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Abstract—ISPs report that the use of VR, video streaming,
online gaming, and video conferencing is on the rise in recent
years. This rise in the popularity of bandwidth-hungry applica-
tions, coupled with resource-constrained networks, has reignited
discussion about how different applications’ network traffic is
treated (or mistreated) by ISPs. There is already evidence that
some ISPs are discriminating against certain traffic by prioritiz-
ing others. In most cases, ISPs do not reveal the details about their
potentially discriminatory behavior. In this paper, we propose an
active probing tool that enables end-users to detect whether their
ISPs are implementing any prioritization scheduling mechanism.
Our technique is non-intrusive and robust to cross traffic. It is
entirely end-to-end, requiring no special network support. We
have used simulations and Internet experiments to evaluate our
approach. Our findings demonstrate an accurate detection of
prioritization.

Index Terms—Traffic Prioritization, Internet Measurement,
Priority Queueing.

I. INTRODUCTION

Since its early days, the internet was designed from the end-
to-end principle. Networks deliver traffic with best effort and
do not treat traffic preferentially based on properties such as
port number, IP address, or packet content. Recent violations
of this principle by many internet intermediaries has led to
significant interest in the “network neutrality” debate [1]. In
fact, an ongoing debate questions whether the network should
be neutral with respect to the packets it carries—that is, not
to discriminate against or to alter traffic except for lawful
purposes (e.g., blocking illegal content). Network neutrality
states that all traffic on the internet must be treated with
impartiality, regardless of its origin, destination, or content.
This essentially means that unfair traffic differentiation, such
as prioritizing or degrading specific traffic flows, is prohibited
[2].

In recent years, bandwidth-hungry and delay-sensitive ap-
plications such as VR, video streaming, online gaming, and
video conferencing have gained substantial popularity. In fact,
in a recent report [3] it is estimated that in developed markets,
metaverse could generate about 13% of total traffic by 2025.
To cope with the growth in their network use, many ISPs have
widely adopted Traffic differentiation [4]. Traffic prioritization
is one of various popular approaches to traffic differentiation
used to manage scarce network resources.

Strict Priority Queuing (SPQ) is one of the primary methods
of providing traffic prioritization on edge networks. In fact,
SPQ has been available in commercial routers for quite a
while, and various models from popular brands, such as the
Cisco and Juniper Networks [5] , offer support for it. In a

simple two-class model, SPQ classifies network packets as
either high priority or low priority traffic, which are then
filtered into separate FIFO queues. The SPQ scheduler then
ensures that higher priority traffic (if present) is always served
before lower priority. In other words, the high priority queue
must be completely empty before the regular queue is served.
The advantage of this method is that high priority packets are
guaranteed delivery so long as their inflow does not exceed the
transmission rate of the network. The potential disadvantage
is that a high proportion of high priority traffic will cause the
low priority traffic to suffer extreme performance degradation,
referred to as “starvation” [6].

SPQ’s hostile nature toward lower priority flow is particu-
larly undesirable in delay-sensitive network applications. Also,
starvation has detrimental effects on TCP-based applications.
In a regular TCP data transmission, the sender of the low
priority traffic will not receive acknowledgement about the
packets sent, because the packets are accumulating in the low
priority queue. In fact, they may never reach the receiver, or
they may arrive so late that the sender may have already
marked them as lost, retransmitted them, and adjusted its
congestion window size to a lower value. Mangiante et al.
[7] outlines the bandwidth and latency requirements for the
streaming of a 360 degrees VR experience. Their findings
show QoS mechanisms, such as traffic prioritization, that
adversely affect latency and bandwidth, consequently degrade
users’ quality of experience of these applications.

The ability to detect traffic prioritization enables customers
to develop appropriate strategies for improving their applica-
tion performance. Large content providers, for instance, strive
to ensure that their internet applications outperform those
offered by their competitors. If a content provider realizes its
traffic is being deprioritized by an ISP, it may want to negotiate
better service-level agreements with that ISP. Small customers
will also benefit from such information. For example, they
may change port numbers or encrypt packets to circumvent
deprioritization.

