia had been applying compression to its users' data without their knowledge [16]. In this

case, the intermediary was surreptitiously decrypting and re-encrypting user packets in order to

effectively apply compression. Users surely would have preferred to know that this was

happening, both because of the security risk and because it would render their own application-

level compression unnecessary.

However, performing compression and decompression requires many resources at the

intermediate nodes, and the resulting overhead can overload the intermediary’s queue, causing

delay and packet losses. Further, not all commercial routers come with compression capabilities

[17]. Thus, some intermediaries apply compression, some do not, and generally they do not tell

end-users whether they do. While managing resources effectively at end-hosts is not as crucial

as it is at routers, it is still beneficial—particularly for mobile devices where resources are

limited. Wasting these resources on redundant compression is undesirable. End-hosts can

benefit from recognizing when compression has already being applied on a network connection.

Ideally, end-hosts and intermediaries should coordinate their compression decision, but practical

problems make that ideal unlikely. Therefore, since the end-hosts have the greatest interest in

proper compression choices for their data, they could detect if intermediate compression is

present and adjust their behavior accordingly. An end-to-end approach to detect compression by

intermediaries can help to save end-hosts’ resources by not compressing data when

intermediaries are already doing so.

The remainder of the paper is organized as follows: Section 2 presents the guideline on a

detection methodology, followed by related work in Section 3. Section 4 concludes the paper.

Figure 1: Phases and steps in the guideline.

2. GUIDELINE ON A DETECTION METHODOLOGY

In this section, we present the guidelines for a detection methodology. Later in this section, we

show that a careful completion of the preliminary phase would lead to a significant reduction of

the complexity of the design phase.

Our proposed guideline consists of phases in a sequential order. Figure 1 illustrates the

overview of the phases. The phases introduced in this guideline are:

 Phase 1: Problem Definition Phase

 Phase 2: Preliminary Phase

 Phase 3: Design Phase

 Phase 4: Evaluation Phase

In the problem definition phase we clearly define the problem and its scope by setting the

assumptions. The preliminary phase consists of five steps to be followed in the presented order.

The design in this process is when, by the help of information obtained in the preliminary phase,

the detection algorithm is developed. The evaluation phase is when we validate the proposed

detection mechanism devised in the design phase.

8.1 Problem Definition Phase

8.1.1 What is that we want to detect?

It should be clearly stated that what it is exactly that we want to detect. For instance, the running

example we use in this paper is to detect the presence of network compression on the path

between two end-hosts.

8.1.2 Assumptions

The scope of the general detection problem is very broad. Many variations of the problem can

be formulated based on constraints and limitations imposed on the problem: e.g., the method

used for detection and the degree of detection for the problem. Before we begin with the design

of any detection mechanism, we should prepare a list of assumptions we make in order to define

the scope of the problem we aim to solve.

8.1.2.1. Degree of detection

A problem can be formulated to only answer an existential question about whether the network

flow is influenced by some third-party or not. An instance of this problem can attempt to further

characterize the influence to figure out what exactly the third party is doing to the network flow.

8.1.2.2. Locating the third-party node/link

The problem statement can be phrased from determining whether the path is influenced or not to

precisely locating the third-party on the path or the link(s) influenced by it.

8.1.2.3. Method of detection

There are essentially two methods of network measurements for detection available to the end-

hosts: active and passive measurements. Passive measurements have the goal of minimally

affecting the measured network, by merely monitoring traffic on the network and inferring

measurements from the observed traffic. Active measurements involve interacting with the

network to make measurements, usually by sending probe packets. In active measurements, we

refer to the two end-hosts as the sender and the receiver. Based on how the receiver cooperates

(if it does) in the detection process, we present three variations to this problem:

A. Receiver is uncooperative
The receiver does not respond to the sender's requests that are beyond their primary

purpose of communication. For examples, most web servers expect only HTTP requests

and responses.

