
PLDetect: A Testbed for Middlebox Detection
using PlanetLab

Paul Kirth1 and Vahab Pournaghshband2

1 California State University, Northridge paul.kirth.155@my.csu.edu,
2 University of San Francisco vahab.p@usfca.edu

Abstract. Designing, coordinating and deploying repeatable experi-
ments outside of a fully controlled environment pose a serious challenge
when conducting network research. In particular, it can be difficult to
correctly schedule experiments that collect bulk data using a shared re-
source. To address this problem, we introduce PLDetect, a simple testbed
built on top of PlanetLab which simplifies configuring, scheduling, and
deploying large scale Internet experiments for evaluating middlebox de-
tection methods.

Key words: middlebox, detection method, active measurements, testbed,
planetlab

1 Introduction

When conducting network research, it becomes clear that performing live In-
ternet experiments presents a significant challenge: these networks use non-
deterministic paths, are subject to a variety of competing administrative policies,
and are mostly out of the researcher’s control. After overcoming these obstacles,
researchers must still provide sound methodologies and test infrastructure to val-
idate their measurements. Overtime, these methodologies and testing practices
should become commonplace, widely adopted, and, in some cases, standardized.
In practice, researchers often do not have the opportunity to reuse the infras-
tructure or testing practices described in prior work, even if they wish to use the
same methods and verification process. This can be due to several factors, such as
the author’s not releasing their test infrastructure, lack of sufficient detail in the
original work, or an unmaintained codebase. Regardless of the reason, research
efforts are becoming increasingly sophisticated, and their tools and methodolo-
gies must evolve to keep pace. Reinventing tools and infrastructure that perform
similar function is a net loss for the research community, and even within in-
dustry the emergence of Dev-Ops has highlighted the need to reduce repeated
efforts.

In the past, formalized research testbeds, such as PlanetLab, have provided
researchers with superior methods of conducting network research. Previous
work often sought to simplify deploying experiments using PlanetLab[5, 2], but
few, if any, are still maintained. As a result, using PlanetLab is still as challenging
as when these works were initially conceived, a state that is further complicated

paul.kirth.155@my.csu.edu
vahab.p@usfca.edu


2 Paul Kirth et al.

by the nearly decade old Linux distribution on which PlanetLab is based [1].
This environment makes running modern software a challenge, and means that
researchers must take infrastructure idiosyncrasies into account when designing
their experiments. Even after addressing these limitations, a researcher is often
forced to use a custom solution to deploy and manage their data collection ac-
tivities across their PlanetLab slice.1 We contend that few researchers should
need to implement their own methods for interacting with a research tool as
popular as PlanetLab, and furthermore that most should not need to create
new infrastructure to deploy proven experimental configuration and validation
experiments.

Consider, NetPolice [16], PackSen [15], and ChkDiff [11], three middlebox
detection tools that employ similar detection methodologies and were validated
using PlanetLab. In each work, the author spent non-trivial effort to implement
and validate their detection infrastructure without the opportunity to easily
reuse an existing test infrastructure. We point this issue out, not to highlight
any fault on behalf of these authors, whose work is exemplary, but rather to
illuminate a problem of culture and focus for the larger research community.
Many other engineering fields have standardized testing methods for researchers
to follow, and, even within Computer Science, test suites, such as SPEC [7],
are widely used when validating research efforts. These formalized test suites
and methodologies not only simplify the work of the researcher by providing
previously vetted and validated tools, but also provide a common language and
frame of reference for readers.

To address these challenges, we present PLDetect: a testbed for validating
middlebox detection tools on PlanetLab that provides a vetted and well ex-
plored set of default configurations for conducting data collection and validation
measurements for new middlebox detection tools. PLDetect is a simple frame-
work that uses a combination of Python, Shell scripts, and configuration files
to provide support for long duration experiments that must avoid overlapping
measurements to maintain correctness. These can be important criteria for mid-
dlebox detection tools, as concurrent measurements can skew results for many
experimental configurations. Furthermore, remote system administration tools,
such as Ansible, do not yet properly manage temporal accesses with sufficient
guarantees for research purposes. Throughout this work we will use the term
middlebox detection experiments to refer to experiments designed to validate
middlebox detection tools, rather than those that are trying to detect and map
middlebox on the open Internet. This is an important distinction in PLDetect’s
intended application and typical usage.