In addition to the aforementioned benefits to metaverse
users and content providers, there are also broader applications
in detecting traffic differentiation by ISPs. Several countries
around the world have established network neutrality regula-
tions to prevent unfair traffic differentiation [8]. However, ISP
compliance cannot be ensured by regulations alone, and thus
detection tools are required to regularly check compliance.
Furthermore, even in a nonregulated environment it is impor-
tant to ensure the transparency of traffic management practices



adopted by ISPs. Internet users in the US already speculate
that ISPs may be concealing their discriminatory behavior by
prioritizing popular bandwidth measurement tools [9].

Lastly, measuring network path characteristics is critical to
diagnosis, optimization, and the development of distributed
services. SPQ can severely affect the accuracy of measurement
tools’ output and the effectiveness of network troubleshooting
procedures.

Though details about ISP network policies and configuration
are valuable—and, in some cases, critical to end users, admin-
istrators, and content providers—most ISPs do not reveal the
details about their potentially discriminatory behavior such as
traffic prioritization. In light of this, in this paper we present
TarProbe, a lightweight, accurate tool to detect traffic prioriti-
zation by the end hosts and without ISP cooperation. Through
active probing methods, TarProbe empowers the stakeholders
to understand and characterize the performance degradation
caused by traffic prioritization. Our technique is non-intrusive
and robust to cross traffic. It is entirely end-to-end, requiring
neither changes to nor information from intermediate nodes.

Moreover, despite the potential impact on users and content
providers, there is currently a lack of internet-wide studies
quantifying its prevalence. The existence of a robust detection
tool is the first step in conducting a large-scale study.

The remainder of the paper is organized as follows: Section
II presents related work, followed by detection methodology in
Section III. Implementations, Simulations, and Internet Eval-
uation are presented in Sections IV, V, and VI, respectively.
Section VII concludes the paper.

II. RELATED WORK

Detecting traffic differentiation is a research topic widely
explored in the literature [10]. Most existing traffic differenti-
ation approaches, however, focus on detecting other forms of
discrimination than traffic prioritization—most notably, traffic
shaping and traffic blocking. These approaches only measure
the performance for one flow class at a given time. As a result,
these approaches cannot detect SPQ, since the effect of SPQ
is observable only when both classes of traffic are present.

Despite the importance of detecting SPQ, only three studies
have focused on detecting strict priority queueing: DiffProbe
[11], POPI [12], and Packsen [13]. All three approaches use a
series of bursty measurements comprising interleaving patterns
of packets of different class types and then analyze the results.

POPI [12] uses loss ranks as a statistical means to detect
traffic loss differentiation. DiffProbe [11] detects prioritization
by comparing the latency between exposed and control traffic.
DiffProbe employs the Kullback-Leibler divergence for delay
distributions. Similar to DiffProbe, Packsen framework [13]
measures the difference in latency between two flows but
uses Mann-Whitney U-test to detect traffic prioritization. All
three approaches use a fixed set of parameters when compared
to the path characteristics. This lack of configurability has
made these tools unnecessarily intrusive in some scenarios,
and inaccurate in some other scenarios.

III. METHODOLOGY

A. Notations

The following set of notations will be used throughout this
paper.

• PH : The packet that is being prioritized and size ℓ.
• PL: The packet that is being deprioritized and size ℓ.
• P : The number of packets of interests (POI), as defined

in Section III.C.
• N ′: The number of packets in the separation packet train,

as defined in Section III.C.
• |QH |, |QL|: The size of high and low priority queues (in

packets).
• cp: The path capacity from the sending to the receiving

host.
• Z: The link capacity of the outgoing link from SPQ.
• r: The sending rate of the probe packets as perceived by

SPQ. In other words, it is the minimum of the sending
rate at the sender and the capacity of the narrow link
between the sender and SPQ.