B. Receiver is responsive
The receiver responds to the sender's requests beyond their primary purpose of

communication as long as it does not require any changes on the receiver's machine. For

example, the receiver responds to the sender's ICMP requests.

C. Receiver is cooperative
The receiver is willing to make necessary changes on its machine or system to fully

cooperate with the sender in the detection process.

8.1.2.4. Assistance from intermediaries or other parties

If all or some intermediaries on the path are responsive, active measures can also be used to get

intermediaries to respond with valuable information. In another instance of the problem, the

end-hosts assume that the intermediaries are uncooperative. Another instance of the problem is

where the end-hosts utilize help from volunteer nodes on the network that are not on the path.

8.1.2.5. Detection by comparing to unperturbed channel

One instance of the problem is when end-hosts have a model of the channel in the absence of

third party's influence (perhaps captured in the past). In this case, the presence of the third party

could be determined by comparing the current network behavior to the model. The other

instance of this problem, however, is when the end-hosts do not have access to such

information.

8.1.2.5. Static vs. dynamic third-party middleboxes

The last instance we address here is whether the middlebox is static or dynamic, meaning

whether its behavior remains unchanged at the time that the end-hosts are trying to detect the

middlebox or the third party middlebox notices the end-hosts’ attempt to detect it, and hence,

evades detection by changing its behavior during the detection period performed by the end-

hosts. In the latter case, only a stealth detection mechanism might be effective.

For our running example, end-to-end detection of network compression, we choose the

following assumptions, to define the scope of the problem:

Regarding the degree of detection, we only seek to detect the presence of the intentional

influence on the network flow. This problem is not about specifically locating the third-party or

the influenced link on the path connecting the end-hosts. We assume end-hosts are fully

cooperative and can use active measures for detection. However, due to the end-to-end nature of

our problem definition, we exclude the scenario where the intermediaries are cooperative. For

instance, the end-hosts should not rely on responses from pings sent to the intermediate routers.

For the same reason, we exclude the instance where the end-hosts utilize help from volunteer

nodes on the network that are not on the path. Furthermore, our proposed problem assumes that

the end-hosts do not have any model of the unperturbed channel (i.e., in absence of the third

party) between the end-hosts. We also assume that the end-hosts are not just normal network

users and will use their resources to any required level (with some limitation on the available

resources) in the detection process. And lastly, we base our detection methodology on detecting

only static middleboxes.

8.2. Preliminary Phase

We believe that when starting on the design of a detection mechanism, it is necessary to

carefully find answers to the following questions before offering any detection mechanism. In

this phase, answering these five questions defines the steps to complete this phase.

In every step of this phase, we ensure that in addition to clearly addressing the question, and the

scope of it, we also make sure to address the following questions about it: (1) Why having an

answer for that particular question is important, or at least useful in the detection process? (2)

What are the potential challenges in the process of answering it?

Some of the steps in this phase require thorough understanding of the current state of

technology and available tools; some other require careful analysis and examination and some

require extensive experimentation. We leave the technical details out of these steps here and

limit ourselves to the high level presentation of the sub-problem and the expected outcome.

Clearly, if a step requires experimentation that means that even more questions must be

answered such as how exactly to implement it, what would a suitable environment to run it on,

or how to prepare experiment environment.

1) The Path Property Step “P”: What are all the important pieces of information

about the network path properties available to typical end-hosts?

Similar to any detection process in real world, special tools are needed to observe and to look

for signs leading to detection. Hence, it is crucial to know what information and tools are

available that are observable and measurable, by the end-hosts, to utilize them effectively for the

detection process.

For instance, some network properties such as RTT, packet delay variation, available

bandwidth, and hop count (leaving out the discussion on the measurement accuracy) can be

measured by the end-hosts. On the other hand, some other invaluable information such as the

queue size of the routers on the path is normally not available to typical end-hosts. Technically,

we are only interested in standard methods and tools available for standard computers with

standard equipment. For instance, we assume in an end-host, processing time and packet arrival

time can be measured and its TCP congestion control mechanism's behavior is observable. On

the other hand, we exclude using irregular methods to obtain some information. For instance,

we do not consider using measuring electromagnetic emissions to detect the queue size of a

router.

