Teaching Security Notions in Entry-Level
Programming Courses

Vahab Pournaghshband
Computer Science Department
University of San Francisco
San Francisco, USA
vahab.p@usfca.edu

Abstract—Nowadays, educating computer science students on
security issues is a reality. Offering computer security related
courses has significantly increased during the past decade. In fact,
offering these courses has become a standard part of the cur-
riculum for many computing disciplines. While there are many
proposals suggesting addition of this appealing topic into the CS
introductory courses, many faculties do not support the idea.
They rightfully claim that these courses are already packed with
basic programming concepts leaving not much room for other
topics. In this study, we show how basic security concepts can be
incorporated into these courses without increasing the normally
required efforts needed by students as well as the instructor.
The idea behind our approach is to utilize a programming
assignment with this matter in mind. While students will work
on the assignment as usual, utilizing their understanding and
knowledge of conventional computing concepts, they will also be
implicitly introduced to major security concepts and practices
through the process, at different steps. In this paper, we discuss
the necessary steps for our approach, and explore what security
concepts should be contemplated, along with how to utilize these
concepts during the process.

Index Terms—computer security, security mindset, CS1

I. INTRODUCTION

While software has become a crucial element in our lives
in recent decades, hackers, in parallel, have also become more
influential and capable of interrupting these technological
connections by breaching software security. For instance, In
the past year, over 500,000 Zoom account credentials were
hacked and made available on the Dark Web [1]. In another
instance, in the same year, a critical security flaw in WhatsApp
was exploited, enabling hackers to install surveillance software
on users’ smartphones. This incident may have impacted
WhatsApp’s 1.5 billion users [2]. Furthermore, more recently,
the Colonial Pipeline Company, the largest petroleum pipeline
in the US, was breached which consequently led to the
preventive shutdown and halting of its services to millions
of users for nearly a week [3]. More generally, on average,
an attack was reported to a connected computer globally for
every 39 seconds in 2017 [4]. In 2019, a data breach cost
around $3.92 million on average and it has been forecasted
that worldwide spending on cybersecurity will reach $134
billion in 2022 [5], [6]. New threats are further emerging as
computers become more embedded and play more intimately

978-1-6654-3687-8/21$31.00 ©2021 IEEE

Hassan Pournaghshband
Software Engineering Department
Kennesaw State University
Atlanta, USA
hpournag @kennesaw.edu

a big role into our environment and daily lives, as for the
recent security vulnerabilities found in mobile medical devices
[7]. For these reasons, in our current technological world,
the inherent problems of computer security are becoming
increasingly important. Hence, it is necessary that computing
students gain the necessary knowledge for handling security
problems, early in their academic programs [8].

The need for incorporating computer security education
into the computing curriculum is widely recognized [8]-
[12]. Researchers and educators believe computer security
topics should be tightly integrated into computing education
[13], [14], rather than being an afterthought [15]. In fact,
the Computer Science Curriculum review taskforce identified
the emergence of security as a major area of concern. The
taskforce further reported that it has received substantial at-
tention to security matters to be compulsory for all computing
graduates [16].

Proper integration of computer security into introductory
programming courses can motivate and engage students, and
build excitement and enthusiasm for computing discipline,
as well as accomplishing anticipated student learning out-
comes. Most of the existing research in this area is based
on pioneering exploratory projects by faculty members with
expertise in computer security. For general faculty members
teaching introductory CS courses, few of which have computer
security backgrounds, it can be challenging to take advantage
of these results. Additionally, these instructors often complain
that the courses are already packed with general programming
concepts and adding other topics is not viable. Our proposed
approach is specifically addressing these concerns. We show
how elementary security concepts can be taught in these
courses, and yet keep the course load manageable for both,
students and instructors. This is done by presenting a step-by-
step process to develop a self-contained programming project
for the course. While students apply their basic programming
concepts working on the project, they also become aware of
computer security-related programming issues and concepts.

We have successfully employed our approach in an intro-
ductory one-semester course that was developed and taught
over a two year period at our institution. As presented in
Section 5, we are pleased with the results of our approach
and have found it promising.

This paper is organized as follows: Section II presents the
underlying principles, followed by desirable characteristics of
the project in Section III. Methodology, assessments, and con-
clusions are presented in Sections IV, V, and VI, respectively.