B. Assumptions

In our approach to detecting SPQ on a path, we assumed that
the network consists of a series of store-and-forward nodes,
each of them is equipped with a FIFO queue and having a
constant service rate. We also assume r > Z. If the inequality
does not hold, then there will be no observable differentiation
by SPQ, since Z is not the bottleneck.

C. Approach Overview

To detect whether SPQ is provided on the network, we use
active probing in two phases: low priority phase (LP) and high
priority phase (HP). In each phase the performance of only
one priority class is measured. We use loss as our performance
metric. Once both phases are complete, their perceived loss
rates are then compared with one another.

In LP , the sender sends P low priority packets (defined as
packets of interest), each separated by N ′ high priority packets
(defined as separation packet train). The pattern in which the
packet train in low priority phase is constructed is formalized
in Algorithm 1. Once the packets are sent, the perceived loss
of the packets of interest is measured and recorded at the
receiving side. In contrast, the priority class of the packets is
flipped in HP . That is, P high priority packets of interest are
sent, each separated by N ′ low priority packets. The rationale
behind the proposed pattern is that if there is no prioritization,
the loss rate for both high and low priority packets of interest
(denoted as lL, lH , respectively) should be almost equal. On
the other hand, in the presence of prioritization (and with
carefully selected values of N ′ and P ), this pattern can create
two very different scenarios for packets of interest of each
priority class. We discuss these two scenarios here.

In the presence of SPQ, in LP , the high priority packets in
the separation packet train maintain a non-empty high priority
queue. This results in the starvation and subsequent dropping
of low priority packets of interest. On the other hand, the



Algorithm 1 Construct Low Priority Probe Sequence
constructLProbeSequnce(N ′, P )

1: (PLj
)Pj=1 ← Ø

2: for i = 1 to P do
3: for k = 1 to N ′ do
4: (PLj

)Pj=1 ← (PLj
)Pj=1|| (PH)

5: end for
6: (PLj )

P
j=1 ← (PLj )

P
j=1 || (PLi)

7: end for
8:
9: return (PLj

)Pj=1

scenario is very different in HP . The low priority packets in
the separation packet train outspread the high priority packets
of interest so that the high priority packets of interest arriving
in the high priority queue experience an empty queue and
therefore are served immediately.

As a result of sending probing packets with the described
pattern, in the presence of SPQ, low priority packets of interest
experience a higher loss rate, compared to that of high priority.
This suggests that, to detect the presence of SPQ, a threshold
should be specified to distinguish the effects of SPQ from
normal internet variabilities:

∆l = lL − lH > τ. (1)

IV. IMPLEMENTATIONS

We used UDP packets to generate our active probing train.
With the help of two TCP connections before and after the
UDP train, the sender sends the experiment parameters to
the receiver, and the receiver shares the perceived loss of the
packets of interest for each priority class to the sender for
further analysis.

In the remainder of this section, we detail the selection of
parameters.

A. Number of measurements (Γ)

On average, the presence of cross traffic differs at certain
times of the day and follows a particular pattern [14]. By
performing measurements throughout the day, we hope to
capture the effects of time-dependent cross traffic variation.
Therefore, we ran each scenario at every hour of a full day,
resulting in a total of 24 measurements.

B. Threshold (τ )

Since our approach is loss-based, it requires a predetermined
static threshold to compare the loss rates between the packets
of interest. Introducing a correct loss ratio threshold requires
careful consideration, since this value is a major factor in the
accuracy of our detection mechanism. In order to come up
with a correct loss ratio threshold, we need to understand the
root causes of loss on the internet—and, in contrast, what is
considered normal loss, and in contrast, what is considered

unusually high loss rate. Studies [15] suggest that 20% is a
suitable value for τ , meaning that loss rates larger than that
may not be attributed to normal internet variabilities.

C. Separation Packet Train Length (N ′)

We aim to develop a detection tool that is non-intrusive.
Given that the size of the probing train is a factor of N ′ large,
in order for TarProbe to be lightweight, we need to find the
smallest value for N ′ that achieves a high degree of detection
accuracy. In this section, we derive a lower bound for N ′.