Throughout this paper, we refer to the set of all available network properties about the path as P.

Challenges:

 Understanding exactly how well the properties in P can be measured and how the

existing tools' imprecision and potential inaccuracy in measurements would affect the

accuracy of the detection mechanism.

Detecting Network Compression: The receiver can measure the arrival time of packets with

precision in order of at least micro-seconds.

2) The Influence Characteristics Step “I”: What are the characteristics of the

influence I?

To detect the presence of I, we must have a way to distinguish I from other types of influences.

Therefore, it is necessary to find unique, indicative, and distinguishing characteristics of I.

This step requires gathering and understanding all, if any, publicly available and known

information about the internal design of the influence in question. A thorough and perhaps

creative analysis is necessary to find subtle unique characteristics about I that can be used to

detect it. These characteristics of I will then be exploited to help detecting the middlebox.

Technically, we are mainly interested in observable and measurable effects on elements of P

and not interested in hidden or non-measurable effects of I. For instance, one characteristic of

gateway VPNs is a relatively constant delay they impose on every packet due to the

encryption/decryption time.

Challenges:

 These characteristics are not always obvious and might require thorough and careful

examination to find them.

Detecting Network Compression: If compression is placed on the bottleneck of the path, then

end-hosts would potentially sense a higher bandwidth when data with lower entropy is sent.

This is in practice the primary, if not the only, objective of employing network compression.

3) The Determinant Factors Step “D”: What elements in P are impacted by I (and

to what extent)?

The values of P, by definition, are all the end-hosts can know. Therefore, the only way to detect

I, through examining the path properties, is by looking at changes in their values in the presence

and absence of I.

This is an important step in identifying the indicative factors in detecting I. We define D as the

set of all indicative elements of P in detecting I (D ⊆ P). Intuitively, if the value of a path

property remains constant in the presence or absence of I, then it is not a helpful piece of

information in the detection process. It is also important to figure out which of these elements

are more indicative than the others in detecting I. Furthermore, any interdependency relationship

between members of D must be investigated.

Theoretical analysis could lead to a hypothesis on D, where further experiments could verify it.

Another approach to help with this step could be the use of network simulations. One could

simulate the effects of I in a clean environment (i.e., in the absence of network variation and any

other types of traffic than the one generated by the detection probes) and look for changes in

values of various path properties in P.

Challenges:

 How exactly to assess the relative level of importance of d ∈ D in detecting I?

 How inaccuracies in measurements influence our findings?

 How exactly to derive the interdependency relationship between members of D?

Detecting Network Compression: Network compression is designed to improve, and hence

should affect, the available bandwidth. Therefore, the available bandwidth is a strong candidate

to be a determinant factor that is potentially influenced by network compression.

4) The Normal Network Step “N”: What are the sufficient, yet unavoidable,

assumptions about the normal network behavior, in the particular network

environment, required to make any comments on detectability of I feasible?

Even if we make the assumption that the end-hosts have no access to information on the

unperturbed channel, for any detection mechanism to work, there should be a precise definition

for the notion of normal behavior to be used as a reference. This is where we define the specific

network environment (either in high level properties or low level). For instance, if it is multi-

hop wireless network, then we expect a higher rate of loss of packets, whereas in a wired

network, random losses are rare events. Another example is to impose an upper-bound on the

value of RTT.

These are conditions, assumptions, and constraints on the elements of D. But only those that are

in D are significant, because P - D, by definition, is expected to remain relatively constant,

hence there is no need to check if they have deviated from normal behavior.

Basically, the violation of assumptions on the elements of D would be used to indicate the

existence of such influence as we define them as deviations from normal network behavior.

Challenges:

 What is precisely ―normal‖ and how to define it?

 Coming up with not only correct, but tight assumptions about normal network behavior

is crucial. Failing in coming up with correct assumptions would lead to false positives.

