
Teaching the Security Mindset to CS 1 Students

Vahab Pournaghshband
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90024
vahab@cs.ucla.edu

ABSTRACT
In this 21st century technological world, the inherent prob-
lems of computer security are becoming increasingly im-
portant, and it is critical that our students gain the nec-
essary skills and knowledge, early in their academic pro-
grams, to handle these problems. Specifically, the lack of
security mindset is responsible for many overlooked and ex-
ploitable security bugs in the computer programs that these
students design. While learning the security concepts gen-
erally requires a more advanced knowledge of computer sci-
ence, learning the security mindset can be, and should be,
addressed as early as CS 1.

Although the primary focus of any traditional CS 1 course
is that of basic programming concepts, we believe that teach-
ing the security mindset in this course is valuable and effec-
tive. In this paper we discuss the course that we have taught
for four terms—an introductory course that teaches the se-
curity mindset to beginner programmers.

We start out by using the term-long incremental devel-
opment of a security-sensitive program—the login program.
Students develop the security mindset by thinking as both
hackers and defenders, in order to catch and fix the logical
and run-time errors that may lead to security breaches in
the program.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education; D.4.6 [Operating Systems]:
Security and Protection

General Terms
Design, Security

Keywords
CS 1, computer security, C++, security mindset

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13, March 6–9, 2012, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

Over the past several decades, software has become a cru-
cial element in our lives, allowing us to manage and control
systems that provide critical infrastructures in areas such
as communications, energy, and transportation. Unfortu-
nately, hackers are capable of interrupting these connec-
tions by exploiting software vulnerabilities and breaching
software security. For instance, in 2011 programming flaws
allowed hackers to steal millions of dollars through stolen
credit cards in a single cyber attack incident [3]. Very re-
cently, a flaw in Java put millions of Windows and Mac
users worldwide at risk, and the damage cost is still rising
[6]. New threats are further emerging as computers become
more embedded and more intimately into our environment
and daily lives, e.g., recent security vulnerabilities found in
mobile medical devices [14]. Flaws in programs have also
been exploited (e.g., by Stuxnet worm [11]) to sabotage crit-
ical infrastructures as an act of cyberwarfare.

Software security vulnerabilities are the most common
cause of software security breaches. Most security problems
can be traced back to underlying errors in a program’s source
code. For example, 64% of the nearly 2,500 vulnerabilities
in the National Vulnerability Database in 2004 were caused
by programming errors [7]. Fixing these bugs through con-
stant security patches has its own problems, since security
patch management and distribution are known to be fairly
ineffective [2]. This suggests that catching security bugs in
the pre-release version of programs is what is most effective.

These errors exist in programs mostly because program-
mers often fail to notice how the programs might fail and
how those failures might be exploited. Among the numer-
ous factors that explain this problem, the lack of a security
mindset plays an important role in being unable to spot the
exploitable bugs in programs in the early stages of devel-
opment. The following is an excerpt from Bruce Schneier’s
blog on the security mindset [15]:

“Security requires a particular mindset. Secu-
rity professionals – at least the good ones – see
the world differently...This kind of thinking is not
natural for most people. It’s not natural for engi-
neers. Good engineering involves thinking about
how things can be made to work; the security
mindset involves thinking about how things can
be made to fail. It involves thinking like an at-
tacker, an adversary or a criminal. You don’t
have to exploit the vulnerabilities you find, but
if you don’t see the world that way, you’ll never
notice most security problems.”

Therefore, if we teach programmers the security mindset,
it will go a long way toward making a world with fewer cyber
attacks and will substantially improve the security of future
technological systems.

We believe that this security mindset should be taught to
beginning programmers in classes as basic as CS 1, and that
it should be emphasized throughout a student’s computer
science undergraduate program. In this paper we illustrate
how to develop and teach this mindset in a CS introductory
course. Through an example, we will show how to effectively
teach the basic programming concepts, which is the primary
goal of any CS introductory course, while developing the
necessary security mindset for the students. The rationale
for teaching the security mindset in an introductory course
is elaborated on in Section 2.