The testbed consists of two major components, a configuration utility, that
can setup remote PlanetLab nodes, and a central dispatcher responsible for
initiating experiments and ensuring that they did not exceed their allotted time.
This dispatcher controls access to the test server, and will not initiate a new data
collection event until the previous measurement has either successfully completed

1 A slice is a set of allocated PlanetLab resources to which users can add PlanetLab
nodes, and through which they are granted access to the nodes in their slice.



Middlebox Detection Testbed 3

or has been terminated for exceeding its maximum allowed duration. It has, thus
far, improved our ability to deploy new middlebox detection experiments across
a PlanetLab slice and preserve the timing and scheduling constraints discussed
in Section 2. PLDetect is freely available open source software, and its source
code can be found on Github: https://github.com/ilovepi/PL-Detect.

The remainder of this work is organized as follows: in Section 2 we discuss
the design, implementation, and use of PLDetect; Section 3 describes our eval-
uation of the testbed, our experimental configuration, and the results of our
experiment; Section 4 discuses related work; Section 5 outlines the future direc-
tion of PLDetect; and Section 6 concludes this paper.

2 Testbed

PLDetect was created to allow researchers to quickly deploy middlebox detection
experiments across their PlanetLab slices, and provide simple ways to configure
the frequency and duration of data collection. In part, this tool was born out of
necessity, because we found no prior solutions that addressed our particular needs
for test administration, scheduling, and deployment. While simplicity is one of
our driving goals, PLDetect must also support potentially complex experimental
configurations and requirements. As a result, the bulk of this Section is focused
on providing details on how PLDetect can be used to configure, deploy, and
manage middlebox detection experiments across a PlanetLab slice.

2.1 Design

PLDetect is designed with three goals in mind: (1) to simplify the deployment
of middlebox detection experiments across PlanetLab, (2) to prevent undesired
overlap between experiments, and (3) to be easily extensible. To this end, a com-
bination of Python and Shell scripts have been used to strike a balance between
expressiveness and maintainability. We favor simple, direct code and interfaces
to ease future development, and when possible we try to accomplish tasks us-
ing Shell scripts to better integrate with PlanetLab. In general, we use Shell
scripts for managing tasks that are best handled directly via *NIX commands,
and Python for more complex tasks and calculations.

2.2 Configuration

The PLDetect experimental testbed consists of a set of PlanetLab nodes, a
set of Python and Shell scripts, and a set of configuration files. Configuring
the testbed requires editing several configuration files prior to deploying the
experiment across a PlanetLab slice. The user must configure:

1. Experiment folder: contains all the test scripts, program executable files,
and data required to run the experiment on the remote node, including any
logging scripts or scripts used to connect to remote databases.

https://github.com/ilovepi/PL-Detect


4 Paul Kirth et al.

2. target ip.conf: a list of PlanetLab node IP addresses.
3. install.sh: an install script that installs the required packages on each

PlanetLab node and copies the experimental folder.
4. schedule.conf: controls the experimental dates, period, and duration of

measurements.
5. start experiment.sh: a Shell script responsible for starting the experiment

on the remote host.
6. sqlinsert.conf: configures the remote MySQL database.
7. sqlinsert.sh: a Shell script used to connect to a remote MySQL database

and add experimental results.
8. functions.sh: contains a list of user defined functions used during the ex-

perimental execution, such as generating experimental parameters or record-
ing metadata.

2.3 Node Configuration

Node Selection The first file a user should configure is the target ip.conf

file. This file allows the user to select a set of PlanetLab nodes available to their
PlanetLab slice for use in the experiment. The configuration format for this
file is simple: each line of the file should contain only one of the IP addresses
of the PlanetLab nodes that should be configured to run the experiment. This
list of IP addresses will be consulted by the install script, install.sh, that is
responsible for configuring the software environment on each PlanetLab node for
the experiment to complete, and used in later phases to generate a schedule of
data collection events for each PlanetLab node.