On the other hand, loose assumptions would almost certainly lead to undesirable false

negatives.

Detecting Network Compression: In normal network (i.e., in the absence of compression on the

path), all packets of the same size are treated equally regardless of the data entropy of the

content of their payloads.

5) The Network Variation Step “V”: Does normal network variation (e.g., network

congestion, load balancing effects, link failures, and dynamic routing effects)

influence the end-to-end detection of I?

Any proposed detection mechanism, to be useful, should work in a real network. An approach

that only works in a controlled and isolated environment is not very useful.

If the answer is ―no‖ to the question posed in this step, then we can completely skip this step.

For instance, detecting a third party that sends out spoofed control packets is not affected by

normal network variation.

However, if the answer is ―yes‖, (which is the case for all delay and loss-based influences) then

we proceed to the following questions.

 What is the specific set of normal network variation that we care about in the detection

process, V? For instance, one could focus only on network congestion due to its

popularity.

 How well is I distinguishable from effects of V?

Note that it is generally true that congestion usually hinders the detectability of loss or delay-

based influences. Clearly, if congestion, in some cases, helps the detection process, one could

impose network congestion to makes detectability easier.

Challenges:

 Network variations that resemble normal loss and delay in the network are particularly

challenging. This is because intentional and normal loss or delay in those cases are

perhaps not easily distinguishable. This leads to another issue: how I is distinguishable

from V?

 Active probing used for the detection process may contribute to network congestion.

Detecting Network Compression: Congestion influences the available bandwidth.

8.3. Design Phase

This is a crucial phase in the process where we use the information obtained in the preliminary

phase to produce the detection algorithm. The detection phase requires creativity and knowledge

of the subject to utilize the information gathered in the previous phases in developing such

detection process. We recommend testing the initial approach in a simulated environment to

verify the approach. Then information from Step V could be incorporated to produce an

approach that works well in real networks. We, again, emphasize that the goal is to detect the

middlebox’s interference or influence on the traffic flow and if it is not interfering the network,

whether it is detectable or not is not an objective of this paper. Also, note that ∀d ∈ D used in

the detection mechanism, inaccuracies involved in measuring each element d must be taken into

consideration.

Through the example of detecting network compression we show how the information obtained

from the previous phases could lead to design of an approach to detect this particular influence.

Detecting Network Compression: To detect if compression is provided on the network we

exploit the unique effects of compression on network flows. Assuming the original packets were

of the same size, compressed low entropy data packets are expected to be considerably smaller

than compressed packets containing high entropy data (the sensed bandwidth is vastly

different), which in turn leads to a shorter transmission delay. Based on these facts, the sketch of

our approach is as follows:

Send a train of fixed-size packets back-to-back with payloads consisting of only low entropy

data. Then send a similar train of packets, except these payloads contain high entropy data

instead. The receiver then measures the arrival times of the first and the last packet in the train,

independently for low entropy (
1Lt and

NLt , where N is the number of packets in a single train)

and high entropy (
1Ht and

NHt) packet trains. Note from step P of the preliminary phase that

the typical machines are capable of measuring the arrival time of packets with precision in order

of at least micro-seconds. Since the number of packets in the two trains is known and all of the

packets have the same uncompressed size, the following inequality will hold if some kind of a

network compression is performed on the path:

Lt

NLt 1Lt Ht
NHt

1Ht

This inequality suggests that the total set of highly compressible low entropy packets gets to the

destination faster than the set of less compressible high entropy packets since the available

bandwidth is better utilized by compression. Conversely, if the packets are not being

compressed by any intermediary, then the two sides of the inequality should be almost equal.

This suggests that a threshold should be specified to distinguish effects of compression from

normal Internet variabilities:

 Ht Lt

The underlying rationale behind this approach is that because of the presence of network

compression on the bottleneck link, the receiving party should sense a relatively higher

bandwidth when the train of low entropy data is sent. This is because the same amount of data is

received in both cases, but in a significantly shorter period of time when low entropy data is

used.