This paper is organized as follows: Section 2 presents the
advantages offered by this course. Section 3 presents related
work. Methodology is presented in Section 4. Section 5
presents an informal evaluation of our work, and Section 6
concludes this paper.

2. ADVANTAGES
In this section we discuss why it is important to teach the

security mindset in the first CS introductory course, while
still keeping the primary focus on teaching basic program-
ming concepts.

1) An early exposure to security issues is essential to a
student’s foundational appreciation and understand-
ing of computer security. If the security mindset is
developed at an early stage, students are more prone
to naturally have security in mind while programming.
From a practical point of view, this is a more effective
approach than the one that only emphasizes program
correctness and then, later in a student’s programming
career, attempts to change the undesirable habit of
overlooking security bugs.

2) Students will also learn the significance of security bugs
by understanding how these minor inaccuracies in de-
tail, if overlooked, can lead to security breaches even
though their code might be free of syntax, logical, and
run-time errors. Moreover, it forces students to realize
the importance of programming mistakes that can re-
sult in minor logical or run-time errors. Students will
realize that these errors not only cause simple mistakes
in program correctness, but they create an opportunity
for hackers to attack the systems that run their pro-
grams.

3) Our proposed curriculum changes in the introductory
course still emphasize learning the basic concepts of
programming. By incorporating simple attack/defense
scenarios to teach and verify program correctness in-
teractively, we make learning those concepts more at-
tractive to our students. As Fanelli et al. [5] state,
“Security can make the other stuff more interesting.
Studying security can lead students to a deeper under-
standing of computer science and information technol-
ogy concepts. In many cases a thorough understanding
of how a program works is needed to effectively attack
or defend it.”

4) Many students outside of the CS major are required to
take only CS 1 (and/or CS 2), and quite possibly will

never take any other CS course beyond the introduc-
tory courses. Therefore, it might be their last chance
(within the curriculum) to learn about computer secu-
rity. Even if a student never pursues a programming
career, or programs only infrequently, this is still an op-
portunity for him to learn about the technical aspects
of computer security. Students will understand the
root cause of known security problems, why they be-
have maliciously, and how to protect themselves from
them effectively. For instance, once students learn
about how powerful brute force attacks are, they will
understand the importance of choosing a strong pass-
word. In any and all cases, “The security mindset is a
valuable skill that everyone can benefit from, regard-
less of career path.” [15]

5) Secure programming takes extensive practice in order
for it to evolve into a skill. While gaining this knowl-
edge is valuable, a single course in computer security
in the undergraduate curriculum often fails to actu-
ally build this skill for students. This suggests that
exposing students to security issues, as early as an in-
troductory course, establishes the security mindset and
provides more practice in secure programming; hence,
skill will be built faster and better.

3. RELATED WORK
An extensive body of literature has been created that fo-

cuses on computer security education. Some methods use
active learning and visualization tools to teach security ef-
fectively. As an example, IPsecLite [8] was developed as a
tool to demonstrate the inner-networking of IP security stan-
dards. Other methods emphasize the importance of teaching
the physical and social aspects of computer security, along
with technical aspects [4, 9]. A different class of work in this
area, such as Peterson et al. [13], has developed hands-on
laboratory exercises for a term-long security course.

There have also been proposals that emphasize introduc-
ing security concepts in the CS 1 course [10]. Validating user
input, array range checking, numeric overflow and under-
flow, operator precedence, and rounding errors are a num-
ber of concepts that are suggested for course material in CS
1. The list is, however, not very long due to the limited
knowledge of students in a CS introductory class.

Finally, there have been several papers on how security
education fits into the CS undergraduate curriculum. Some
introduced various ways to teach a single course [12]. Some
presented effective track approaches, where a sequence of
specialized courses on security is offered [1]. And some sup-
port the thread approach that is used as a unifying theme
across the standard core CS curriculum [12].