Experiment Folder The next item to configure is the experiment folder, which
should contain all of the executables and scripts needed to successfully run the
experiment on the remote PlanetLab node. The use of this folder is an important
design choice for the testbed. PlanetLab discourages its users from conducting
compilation activities on their nodes, and recommends that the users compile
their software outside of PlanetLab with an appropriate 32-bit Linux target.
For most applications this is favorable because it allows them to compile their
projects using a modern compiler with features that will likely not be found on
a PlanetLab node. Additionally, most PlanetLab nodes have limited software
selections unless the user is comfortable adding updated repositories to all of
their PlanetLab nodes. Peterson et al. [9] advise users to create an experimental
directory that can be copied to the PlanetLab node using parallel-rsync. By
moving all of the necessary test materials into a single folder, updating each
experimental node becomes a single invocation of parallel-rsync, and avoids
difficulties with the often outdated software packages available on PlanetLab.
The experimental directory can be updated and resynchronized using the install
script or by using parallel-rsync directly.



Middlebox Detection Testbed 5

2.4 Test Scheduling

After each node has been configured, the user will then select the testing sched-
ule by editing the schedule.conf file and running a Python script to create a
test schedule. The scheduling script, ScheduleManager.py, is used to generate a
schedule for each data collection event, and does not allow these events to over-
lap. It works by consulting a tab delimited configuration file, schedule.conf.
This file specifies the dates the experiment should run, the frequency of tests,
and the commands to be executed at each time the experiment begins.

The output of the scheduling script is a file where each line associates the
PlanetLab node IP, the time when a test should run, and the command or script
to be run at that time. For example, experiment.sh might be scheduled to run at
March 15, 2016 to some.pl.node.edu. The user can create the experiment.sh

script that defines how the experiment should run, and have the local operating
system invoke that script at the correct time. This script is invoked locally by
default, but can be configured to run as a command on the targeted PlanetLab
node instead.

By default, the ScheduleManager.py creates a schedule where a PlanetLab
node takes one measurement per hour for every hour of the day for the entire
duration (in days) of the experiment. These parameters can be configured di-
rectly in the invoking script, via the command line, or in the schedule.conf

file. The schedules are created using the at command to accommodate irregular
and singleton tasks rather than using other facilites, like cron.

2.5 Running Experiments

When it is time for an experiment to run, the scheduling machine will ssh into
the PlanetLab node and invoke the command or script set in the scheduling
configuration. The maximum duration for each test is used to set a timeout on
each of the measurements to ensure that no two tests will overlap. Once the test
program is invoked, the test scripts collect test metadata from the PlanetLab
node and invoking context, and write the experimental results to a temporary
results file.

2.6 Collecting Experimental Results

After the experiment is complete, the test script on the PlanetLab node logs
into the remote MySQL database and records the results of the test along with
test metadata by using the sqlinsert.sh and sqlinsert.conf. Note that the
maximum test duration specified in schedule.conf should also include the time
needed to report experimental results.

2.7 Verifying the Experimental Configuration

For testing purposes the user should provide the scheduling scripts with a sin-
gle PlanetLab IP and ensure that their experiment and scripts are running as
expected before deploying them across the entire list of PlanetLab nodes.



6 Paul Kirth et al.

2.8 Limitations

Our testbed is not intended to be a general solution for deploying all types of net-
work measurements on PlanetLab, but is instead focused on correctly scheduling
independent measurements at a single site. PLDetect was built for a specific class
of experimental configuration, in which measurements are conducted at a site
that the researcher controls. For middlebox detection, this will often be a switch,
or another routing element, that the researcher is trying to detect, and whose
behavior they can alter. In this configuration (Figure 1) each PlanetLab node
connects to a target IP behind the middlebox, and data is collected from each
of the configured PlanetLab nodes. We further assume that each data collection
event should be completely independent from one another, so that traffic from
one measurement does not interfere with another. This does not preclude an
experiment from using several sources of traffic for each measurement, but will
require additional configuration steps when creating the test scripts described in
this Section. Additionally, we do not support managing access to multiple test
sites, or coordinating multiple experiments at the same site.