8.4. Evaluation Phase:

Any proposed detection mechanism must be not only validated, but also evaluated under certain

or all network conditions to confirm that it successfully detects the influence in question. This

requires answers for some questions such as:

1) How can we validate/evaluate our proposed detection algorithm?

2) How confident are we in the results of the evaluation system?

3) What metrics should we use to evaluate our detection mechanism?

4) Are there any shortcomings for the testbed used to validate our proposed detection

mechanism that would impact the impact the accuracy evaluation of our detection

mechanism?

As an example, let’s examine perhaps the most popular testbed used in the research community

for Internet measurements: PlanetLab [18]. PlanetLab is widely used by the research community

and generally a suitable candidate for such purposes. For every researcher working on

PlanetLab there is a need to know what bias the system introduces in the collected experiment

results. For instance, one should keep in mind that PlanetLab is not completely representative of

the current Internet. This testbed is all about small, long running services in specific locations.

There are also some shortcomings associated to the use of PlanetLab as well. For instance, we

normally have very little, if not no, control over the actual path between the chosen sender and

receiver. Depending on the nature of the experiment, this could make PlanetLab somewhat

ineffective.

Challenges:

 Find a platform to test the proposed detection mechanism on a global testbed,

specifically one that allows us to possibly overload their nodes, if needed. It is highly

desirable that the chosen testbed gives us some control over or information about the

path between the nodes. Known as the ground truth problem is a fundamental challenge

in validating detection mechanism and the majority of previous research work has

acknowledged this problem to some extent. For instance, how are we going to evaluate

our compression detection mechanism if we do not know whether link compression

exists on the path between two nodes of the testbed or not?

 What metrics should be used in the evaluation process and how to accurately measure

them: e.g., false positive rate, detection rate, performance overhead, and packet delivery

rate?

 Is there a need for a general evaluation system that applies to detecting all influences?

How feasible is this idea?

 Recent studies, suggests that testbed results for Internet systems do not always extend to

the targeted deployment. For example, Ledie et al. [19] and Agarwal et al. [20] show

that network positioning systems perform much worse ―in the wild‖ than in PlanetLab

deployment. Identifying such inconsistencies to avoid false claims is not trivial.

3. RELATED WORK

While our work is the first attempt to introduce a general guideline for devising detecting

methodologies for middleboxes, there have been numerous work in the past that proposed

various approaches to detect middleboxes’ interference on traffic flows. In this section, we

briefly present some of them that have mainly security applications or implications.

Very few and even more specific works focused on detecting intentional delaying and dropping

of selective packets for malicious reasons. Song et al. [5] propose two different approaches to

detect and further accommodate delay attacks in wireless sensor networks. Kuzmanovic et al.

[21] identify TCP victims (as the first step to detect the attacker) by monitoring their drop rates

to help mitigating low-rate TCP-targeted attacks.

Other approaches introduced methodologies to detect middleboxes that send spoofed control

packets on behalf of the other party. BTTest [22] focuses on detecting BitTorrent traffic

blocking by ISPs that use forged TCP RST packets. Weaver et al. [23] also introduce a method

to detect connection disruptions via forged TCP RST packet, but they focused only on detecting

the method that China's Great Firewall uses.

FireCracker [24] proposes a framework that, through tailored probes, could be used to blindly

discover a firewall policy remotely as a blackbox and without prior knowledge about the

network configuration. In a more recent work, SymNet [25] proposes a static analysis

technique that can model stateful middleboxes such as stateful firewalls and IDSs. There is also

work to detect middleboxes that modify TCP Fields. Tracebox [26] detects middleboxes that

modify TCP sequence and acknowledgement numbers, as well as TCP MSS option. Glasnost

[11], on the other hand, detects modified TCP advertised window size. Detecting traffic

discrimination has drawn more research attention than detecting other types of middleboxes.

