End-to-End Detection of Middlebox Interference

Vahab Pournaghshband

Peter Reiher

Network and Security Laboratory (Nets Lab) Computer Science Department University of San Francisco vahab.p@usfca.edu

Laboratory of Advanced System Research Computer Science Department UCLA reiher@cs.ucla.edu

Motivation

- Middleboxes
 - RFC 3234: "any intermediary device performing functions other than the normal, standard functions of an IP router on the datagram"
- Middleboxes are prevalent
- They can interfere with traffic
- Detecting middleboxes is important
 - Performance, security, debugging network issues

Motivation

• Transparent middleboxes

- A class of middleboxes that make no changes to the content of traffic, giving the appearance that nothing has been done to the traffic stream
- Examples: eavesdropping, compressing/decompressing, dropping or delaying packets, encrypting/decrypting, etc.
- Detecting transparent middleboxes is challenging
- Current practice: if I want to show a middlebox is detectable, I develop a tool to detect the middlebox
 - We have many point solutions

Our Contribution

- Detecting a broader class of middleboxes
- Introducing a reduction framework to determine if a middlebox is detectable via only analytical means

Detectable Abstract Middlebox

We reduce the problem of "is *MB* detectable" to the problem of "is discriminator detectable" by showing that *MB* is a discriminator.

Roadmap

- Network Discriminators
- Detecting Network Discriminators
- Detection Framework
- Detecting Traffic Prioritization
- Results
- Future Work
- Summary

Notations

- P_A : A packet with predefined property A
- P_B : A packet with predefined property B
- *MB*: The middlebox in question
- $t_a(P)$: Arrival time of the last bit of packet P to the middlebox
- $t_d(P)$: Departure time (time to transmit the first bit of packet P into the middlebox
- $d_{MB}(P) := t_d(P) t_a(P)$

Notations

- t_T : Transmission time
- c_p : The path capacity
- Z: The link capacity of the outgoing link from MB
- r: sender's sending rate of the probe packets as perceived by MB

Definition: Delay-Discriminatory Sets

An ordered pair of sets of packets (P_A, P_B) are said to be *delay-discriminatory* if: $|P_A| = |P_B| \neq 0$ $\exists P_{A_i} \in P_A, \exists P_{B_i} \in P_B$: $\delta_i := d_{MB}(P_{A_i}) - d_{MB}(P_{B_i}) \ge \delta_{min} > 0$ and $t_T(P_{A_i}) \ge t_T(P_{B_i})$ and

$$(P_A - \{P_{A_i}\}, P_B - \{P_{B_j}\})$$
 is also delay-discriminatory or is (\emptyset, \emptyset)

Definition: Delay-Discriminatory Sets

An ordered pair of sets of packets (P_A, P_B) are said to be *delay-discriminatory* if: $|P_A| = |P_B| \neq 0$ $\exists P_{A_i} \in P_A, \exists P_{B_i} \in P_B$: $\delta_i := d_{MB}(P_{A_i}) - d_{MB}(P_{B_i}) \ge \delta_{min} > 0$ and $t_T(P_{A_i}) \ge t_T(P_{B_i})$ and

 $(P_A - \{P_{A_i}\}, P_B - \{P_{B_j}\})$ is also delay-discriminatory or is (\emptyset, \emptyset)

Definition: Delay-Discriminatory Sets

An ordered pair of sets of packets (P_A, P_B) are said to be *delay-discriminatory* if: $|P_A| = |P_B| \neq 0$ $\exists P_{A_i} \in P_A, \exists P_{B_i} \in P_B$: $\delta_i := d_{MB}(P_{A_i}) - d_{MB}(P_{B_i}) \ge \delta_{min} > 0$ $\delta_{min} := \min_{\forall i} \delta_i$ and $t_T(P_{A_i}) \ge t_T(P_{B_i})$ and

 $(P_A - \{P_{A_i}\}, P_B - \{P_{B_j}\})$ is also delay-discriminatory or is (\emptyset, \emptyset)

Definition: Network Flow Discriminator

A middlebox MB is a network flow discriminator if, given $d_{MB}()$, there exists a pair of non-empty sets of packets (P_A, P_B) that is delay-discriminatory.

i.e.,
$$\delta_{\min} := \min_{\forall i} \delta_i > 0$$

Definition: Network Flow Discriminator

A middlebox MB is a network flow discriminator if, given $d_{MB}()$, there exists a pair of non-empty sets of packets (P_A, P_B) that is delay-discriminatory.

i.e.,
$$\delta_{\min} := \min_{\forall i} \delta_i > 0$$

Packet drops: $\delta_i = +\infty$

Discriminator is Detectable

- We show that there exists *a* solution to detect discriminators
- Send packet trains of P_A and P_B

$$(P_{A_j})_{j=1}^{\rho} := (P_{A_1}, P_{A_2}, \dots, P_{A_{\rho}}), (P_{B_j})_{j=1}^{\rho}$$