Recall from Section III.B our assumption r > Z. Addition-
ally, from Section III.C, our objective is that in HP , QH to
never build up. On the other hand, in LP , our objective is for
QH never to be empty. To accomplish these objectives, the
following conditions must hold:

(i) High priority packets in HP are sent at the rate r
N ′+1 .

Hence, for QH to never build up, r
N ′+1 ≤ Z must hold.

(ii) High priority packets in LP are sent at the rate N ′

N ′+1r.
Therefore, for QH to never be empty, N ′

N ′+1r > Z must
hold.

Combining (i) and (ii): r
N ′+1 ≤ Z < N ′

N ′+1r
Lastly, we solve for N ′:

N ′ ≥
⌈
max(

r − Z

Z
,

Z

r − Z
)

⌉
(2)

Therefore, an optimal value for N ′ is achievable when the
values of r and Z are known. r is the sending rate at the
sender and thus is known to the sender. Assuming that SPQ
is typically implemented on the bottleneck, Z would then be
equal to the path capacity. If cP = Z, then we can use existing
tools such as pathrate [16] to estimate the path capacity—
therefore, Z.

Moreover, inequality (2) entails a larger N ′ is suitable when
the sending-rate-to-bottleneck ratio (r/Z) is either too small
or too large. Though an optimal value for N ′ is desirable, it
is unnecessary in most scenarios. In Section V.B, we show
through simulations that a high degree of detection accuracy
is still achievable by near-optimal values for N ′.

D. Packets of Interest (P )

The total number of packets of interest should be sufficiently
large so that the difference in the perceived loss rates (∆l) is
greater than the fixed loss rate threshold, τ . In Section V.A,
through simulations, we show that 1000 is a reasonable value
for P to achieve a high degree of detection accuracy.

V. SIMULATIONS

We simulated our approach using the ns-3 simulator [17]
under different network scenarios using the simple topology:
Sender → SPQ→ Receiver.

We used simulation to investigate how network characteris-
tics and parameter selection can influence our detection rate.
In our simulation, we used the values presented in Table I
for the parameters. Each of the following subsections refers
to a particular scenario. In order to observe the effects of a



particular parameter on detection accuracy, in each scenario
we modify the value of that parameter, while keeping the
remaining parameters constant.

Table I
PARAMETERS USED IN SIMULATION.

Parameter Value
Sending Rate (r) 10 Mbps
Bottleneck (Z) 2 Mbps
Inter-Packet Time 0.1 ns
|QH |, |QL| 75
Packet Size 200B
Separation Packet Train Length (N ′) 4
Number of Packets of Interest (P ) 1000

A. The Effects of the Number of Packets of Interest (P )

As illustrated in Figure 3, it is clear that for the values larger
than 1000, detection accuracy improvement is only marginal.
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Figure 1. The effects of total number of packets of interests (P ) on detection
accuracy.

B. The Effects of the Sending-Rate-to-Bottleneck Ratio (r/Z)

In Section IV.C we showed that N ′, r/Z, and TarProbe
detection accuracy have direct correlations. In this simulation
scenario, we examine this relationship.

Figure 3 demonstrates this relationship for a range of values
for N ′ and Z, while r is constant. If r/Z is too large
(Z < 2Mbps in this scenario), then the high priority packets
of interest are also lost, because the link is too slow. As shown
in Figure 4, this can potentially affect the detection rate, as the
difference in loss rate between high and low priority packets
of interest decreases.

On the other hand, if r/Z is too small (Z > 8Mbps in this
case), then the high priority packets in the separation packet
trains in LP are processed so fast that they are unable to keep
the high priority queue constantly busy. This allows most low
priority packets of interest to exit the low priority queue. This
leads to a decrease in ∆l, which can negatively affect the
detection accuracy negatively. In this case, however, where
r/Z is close to 1, the end hosts do not noticeably experience

the effects of SPQ. To summarize, simulation has confirmed
that our approach detects only effective SPQ.
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Figure 2. The effects of the separation packet train length (N ′) and the
sending-rate-to-bottleneck ratio (r/Z) on detection accuracy.