The majority of such detection mechanisms [8, 9, 11] use the relative discrimination technique,

where they test each application (the measured flow) against a flow that is assumed to be non-

discriminated (the baseline flow).

4. CONCLUDING REMARKS

In this paper we presented a set of general guidelines to assist researchers with devising end-to-

end detection methodologies for detecting middleboxes. More detailed, low-level guidelines

could provide support for more specific design decisions. While such more detailed guideline is

left for future work, we still need to be careful not to lose the generality of the guidelines here.

For instance, the evaluation phase might be generalized into a general evaluation methodology

that can be used to validate all methodologies for detecting middleboxes.

Evaluating the outcomes of this work is difficult because it is rather a qualitative assessment.

However, we presented a detailed case study using our proposed guidelines—detecting network

compression. While the results are encouraging but more case studies could also help in

assessing the effectiveness of this guideline.

REFERENCES

[1] Brian Carpenter and Scott Brim. ―Middleboxes: Taxonomy and issues,‖ Technical report, RFC

3234, February, 2002.

[2] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and Vyas

Sekar. ―Making middleboxes someone else's problem: network processing as a cloud service,‖

ACM SIGCOMM Computer Communication Review, 42(4):13-24, 2012.

[3] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang. ―An untold story

of middleboxes in cellular networks,‖ ACM SIGCOMM Computer Communication Review,

41(4):374-385, 2011.

[4] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry at ―A Survey of Enterprise Middlebox

Deployments,‖ 2012.

[5] ―Enterprise Network and Data Security Spending Shows Remarkable Resilience,‖

http://www.reuters.com/article/2011/01/10/idUS166224+10-Jan-2011+BW20110110,

January 10, 2011.

[6] Hui Song; Sencun Zhu; Guohong Cao, "Attack-resilient time synchronization for wireless sensor

networks," Mobile Adhoc and Sensor Systems Conference, 2005. IEEE International Conference

on, vol., no., pp.8 pp.,772, 7-7 Nov. 2005

[7] Aleksandar Kuzmanovic and Edward W. Knightly. ―Low-rate TCP-targeted denial of service

attacks: the shrew vs. the mice and elephants,‖ In Proceedings of the Conference on

Applications, technologies, architectures, and protocols for computer communications, pp. 75-

86, New York, NY, USA, 2003.

[8] Mukarram Bin Tariq, Murtaza Motiwala, Nick Feamster, and Mostafa Ammar. ―Detecting

Network Neutrality Violations with Causal Inference,‖ In Proc. of the CoNEXT Conference,

2009.

[9] Kanuparthy, P.; Dovrolis, C., ―DiffProbe: Detecting ISP Service Discrimination,‖ Proceedings

of IEEE INFOCOM, 2010 , vol., no., pp.1,9, 14-19 March 2010

[10] Partha Kanuparthy and Constantine Dovrolis. ―ShaperProbe: end-to-end detection of ISP traffic

shaping using active methods,‖ In Proceedings of the 2011 ACM SIGCOMM conference on

Internet Measurement Conference, pp. 473-482. ACM, 2011.

[11] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, P Krishna Gummadi,Ratul Mahajan,

and Stefan Saroiu. ―Glasnost: Enabling End Users to Detect Traffic Differentiation,‖ In NSDI,

pp. 405-418, 2010.

[12] Pournaghshband, V.; Afanasyev, A; Reiher, P., ―End-to-end detection of compression of traffic

flows by intermediaries,‖ In Proceedings of IEEE Network Operations and Management

Symposium (NOMS), 2014 IEEE , vol., no., pp.1,8, 5-9 May 2014.

[13] L. Jonsson, G. Pelletier, and K. Sandlund, ―RFC 4995: The Robust Header Compression

(ROHC) Framework,‖ Network Working Group, pp. 1–40, 2007.

[14] A. Shacham, B. Monsour, R. Pereira, and M. Thomas, ―IP Payload Compression Protocol

(IPComp),‖ RFC 3173, 2001.