II. UNDERLYING PRINCIPLES

In this section we discuss the significance of teaching
security notions in foundational courses, and yet keeping the
primary focus on teaching basic programming concepts.

1) An early exposure to security issues is essential to a
students’ foundational appreciation and understanding of
computer security. This helps students later when they
take upper level courses covering security at a large
stage.

2) Many students outside of the CS major are required
to take only foundational CS courses, and quite pos-
sibly will never take any other CS courses beyond the
introductory courses. Therefore, it might be their only
chance in their study to learn about computer security.
Even if these students never pursue a programming
career, this would be a valuable opportunity for them to
learn about the technical aspects of computer security
through understanding the root cause of known security
problems covered in this course. For instance, students
will understand the importance of choosing a strong
password once they learn how powerful brute force
attacks (included in our example project) are.

3) It is shown that real-world programming projects play
a significant role in actively engaging and motivating
students. Incorporating security issues into the project
would make it even more interesting for them [17].

III. DESIRABLE CHARACTERISTICS OF THE PROJECT

1) Due to the fact that institutions use different language
choice incorporated in their CS introductory courses,
the project should be language independent so it can
be adoptable to any of those CS courses.

2) The rubric of the project should be easy to follow for
easy grading purpose. This is to ensure that it is scalable
to large classroom settings.

3) The project should be self-contained and accessible to all
students. That is, it should provide necessary background
in computer security, describing security concepts in
their simplest terms. In other words, it should not assume
or require any prior specialized knowledge of computer
security. This is particularly important, in regard to
minimizing the instructor’s intervention. The assignment
specification should provide additional resources and
materials for those who are interested to learn more
about the topic.

In addition to the characteristics mentioned above, our

proposed project should have essential characteristics of any
CS assignments including:

4. The project should provide students with first-rate home-
work assignments. This is integral to the success of any

course, and nowhere is this relationship so pronounced
as in CS1/CS2 [18].

The project should incorporate advanced CS topics into
an introductory course so it can provide motivation. Yet
care must be taken to avoid overwhelming students with
more than what they can normally accomplish.

The project must engage students with their learning.
With the instructors taking the care to make assignments
enticing and interesting, students look forward to work-
ing on their programs and eager to get their code to
work. As a result, students achieve far greater results
than they otherwise would [19].

IV. METHODOLOGY — THE PROCESS

In this section we present a five-step process that instructors
can follow to develop a fitting project if they wish to include
basic security concepts in their CS introductory courses. Below
we have listed those five steps followed by an explanation of
each step.

1Y)
2)

3)

4)

5)

Stimulate the students’ interest in security through a
simple attack on a security-sensitive system.

Present elementary terminologies and definitions in-
volved in the attack scenario given in Step 1.

Explain the significance and root causes of the problem
(i.e., the inherent vulnerability of the system to certain
attacks) and lead the students to potential defensive
solutions to eliminate or mitigate such attacks.

Present students with the project specification to imple-
ment a defense mechanism.

Offer students with potential programming mistakes that
typically can be made at this point, which will make the
defense solution ineffective.

To further clarify each of the above steps, here, we use
examples in relation to a project specification sample that we
have used in our introductory courses.

Y

2)

3)

The students are presented with a simple authentication
system (login program). In the attack-the-system phase,
we present the students the password cracker, where
they are asked to implement a program that guesses the
correct password and measures the time it takes to guess
the password in the worst-case scenario by enumerating
every single password combination. The password in this
example is an integer type, so the password space is
relatively small. Hence, the correct password is expected
to be identified within seconds in a typical machine.
Figure 1 lays out the details of the attack component of
the project, as presented to the students in the project
specification.

The students are introduced to terminologies and defini-
tions related to Step 1. In the case of the login program,
they are brute force attacks and authentication systems.
In the project specification, we explain to the students
why it was relatively trivial to attack this system. This
is due to the password space being trivially small.
Therefore, a natural way to increase the size of the

Fig. 1. Password Cracker as presented in the project specification.

Password Cracker
In this component of the project, you are to write a password cracker for login program. Your password cracker performs
the brute force attack to guess the correct password, hence trying all possible combinations. In the process, we will also
measure how long it takes for the password cracker to find the correct password, as well as measuring how long it takes
to try all possible combinations. We will do all the following steps for each of the three types: unsigned short,
unsigned int, and unsigned long. The steps below, however, uses only unsigned int as an example.