Discriminator is Detectable

The relationship between d_{MB} and c_p in detecting a discriminator ($\Delta l > \tau$), where ho=1000, c_p =r

Discriminator is Detectable

The relationship between d_{MB} and c_p in detecting a discriminator ($\Delta l > \tau$), where ρ =1000, c_p =r

Discriminator is Detectable

The relationship between d_{MB} and c_p in detecting a discriminator ($\Delta l > \tau$), where ρ =1000, c_p =r

Detection Framework

To show that a particular middlebox *MB* is detectable, it is sufficient to show:

1. MB is a discriminator. I.e., there exists a pair of non-empty sets (P_A, P_B) that is delay-discriminatory.

$$2. \delta_{min} \ge \Theta = 1ms$$
 , where $\delta_{min} := min\{\delta_i : 1 \le i \le \rho\}$.

Detection Framework

To show that a particular middlebox *MB* is detectable, it is sufficient to show:

1. MB is a discriminator. I.e., there exists a pair of non-empty sets (P_A, P_B) that is delay-discriminatory.

$$2. \delta_{min} \ge \Theta = 1ms$$
 , where $\delta_{min} := min\{\delta_i : 1 \le i \le \rho\}$.

Detection Framework

To show that a particular middlebox *MB* is detectable, it is sufficient to show:

1. MB is a discriminator. I.e., there exists a pair of non-empty sets (P_A, P_B) that is delay-discriminatory.

 $2. \delta_{min} \ge \Theta = 1ms$, where $\delta_{min} := min\{\delta_i : 1 \le i \le \rho\}$.

• Strict Priority Queueing (SPQ)

To show that SPQ is detectable, it is sufficient to show:

1. SPQ is a discriminator. I.e., there exists a pair of non-empty sets (P_A, P_B) that is delay-discriminatory.

$$2. \delta_{\min} \ge \Theta = 1ms$$
, where $\delta_{\min} := \min\{\delta_i : 1 \le i \le \rho\}$.

To show that SPQ is detectable, it is sufficient to show:

1. SPQ is a discriminator. I.e., there exists a pair of non-empty sets (P_A, P_B) that is delay-discriminatory.

$$2. \delta_{\min} \ge \Theta = 1ms$$
, where $\delta_{\min} := \min\{\delta_i : 1 \le i \le \rho\}$.

- P_H : The packet that is prioritized.
- P_L : The packet that is not prioritized.

Assuming r > Z, to accomplish these objectives, the following conditions must hold: (i) High priority packets in HP are sent at the rate of $\frac{r}{N'+1}$. Hence, for Q_H to never build up, $\frac{r}{N'+1} \le Z$ must hold.

(ii) High priority packets in LP are sent at the rate of $\frac{N'}{N'+1}r$. Therefore, for Q_H to never be empty, the condition $\frac{N'}{N'+1}r \ge Z$ must be satisfied.

Combining conditions (i) and (ii), we have $\frac{r}{N'+1} \le Z \le \frac{N'}{N'+1}r$. We can now solve for N':

$$N' \ge \left[\max\left\{\frac{r-Z}{Z}, \frac{Z}{r-Z}\right\}\right]$$

To show that SPQ is detectable, it is sufficient to show:

1. SPQ is a discriminator. I.e., there exists a pair of non-empty sets (P_A, P_B) that is delay-discriminatory.

 $2. \delta_{min} \ge \Theta = 1ms$, where $\delta_{min} := min\{\delta_i : 1 \le i \le \rho\}$.

 $d_{MB}(P_H)=0$

 $\delta_i = d_{MB}(P_{L_i})$

 $\delta_i = d_{MB}(P_{L_i})$

 $d_{MB}(P_H) = 0$

 $\delta_i = +\infty$

 $\delta_i = d_{MB}(P_{L_i})$

 $d_{MB}(P_H) = 0$

 $\delta_i = +\infty$ $\delta_i \ge N' \cdot \rho \cdot t_T(P_H)$

Detection Tool Development

- The analytical reduction inspired us to develop a tool to detect the middleboxes
- Traffic prioritization:

Results: Environment Setup

Results

Ongoing and Future Work

- We are/will
 - Formulate additional abstract classes
 - Explore alternative solutions to detect discriminators
 - Identify more middleboxes whose interference can be described as discriminators
- We are investigating detecting middleboxes in dynamic environment

Summary

- We showed
 - An example of an abstract class: discriminators
 - A loss-based solution to detect discriminators
 - Three middleboxes---network compression, traffic shaping and prioritization--- whose interference are described as discriminators