[15] R. Friend and W. Simpson, ―RFC1974: PPP Stac LZS Compression Protocol,‖ 1996.

[16] ―Nokia hijacks mobile browser traffic, decrypts HTTPS data,‖ http:www.zdnet.comnokia

hijacks-mobile-browser-traffic-decryptshttps- data-7000009655, 2013.

[17] HP Support FAQs, Using Compression with HP Router Products.

http://www.hp.com/rnd/support/manuals/pdf/comp.pdf.

http://www.reuters.com/article/2011/01/10/idUS166224+10-Jan-2011+BW20110110

[18] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawrzoniak,

and Mic Bowman. ―PlanetLab: an overlay testbed for broad-coverage services,‖ SIGCOMM

Computer. Communication. Rev, 33(3):3-12, July 2003.

[19] J. Ledlie, P. Gardner, and M. Seltzer. ―Network coordinates in the wild,‖ In Proc. of NSDI,

volume 7, pp. 299-311, 2007.

[20] S. Agarwal and J.R. Lorch. ―Matchmaking for online games and other latency-sensitive P2P

systems," In ACM SIGCOMM Computer Communication Review, volume 39, pp. 315-326.

ACM, 2009.

[21] Chia-Wei Chang; Seungjoon Lee; Bill Lin; Wang, J., ―The Taming of the Shrew: Mitigating

Low-Rate TCP-Targeted Attack,‖ Distributed Computing Systems, 2009. ICDCS '09. 29th IEEE

International Conference on, vol., no., pp.137,144, 22-26 June 2009.

[22] Marcel Dischinger, Alan Mislove, Andreas Haeberlen, and Krishna P. Gummadi. 2008.

―Detecting BitTorrent blocking,‖ In Proceedings of the 8th ACM SIGCOMM conference on

Internet measurement (IMC '08). ACM, New York, NY, USA, 3-8.

[23] NicholasWeaver, Robin Sommer, and Vern Paxson. ―Detecting Forged TCP Reset Packets,‖ In

NDSS, 2009.

[24] Taghrid Samak, Adel El-Atawy, and Ehab Al-Shaer. Firecracker: ―A framework for inferring

firewall policies using smart probing,‖ In Network Protocols. ICNP 2007. IEEE International

Conference on, pp. 294-303. 2007.

[25] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. SymNet: ―static checking

for stateful networks," In Proceedings of the 2013 workshop on Hot topics in middleboxes and

network function virtualization, pp. 31-36., 2013.

[26] Gregory Detal, Benjamin Hesmans, Olivier Bonaventure, Yves Vanaubel, and Benoit Donnet.

―Revealing Middlebox Interference with Tracebox,‖ In Proceedings of the 2013 Conference on

Internet Measurement Conference, IMC '13, pp. 1-8, 2013.

Authors

Vahab Pournaghshband is an Assistant

Professor in the Computer Science

department at California State University,

Northridge. He received his Ph.D. from the

Computer Science department at University

of California, Los Angeles (UCLA) in

2014. He received his M.Sc. in Computer

Science from University of California,

Berkeley. Also from UC Berkeley, he

received his B.Sc. in Electrical Engineering

and Computer Science.

Dr. Pournaghshband has done research in

the fields of computer networks, computer

security, and computing education.

Sepideh Hashemzadeh received her B.S.

in Engineering Science from University of

Tehran in 2013. She has done research in

the fields of embedded systems and

computer networks. Her research interests

focus on security aspect of embedded

systems and computer networks.

Peter Reiher received his B.S. in Electrical

Engineering and Computer Science from

the University of Notre Dame in 1979. He

received his M.S. and Ph.D. in Computer

Science from UCLA in 1984 and 1987,

respectively. He has done research in the

fields of distributed operating systems,

network and distributed systems security,

file systems, ubiquitous computing, mobile

computing, and optimistic parallel discrete

event simulation. Dr. Reiher is an Adjunct

Professor in the Computer Science

Department at UCLA.

P