1) Declare a const variable, unsigned int correct_password to store the correct password and initialize it

to your choice.

2) In order to check all combinations we need a loop that iterates through all possible values. Our for loop requires
a lower bound and an upper bound for the range of values it will iterate through, incrementing the loop counter at
each step.

o What is the lower bound for this type?
o What is the upper bound for this type? In other words, what is the largest possible value an unsigned int
can hold?
« Your loop should stop as soon as the correct password is found.
3) In order to measure how long it takes for our program to guess the password correctly (or to measure the time it

takes to execute any block of code!), we will use the clock () function defined in time.h. Here is how to use
the clock () function in C:

#include <time.h>
clock_t start, end;

start clock () ;
/+ Your code goes here x/
end clock () ;

float seconds (float) (end - start) / CLOCKS_PER_SEC;
printf ("It took %f to complete this.", seconds);

4) Lastly, consider your current program:

« For what password, your program takes the longest to guess?
« Set the correct password to this password, and measure how long it takes for your password cracker to find the
correct password. This is what we call the worst-case time, or upper bound.

password space is to enforce the passwords to be a
combination of various characters as opposed to be only
containing digits. At this point, the students, since they
measure the time to crack weak passwords only contain-
ing digits, understand that increasing the password space
will require more resources (e.g., time) for the attacker
to crack it.

In this step, the students are asked to implement a
defense mechanism to defend or mitigate brute force
attacks in authentication systems. In this project exam-
ple, the students are asked to implement a password
strength meter that requires the users to choose “strong"
passwords, which must be sufficiently long and must be
combinations of other certain characters. Additionally,
the students are also asked to implement a default
password generator that generates a temporary strong
random password when the user sent requests to reset
their password. The project specification explains to

4)

students why default passwords must also be strong.
That is because the system should not assume the users
will change the default passwords very soon, or change
them at all. Leaving the system with weak default
passwords creates an attack window of opportunity.
We explained (through specific examples) to students
what potential mistakes in implementing the password
strength meter correctly, would mean in a security con-
text. For instance, a failure to properly check if the pass-
word is at least 8 characters long, leads to accepting one-
character long passwords as strong, making cracking
such passwords a trivial task. It is crucial to emphasize
the security implications of programming mistakes in
writing security-sensitive applications.

5)

V. ASSESSMENTS

We have employed our approach in this course at our
institution for three semesters with a total of 83 students. We

TABLE I
ILLUSTRATION OF THE PERCENTAGE OF STUDENTS WHOSE RESPONSES CHANGED FROM “NO” TO “YES” FOR EACH QUESTION (Q) IN EACH CONSTRUCT
(C) WHERE THE NUMBER OF STUDENTS IS 83.

C: Students retention in CS

Q: Are you planning to take CS2?

%7

C: Students’ interest in pursuing subject matter beyond the project

Q: Do you know what a cryptographic one-way hash function is?"

%13

as your upper-division elective?

Q: Are you willing to take a computer security class

%24

C: Impact outside of classroom

Q: Have you changed your primary e-mail or social network
website account password in the past two months?

%16

¥ Included in the project specification, we provided advanced relevant security topics as additional resources labeled as optional readings
for interested readers. In this additional optional reading resources for interested readers, we provided information on how and why
only the hashed digest of passwords are stored. By asking if the students know what cryptographic hash functions are (without prior
knowledge prior to taking the course), we determine if the student was interested in pursuing the security topics further.

have assessed the students’ responses to our several Yes/No
questions, and found the results promising. These results are
summarized in Table I.

We plan, for our future work, to have a robust assessment
of our approach measuring parameters such as the amount
learned by our students from the project, and if in fact,
completing it truly thrilled them.

VI. CONCLUSIONS

Using security-focused assignments in foundational pro-
gramming classes has allowed instructors to increase student
awareness about security issues at the beginning of their edu-
cation experience rather than introducing it during specialized
courses at higher levels. In this paper, we presented a project-
based approach for effectively achieving this goal. We showed
that if instructors wishing to include these security concepts
into their introductory courses follow our step-by-step process,
they can attain this goal without putting additional burden, than
is normally required, on their students as well as own shoul-
ders. We presented a self-contained approach that is scalable
and adoptable to any CS introductory sequence course in any
institution. Our preliminary assessments, while making them
security-conscious, shows an increase in students engagement
and excitement in completing assignments in an introductory
course.