4. METHODOLOGY
In this section we present the methods used to teach this

introductory course at UCLA. C++ is used in the introduc-
tory CS course sequence. The material we present here, how-
ever, can be applied to other programming languages with
some modifications, except for some topics such as pointers
and C strings that are unique to a specific set of languages.

In our approach we used a widely known practical pro-
gram as our example—the login program. Our login pro-
gram asks for username and password from the user and

will reveal a secret word if the credentials are provided cor-
rectly. It generates an error message if the username or the
password entered is invalid. This program evolved through-
out the school term, as the students learned new concepts.
Note that traditional examples were still used to teach the
materials, in addition to examples relevant to our login pro-
gram case study.

We used the login program for teaching purposes for vari-
ous reasons: (1) the basic concept of the program is familiar
to students since it is a program that students use multi-
ple times in an average day, ranging from logging into the
department laboratory systems, to Facebook, and e-mail ac-
counts. This would also make interacting with the program
interesting, whether one was hacking into it or preventing
hackers from breaching it. (2) This program has the unique
feature of being able to vary from being a very simple pro-
gram to a complex one. (3) As more programming concepts
are introduced in the course, the program can be incremen-
tally built up from a simple program to a coherent complex
program. (4) The program is security-sensitive by its nature,
making defensive programming even more essential.

In many cases, a thorough understanding of how a pro-
gram works is needed to effectively attack or defend it. More-
over, to be a good defender you must be a good attacker;
hence, we constantly guide the students to wear a hacker’s
hat to spot the vulnerability, and then switch to a defender’s
hat to fix the problem. Note that we use the term “hacking”
in the most non-pejorative sense possible. Hacking, for our
purposes, is a process for pointing out programming bugs
rather than any negative use of such skills. For instance, we
present a faulty program containing a particular logical er-
ror. We then ask the students to spot the error and exploit
that vulnerability as if they were hacking into the system.
We then further ask them to fix the error in the program to
protect it against that particular attack.

Below, we outline, in order, some of the concepts and ap-
proaches that we use to simultaneously introduce core pro-
gramming ideas and to develop the security mindset.

4.1 Introduction and Variables
Early in the course, variables are introduced. For the login

program, we discuss how to define and use variables to hold
the username and the password. Integer overflow is also
introduced, and is illustrated through an example involving
simple arithmetic operations. However, an example of how
integer overflow is exactly exploited will be presented later
in the course when introducing dynamic memory allocation.

4.2 Conditional (if-else) Statements
A very simple login program is implemented. This pro-

gram will only support a single user and only accepts an
all-numeric (int) password. If the password matches a hard-
coded password, the secret word will be revealed (Figure 1).

if (password==12345)

cout << "The secret word is Kosar.";

else

cout << "Invalid password!";

Figure 1: Our first login program.

Even in such a simple implementation, common beginner
mistakes, like using the assignment operator“=”in the condi-

tion instead of the equality operator “==,” can be illustrated
to students as an error that can lead to revealing the secret,
even in the case of an incorrect entered password.

4.3 String Class
A major problem that variables of type int used to store

passwords have is that they are vulnerable to brute force
attacks due to relatively short range of values they can hold.
To alleviate this security problem, we change our program
to use the C++ string class to store the password instead.

4.4 Nested if-else and switch Statements
The program evolves into a two-user login program. We

start our presentation with a faulty version of a two-user
program (Figure 2). We then lead the students into a dis-
cussion of how this code is problematic, and examine the
set of information that hackers would need in order to get
into the system without entering the correct credentials. Fi-
nally, through a class discussion, we explain how to fix this
problem by replacing the inner ||’s by &&’s.

if ((username=="vahab" || password=="Ta#3rEh") ||

(username=="peter" || password=="h0o$H@Ng"))

cout << "The secret word is Kosar.";

else

cout << "Invalid username and/or password!"

Figure 2: An erroneous two-user login program.