3 Evaluation

In this Section, we present the details of our evaluation: the middlebox detection
method used, our experimental configuration, and our results. One of PLDetect’s
goals is to offer a premade validation platform for researchers conducting mid-
dlebox detection experiments, and the evaluation experiment discussed in this
Section was designed with this use case in mind. Moreover, this experiment pro-
vides an example of the testbed’s expected use in conducting experiments to
validate middlebox detection tools. The goal of these measurements is to infer
the behavior of the middlebox based on the detection methodology presented in
Section 3.1. While we discuss the detection method and describe a typical exper-
iment for evaluating the compression detection tool used in our experiments, we
want to stress that the analysis of the data collected is not significant to the eval-
uation of the testbed itself. Rather, this data serves to demonstrate PLDetect’s
ability to correctly configure, schedule, and execute data collection activities in
the desired manner, regardless of the success of the detection method.

3.1 Detection

To validate PLDetect we used a tool for detecting network compression based on
the relative discrimination technique [15] to infer the presence of a compression
link. The tool detects network compression based on significant differences in
loss and delay between a base flow composed of low entropy data (all bytes are
zeros), and a discrimination flow composed of of high entropy data (all bytes are
random). This is congruent with prior work in Pournaghsband et al. [10] that
leveraged the difference in processing times for high and low entropy packets for
detecting compression links.



Middlebox Detection Testbed 7

3.2 Experimental Configuration

To validate the compression detection tool, we designed an experiment to take
independent measurements from several different sites, each trying to connect
a test server that was under our control. This allowed us to position the test
server behind a middlebox capable of operating as either a compression link or a
normal switch so that we could enable and disable the middlebox behavior (com-
pression) as we desired. This topology appears in several prior works aimed at
detecting middleboxes [15, 10], and is an important part of PLDetect’s expected
configuration for supporting validation efforts. Figure 1 illustrates an example
of our experimental configuration, and highlights the portion of it that are fully
within our control.

The testbed in this experiment consisted of five PlanetLab nodes, a middle-
box capable of operating as a compression link, and a test server. Each of the
PlanetLab nodes tried to correctly infer the presence of a compression link along
the transmission path to the test server using the detection method discussed
in Section 3.1. We selected a geographically distributed set of PlanetLab nodes
to capture a wide variety of transmission paths and network conditions. Each
node in the PlanetLab slice was configured using PLDetect’s install procedure,
as outlined in the Section 2.3. Our experiment executed one measurement every
hour for each of the five PlanetLab nodes in our slice over a period of 30 hours.
Each measurement had a maximum duration of one minute, and recorded the
number of packet losses and transmission latency for each stream, along with a
complete packet trace of the measurement. These results are then recorded to
the remote database for future analysis. Part of our validation strategy uses bulk
data to alleviate any undue influence normal fluctuations in network conditions
might have on our measurements.

Fig. 1. PLDetect Network Topology.

Researcher controlled

Internet

Planetlab Node

Test Server/ Target IP
Middlebox

Planetlab Node

Planetlab Node

3.3 Experimental Results

We collected data using five planet lab nodes, taking measurements once per
hour at each site, over a period of 30 hours. The entire deployment was con-
figured, scheduled, and recorded using PLDetect. Figure 2 contains a plot of



8 Paul Kirth et al.

the relative differences in transmission times between the base and discrimina-
tion flows. We can see that each PlanetLab node recorded its measurements
once per hour over the entire 30 hour duration, and that the detection tool was
able to record significant differences in the loss rates between the base and dis-
crimination flows. By contrast, without a compression link there is virtually no
difference between the loss rates or transmission times of the two flows. This
large, persistent difference meets the criteria of our detection methodology, and
shows the tool’s ability to identify the compression link in our configuration. We
again stress that what these measurements show is not important, rather they
appear here to highlight our ability to manage an experiment and schedule our
data collection with PLDetect using the procedures outlined in Section 2.