C. The Effects of the Separation Packet Train Length (N ′)

Simulations (Figure 3) confirm that the larger the values
of N ′, the wider the range of scenarios our tool can detect.
However, it is evident that N ′ = 4 is a suitable optimal or
near-optimal value for all detectable scenarios.

VI. INTERNET EVALUATION

In this section, we present our internet evaluation to confirm
that our method works on a real network. Here, we begin with
the experiment setup, and follow with a demonstration of the
results and an analysis.

A. Experiment Setup

The experiment environment and topology setup are de-
picted in Figure 4. To enable the effect of SPQ, we used
a Cisco Catalyst 3750 switch, which has SPQ enabled. The
SPQ-enabled switch and the receiver were all located in the
Anonymous University network. The senders, however, are
remote PlanetLab [18] nodes. Also, we reduced the sending
transmission rate from the switch, making that link the narrow
link of the path. Note that to confirm that our SPQ link is
indeed the bottleneck, we used pathrate [16]. This capacity
estimation tool has been proven experimentally to work well
with PlanetLab nodes [19].

Test Server /
Target IP

Cisco
Catalyst 3750

Research controlled

Internet

Planetlab Node

Planetlab Node

Planetlab Node

Figure 3. Environment used in our experiments.



We could have placed both the sender and the receiver
remotely and simulated a single bottleneck link on the path
by routing the traffic stream through our local network. But
by using a remote sender and a local receiver, we simulate
a more common scenario, in which traffic prioritization is
typically present in the edge network. This arrangement also
ensures that the experiment matches the no-valley property,
which derives from the provider-to-customer relationship and
is a commonly adopted routing policy by ASes [20], [21].

B. Results

We selected a set of four geographically distributed Planet-
Lab nodes connected via the open internet for our experiment.
We define an experiment scenario uniquely by a remote Plan-
etLab node. For each scenario, we performed 24 individual
experiments, within a span of 24 hours, running only one
experiment every hour.

We used the following parameters in our internet experi-
ments: in the switch, we used the default setting for the queue
size in Cisco Catalyst 3750, which is 60 packets [5]. Also, in
the switch, we set Z = 2Mbps. VM Slices in PlanetLab nodes
are typically rate-limited to 10Mbps [19]—thus, r = 10Mbps.
Provided with this information, N ′ was set to 4. Finally, we
used P = 1000.

Figure 5 summarizes our results for all the experiment
scenarios we performed by presenting the normal distribution
parameters of each scenario. The results confirm the existence
of a significant gap in the difference in loss ratio between
the high and low priority packets, in the presence of a traffic
prioritizer for all scenarios tested.
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Figure 4. Summary of the results from the Internet experiments: planet-
lab2.cs.ucla.edu (USA), pl1.uni-rostock.de (Germany), pl1.sos.info.hiroshima-
cu.ac.jp (Japan), and planetlab.research.nicta.com.au (Australia).

VII. CONCLUSIONS

Traffic prioritization is a popular traffic discrimination ap-
proach employed by ISPs. Though most ISPs do not reveal
their treatment (or mistreatment) of certain traffic, this infor-
mation is valuable and, in some cases, critical for stakeholders
(e.g., metaverse end-users and content providers). In this paper,
we developed and evaluated a new tool for accurately detecting

strict priority queueing. Our proposed approach is a packet-
train-like active probing tool that infers perceivable discrim-
ination by measuring relative loss rates. Our active probing
tool is entirely end-to-end, non-intrusive, and robust against
cross traffic. The simulation and internet experiments verified
the accuracy of the detection methods, as long as our probing
traffic can create some queueing at the discriminatory link
and when the loss differentiation is non-negligible. Finally,
we are making our code publicly available to empower and
inform end-users and bring empirical data to discussions of
net neutrality regulations.
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