Afterwards, this program is converted to a nested if-else

statement, where outer if statements now check the user-
names and inner if statements check the validity of the
corresponding password. In this case, a more specific error
message will be produced that indicates whether the user-
name or the password entered is invalid. As this is being
implemented, the emphasis will be on not only the possibil-
ity of errors in the code, but also the magnitude of problems
caused by those errors. Ultimately, this program will be
converted to use a switch statement in the same way.

4.5 Loops
The program shall be enhanced to allow multiple login

attempts in such a way that it will quit after a predefined
number of successive failed attempts. This illustrates a sim-
ple way to prevent brute force attacks, introduced earlier in
the course. We also emphasize the magnitude of logical er-
rors in the loop condition. For instance, an infinite loop will
give the hacker a virtually unbounded number of attempts.

4.6 Nested Loops
When choosing a new password, the program should de-

termine if it is a legitimately strong password. In our ex-
ample, with the help of nested loops, we will write code to
validate the password strength. The restrictions that define
the level of strength of passwords is arbitrary. In this ex-
ample, we make a strength requirement that the password
must be at least eight characters long, and must include at
least one uppercase and one lowercase letter, one digit, and
one visible non-alphanumeric character. In addition, it must
contain at least one string of at least four letters long. Again,
failing to write this piece of code in the program correctly
may result in accepting weak and vulnerable passwords.

4.7 Functions
After familiarizing students with the concept of functions,

we implement the following two functions as examples of how
to modularize our login program using functions:

bool isStrongPassword(std::string);

int authenticate();

The first function reuses the code implemented in the
nested loops section to validate the strength of passwords.
The latter function abstracts away the entire authentication
process by moving all the details of how it is done into the
function authenticate(). This way, only a simple if state-
ment is needed to decide on revealing the secret word:

if (authenticate()==0)

cout << "The secret word is Kosar.";

The function has no argument. It returns a non-zero value
only when authentication fails (1=excessive failed attempts,
and 2=user gave up trying prematurely).

And last, as we introduce some popular functions from
the standard library, we mention the importance of knowing
the difference between safe and unsafe functions.

4.8 Arrays and C Strings
In addition to learning and interacting with arrays, the

students learn about C strings and some popular library
functions associated to it. C strings can now replace the
string class that was used as the type for the username and
the password earlier in the course (char username[SIZE];

char password[SIZE];). At this point we present the stu-
dents with the code presented in Figure 3 and ask them to
examine it for potential problems.

char password[SIZE];

bool logged_in = false;

cin >> password;

if (strcmp(password,correct_password)==0)

logged_in = true;

if (logged_in==true)

cout << "The secret word is Kosar.";

else

cout << "Invalid password!";

Figure 3: A login program that is prone to buffer
overflow.

There is no logical error here but at run-time, entering a
password larger than the length of the array is problematic.
Technically, among numerous undesirable consequences that
could happen in this case, crashing at run-time is most de-
sirable, from the security point of view. We explain why by
showing how this could be an opportunity for the attacker
to successfully overwrite logged_in to true, bypassing the
entire authentication process. Even worse, the attacker can
exploit the buffer overflow vulnerability in this piece of code
and gain full control of the system. The latter, however,
would be only explained in a very high level discussion since
the students are not expected to have any knowledge of the
operating systems concepts required to fully understand this
details of this effect.

4.9 Multidimensional Arrays
The program should now support multiple users. One way

to store the required information could be as follows:

char credentials[2][MAX_NUM_USERS][SIZE];

In this case, the corresponding password for username
credentials[0][i] is credentials[1][i].