REFERENCES

[1] Forbes.com, “Hacked zoom accounts given away for free on the dark
web,” https://www.forbes.com/sites/leemathews/2020/04/13/500000-
hacked-zoom-accounts-given-away-for-free-on-the-dark-
web/6e67407a58¢5, April 2020.

[2] B. Technology, “Whatsapp discovers ’targeted’ surveillance attack,”
https://www.bbc.com/news/technology-48262681, May 2019.

[3] CNN, “Colonial pipeline launches restart after six-day shutdown,”
https://edition.cnn.com/2021/05/12/business/colonial-pipeline-
restart/index.html, May 2021.

[4] T. S. Magazine, “Hackers attack every 39 seconds,”
https://www.securitymagazine.com/articles/87787-hackers-attack-
every-39-seconds, February 2017.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

DataStealth, “110 must-know cybersecurity statistics for 2020,”
https://www.datex.ca/blog/110-must-know-cybersecurity-statistics-for-
2020, September 2020.

Statista, “Number of compromised data records in selected data breaches
as of january 2021, https://www.statista.com/statistics/290525/cyber-
crime-biggest-online-data-breaches-worldwide/, January 2021.

V. Pournaghshband, M. Sarrafzadeh, and P. L. Reiher, “Securing legacy
mobile medical devices,” in 3rd International Conf. on Wireless Mobile
Communication and Healthcare, ser. MobiHealth *12. Springer, 2012.
V. Pournaghshband, “Teaching the security mindset to CS1 students,”
in Proceeding of the 44th ACM technical symposium on computer
science education, ser. SIGCSE ’13. ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2445196.2445299

V. Svébensky, J. Vykopal, and P. Celeda, “What are cybersecurity edu-
cation papers about? a systematic literature review of sigcse and iticse
conferences,” in Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, ser. SIGCSE °20, 2020, p. 2-8.

T. Hynninen, “On the learning activities and outcomes of an information
security course,” in Proceedings of the 19th Koli Calling International
Conf. on Computing Education Research, 2019.

T. Dimkov, W. Pieters, and P. Hartel, “Training students to steal: a
practical assignment in computer security education,” in Proceedings
of the 42nd ACM technical symposium on computer science education.
ACM, 2011, pp. 21-26.

D. Basu, H. K. Kumar, V. K. Lohani, N. D. Barnette, G. Back,
D. McPherson, C. J. Ribbens, and P. E. Plassmann, “Integration and
evaluation of spiral theory based cybersecurity modules into core com-
puter science and engineering courses,” ser. SIGCSE ’20. Association
for Computing Machinery, 2020, p. 9-15.

S. Peltsverger and O. Karam, “Is teaching with security in mind
working?” in 2010 Information Security Curriculum Development Con-
ference, ser. InfoSecCD *10. Association for Computing Machinery,
2010, p. 15-20.

C. Curricula, “The joint task force on computing curricula,” [EEE
Computer Society Association for Computing Machinery, 2017.

J. McManus, “Security by design: Teaching secure software design and
development techniques,” J. Comput. Sci. Coll., vol. 33, no. 3, p. 75-82,
Jan. 2018.

“Computer science curricula 2013,
https://acm.org/binaries/content/assets/education/cs2013_web_final.pdf.
R. L. Fanelli and T. J. O, Connor, “Experiences with practice-focused un-
dergraduate security education,” in Proceedings of the 3rd International
Conference on Cyber Security Experimentation and Test, ser. CSET’10.
USA: USENIX Association, 2010, p. 1-8.

T. J. Feldman and J. D. Zelenski, “The quest for excellence in designing
csl/cs2 assignments,” in In Proc. of the 27th Symposium on Computer
Science Education, ser. SIGCSE °96, 1996, p. 319-323.

E. S. Roberts, The Art and Science of C: A Library Based Introduction
to Computer Science, lst ed., ser. 10. Addison-Wesley, 9 1994.