4.10 Parallel Arrays
Our multiple user login program will contain meta infor-

mation about users in addition to their corresponding pass-
words: first name, last name, age, date of birth (“MMD-
DYY”), the security question and its corresponding answer,
and whether the user has administrative privileges or not
(Figure 4). This is also a good way to teach array traversal
and basic sorting to the students.

char username[MAX_NUM_USERS][SIZE];

char password[MAX_NUM_USERS][SIZE];

char first_name[MAX_NUM_USERS][SIZE];

char last_name[MAX_NUM_USERS][SIZE];

int age[MAX_NUM_USERS];

bool admin[MAX_NUM_USERS];

long dob[MAX_NUM_USERS];

char security_question[MAX_NUM_USERS][SIZE];

char answer_security_question[MAX_NUM_USERS][SIZE];

Figure 4: List of parallel arrays used in the login
program.

4.11 File I/O
Hardcoding passwords into an executable file is consid-

ered a bad security practice for numerous reasons. Reverse-
code engineering the executable file may leak the passwords.
Also, if the passwords are exposed by other means, changing
them would require changing the source code—making it a
virtually impractical task.

Instead, the credentials should be stored in a separate
file. At this point, students learn how to read the already
stored usernames and passwords from a file designated for
this purpose—the credentials file. Furthermore, they learn
how to modify this file to add new users, remove users,
and update users’ passwords. We also use this opportu-
nity to touch upon using cryptographically secure one-way
hash functions (e.g., crypt) for storing credentials in files,
and to point out the disadvantages of storing passwords in
plaintext.

4.12 Pointers and Dynamic Memory Alloca-
tion

Previously, we have used the constant MAX_NUM_USERS as
the size of the parallel arrays. By taking this approach, we
are bound to either wasting memory resources by allocating
more than necessary, or that our array runs out of space
if there are more users than the predefined size of the ar-
rays. To alleviate this problem we need to allocate arrays
dynamically.

We first need to know how many users are there before
being able to allocate enough memory to hold that informa-
tion. Hence, we first call a function that is assumed to read
a file and returns the number of rows in it, representing the
total number of users.

int n = getNumberOfRows("credentials_file");

We then dynamically allocate the parallel arrays. Here we
create a two dimensional array to hold the usernames:

char** username = new char*[n];

for(int i=0; i<n; i++)

username[i] = new char[SIZE];

Finally, we call a function that would iterate through the
file and copy the information for each user in the correspond-
ing arrays including username, one user at a time.

The students are then asked to examine the code for prob-
lems. Basically, the problem with this code is that if the
number of lines are too large (beyond the range of int), it
would result in integer overflow. This means that username

is not large enough to hold the information about all users
stored in the file. Technically, this would lead to accessing
and writing into elements out of range, and hence, leading
this cascading effects to heap overflow. A subtle attacker
could corrupt the credentials file maliciously to cause inte-
ger overflows.

Note that in teaching the basics of how to dynamically
allocate memory, we ensure that the students understand
both the security and performance implications of not check-
ing for NULL immediately after the new statement as well as
deallocating that chunk of memory improperly. We further
mention the importance of clearing (by setting the value to
zero) the allocated memory right before deallocating, for se-
curity purposes. We explain that if the allocated memory
holds sensitive information, as it does in our case, dealloca-
tion without clearing could potentially expose the sensitive
information.

4.13 Classes and Structs
By now we are ready to wrap our implementation of the lo-

gin program into an API, for other programs to use. We have
defined two classes, as illustrated in Figure 5: Credentials

and UserInfo. Credentials is designed to perform user
management tasks such as adding and removing users, and
UserInfo is designed to hold and update the information
about a particular user.

Here, we omit the details of implementation of the func-
tions and limit ourselves to the discussion of the construc-
tor for Credentials that takes the credentials filename as
an argument. The constructor parses through the file, sets
the total number of users, dynamically allocates memory for
users_list, and at last, copies all the information from the
file into the array.

While teaching the basics of C++ classes, it is important
to address clearly that the access specifiers (private and pub-
lic keywords) are not designed to be used for security, and
rather they are designed for abstraction in object oriented
programming. In fact, declaring methods or data as private,
enables the compiler to find programming mistakes before
they become bugs. In other words, this C++ access con-
trol mechanism provides protection against accidents and
not against fraud. Therefore, an effective design would pro-
tect careless programmers, who will be using our API, from
unwillingly committing to such bugs.

For instance, in UserInfo class, by design, you can never
change the username, after it is set by the constructor. This
design would protect against accidental attempts to change

class Credentials {

public:

Credentials(char* filename);

bool addNewUser(char*,char*,char*,char*,int,

long,char*,char*,char);

int deleteUser(UserInfo*);

UserInfo* getUserInfo(char* username);

private:

int num_of_users;

UserInfo* users_list;

};

class UserInfo {

public:

UserInfo(char*,char*,char*,char*,int,

long,char*,char*,char);

char* getUsername();

char* getPassword();

bool resetPassword(char* password);

bool isStrongPassword(char* password);

char first_name[SIZE];

char last_name[SIZE];

int age;

long dob;

char security_question[SIZE];

char answer_security_question[SIZE];

char privileges;

private:

char username[SIZE];

char password[SIZE];

};

Figure 5: The login program API.

the username after its creation which should never happen.
Another design choice we are making here is forcing indirect
access to password. One advantage of this approach is to
ensure calling isStrongPassword() to check for its validity
before changing it (as it is called inside resetPassword()).
Finally, by not allowing direct access to users_list, we
leave all memory management tasks associated to it to the
Credential class and out of the the burden of the API user.
This is desirable to avoid the possibility of potential pro-
gramming mistakes in doing so that could lead to memory
leaks by the API users.

5. AN INFORMAL EVALUATION
While we have not conducted a formal evaluation of the

course materials, we do have several indicators that sug-
gest that our approach was successful. Remember that we
used two sets of examples to teach each concept: a set of
traditional examples and the examples related to our login
program case study.

At the end of the Spring 2010 term, we asked the CS 1
students to rank these two sets of examples that we used to
cover the materials in various categories. These categories
were (1) helpfulness in learning the programming concepts,
(2) level of difficulty understanding the materials, and (3)

was it or was it not a “fun” experience? We used a scale of
1 (low) to 5 (high) in this survey, and provided 32 students
with questionnaires to be completed. The results from this
survey are shown in Table 1.

Table 1: Student evaluation of materials we used in
CS 1. (H: Helpfulness, D: Difficulty, F: Fun)

Login Other
Program Examples

Topics H D F H D F
Intro/Variables 3.2 1.4 3.1 3.0 1.4 2.1
if-else Statements 3.8 2.0 3.9 4.0 2.1 3.1
Nested if-else 4.3 2.4 4.6 3.3 2.6 3.0
String Class 3.3 2.1 3.8 3.5 1.7 3.3
Loops 4.1 2.7 4.2 3.8 2.7 3.4
Nested Loops 3.4 3.5 3.7 3.9 3.2 3.8
Functions 3.2 3.1 3.9 3.9 3.4 3.7
Arrays/C strings 3.7 3.2 4.0 3.7 2.9 3.8
Multi-dim Arrays 3.2 3.6 4.1 3.5 3.4 2.9
Parallel Arrays 3.8 3.0 4.4 3.7 3.1 3.2
File I/O 3.6 4.0 4.5 3.4 3.4 3.1
Pointers/DMA 3.6 4.0 4.5 3.5 3.9 2.8
Structs/Classes 4.2 4.3 4.2 3.7 4.2 3.5

Interestingly, the ratings for “fun” averaged around 4 for
the login program example through all the topics, which
was higher than ratings for traditional examples. Average
ratings on whether the examples were helpful for learning
programming concepts were almost the same for both sets
of examples. We also observed that as the concepts got
harder, the average rating for difficulty rose almost equally.

In the questionnaire that we gave to students, we also
asked if they thought that the login program example we
used in the course helped them to be more aware of security
bugs, and in general, if it had any educational value. 93%
of respondents answered “Yes” to this question.

However, in our evaluation, we did not test the students
for security mindset and awareness to see if we had achieved
our goal. Hence, in future work we plan to construct the
following experiment to evaluate that mindset and aware-
ness. We plan to choose two CS 1 classes in the same term,
and run them with two different teaching styles: one with
our traditional style, and the other with the same teaching
style presented in this paper. At the end of the term, we
will then evaluate students’ security mindset and awareness
in programming through an informal exam (one with no ef-
fect on the final grade in the course). We will also compare
students’ average final grades for two classes to see if the
methods we used have any effect (positive or negative) on
learning the basic concepts of programming. These grades,
while not a perfect measure for student learning, should indi-
cate whether students were able to learn the basic concepts,
along with the security concepts, without experiencing prob-
lems.

6. CONCLUSIONS
In this paper we described the process of teaching the se-

curity mindset for beginning programming students in the
CS 1 course that this author taught for four terms. Stu-
dents, by and large, reacted very positively to this course.
They enjoyed the material and found it educationally valu-

able and helpful for understanding the basic programming
concepts. What we have described in this paper is only the
first step toward achieving our goals, but we believe it to
be an important step that can be built on later in more
advanced undergraduate courses.

7. ACKNOWLEDGMENTS
The author is very much obliged to Peter Reiher for his

valuable input on technical aspects of the paper.

8. REFERENCES
[1] S. Azadegan, M. Lavine, M. O’Leary, A. Wijesinha,

and M. Zimand. An undergraduate track in computer
security. In Proc of the 8th ITiCSE, 2003.

[2] H. Cavusoglu, H. Cavusoglu, and J. Zhang. Security
patch management: Share the burden or share the
damage? Management Science, 54(4):657–670, 2008.

[3] CNNMoney. Citi: millions stolen in May hack attack.
http://money.cnn.com/2011/06/27/technology/
citi credit card/index.htm, 2011.

[4] T. Dimkov, W. Pieters, and P. Hartel. Training
students to steal: a practical assignment in computer
security education. In Proc. of the 42nd SIGCSE, ’11.

[5] R. Fanelli and T. O’connor. Experiences with
practice-focused undergraduate security education. In
Proc. of the 3rd USENEX CSET, 2010.

[6] Forbes.com. Java flaw puts millions of Windows and
Mac users at risk, 2011. http://www.forbes.com/sites
/adriankingsleyhughes/2012/08/29/java-flaw-puts-
millions-of-windows-and-mac-users-at-risk/.

[7] J. Heffley and P. Meunier. Can source code auditing
software identify common vulnerabilities and be used
to evaluate software security? In Proc. of the 37th
HICSS, 2004.

[8] N. Kazemi and S. Azadegan. IPsecLite: a tool for
teaching security concepts. In Proc. of the 41st ACM
SIGCSE, pages 138–142. ACM, 2010.

[9] T. Kohno and B. D. Johnson. Science fiction
prototyping and security education: cultivating
contextual and societal thinking in computer security
education and beyond. In Proc. of SIGCSE, 2011.

[10] K. Nance. Teach them when they aren’t looking:
Introducing security in CS1. IEEE Security and
Privacy, 7(5):53–55, Sept. 2009.

[11] NYtimes.com. Cyberattacks on Iran - Stuxnet and
Flame, 2012.
http://topics.nytimes.com/top/reference/timestopics
/subjects/c/computer malware/stuxnet/index.html.

[12] L. Perrone, M. Aburdene, and X. Meng. Approaches
to undergraduate instruction in computer security. In
Proc. of ASEE, 2005.

[13] P. Peterson and P. Reiher. Security exercises for the
online classroom with DETER. In Proc. of the 3rd
USENIX CSET, 2010.

[14] V. Pournaghshband, M. Sarrafzadeh, and P. Reiher.
Securing legacy mobile medical devices. In Proc. of the
3rd International Conference on Wireless Mobile
Communication and Healthcare (MobiHealth), 2012.

[15] B. Schneier. Schneier on Security: The Security
Mindset, 2008. http://www.schneier.com/blog/
archives/2008/03/the security mi 1.html.