Fig. 2. Percentage of Discrimination Packets Lost when Compression is Enabled

17:00 20:00 23:00 02:00 05:00 08:00 11:00 14:00 17:00 20:00 23:00
10

20

30

40

50

Host IP
129.63.159.102
131.179.150.70
142.103.2.2
165.242.90.129
192.91.235.230

Time of Day

 P
ac

ke
t L

os
s d

ue
 to

 C
om

pr
es

sio
n 

(%
)

4 Related Work

PLDetect is a network testbed built on top of PlanetLab, and in that regard,
it is not unique. Many past works, like Stork [5] and Plush [2], were built to
simplify how users create and deploy their experiments on PlanetLab, and while
these tools have proved useful, many of them are either no longer maintained or
were not made public. PLDetect separates itself form these prior efforts in its
narrow focus on providing a simple solution for deploying a specific type of mea-
surement, and is made from freely available tools that have thus far performed
well on PlanetLab slices. For other platforms, such as GENI[4], the GEE [3] pro-
vides an abstraction layer in which the authors facilitate the rapid prototyping,
management, and administration of GENI experiments. Our solution does not
try to provide the same level of abstraction to PlanetLab as GEE applies to
GENI. GENI’s resources also are more friendly towards virtualization and the
use of containerized environments which plays a key role in GEE’s IaaS design.
Our tools, by contrast, are much simpler: each script or configuration file plays a
limited role in how experiments are conducted and maintained, and we provide
relatively primitive forms of configuration management.



Middlebox Detection Testbed 9

Recently, Wachs et al. [14] presented GPLMT, a general purpose testbed
framework for managing experiments on PlanetLab. This work does an excellent
job of generalizing experimental configuration and abstracting the complicated
aspects of managing large scale experiments. However, PLDetect and GPLMT
have fundamentally different goals and philosophies. GPLMT is a general pur-
pose tool, suitable for managing many types of experiment, while PLDetect

is focused on supporting middlebox detection with a well known methodology
and experimental configuration in addition to managing the experiment. Where
PLDetect distinguishes itself from existing testbeds, is in its focus on supporting
one class of network experiment very well.

While it may seem odd to contrast PLDetect with works that are not
testbeds, most of its design is focused on supporting the testing of detection
tools and methodologies. In particular, we adapt significant portions of our con-
figuration and methods from prior work in Pournaghshband et al [10]. Other
significant works in this area,Packsen [15], Tracebox [6], NANO [12], and POPI[8],
each provided insight and inspiration for the methodology and validation tech-
niques that PLDetect tries to encapsulate.

5 Future Work

Ansible [13] is a popular tool for administering remote systems, and provides two
important benefits to its users: simple YAML based configuration and an easy
way to share and distribute automation tasks. While YAML based configuration
is a superior solution to our simple configuration files, Ansible’s main draw is the
large repository of community made solutions available through Ansible-Galaxy.
As one of PLDetect’s design goals is to simplify configuration and automation,
we believe that allowing users to easily reuse these existing solutions is the right
choice. However, incorporating Ansible into our design will require some care
to ensure that our scheduling requirements can still be met. We can integrate
Ansible by modifying how we generate scheduling commands, to instead use
Ansible playbooks, or by modifying PLDetect’s design to provide a new queuing
phase for measurements.

As GENI [4] matures, it is becoming an important platform for conducting
network research. Future versions of PLDetect should incorporate support for
the GENI platform, and integration with the more modern services available
outside of PlanetLab, such as support for virtual machines and docker containers.

6 Conclusion

In this paper we presented PLDetect: a testbed for middlebox detection, dis-
cussed its design and intended use, and demonstrated its usefulness as a research
tool through an example experiment. To our knowledge it is the only research
testbed focused on middlebox detection, and we believe its focus on providing a



10 Paul Kirth et al.

specialized network research infrastructure can provide a valuable blueprint for
others to follow.

References

1. Releases/8/schedule - FedoraProject, https://fedoraproject.org/wiki/

Releases/8/Schedule
2. Albrecht, J., Tuttle, C., Snoeren, A.C., Vahdat, A.: PlanetLab application man-

agement using plush 40(1), 33–40
3. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell,

P., Ricart, G., Tredger, S., Coady, Y.: The GENI experiment engine. ACM
4. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D.,

Ricci, R., Seskar, I.: GENI: A federated testbed for innovative network experiments
61, 5–23

5. Cappos, J., Baker, S.M., Plichta, J., Nguyen, D., Hardies, J., Borgard, M., John-
ston, J., Hartman, J.H.: Stork: Package management for distributed VM environ-
ments. In: LISA. vol. 7, pp. 1–16

6. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
middlebox interference with tracebox. In: Proceedings of the 2013 Conference on
Internet Measurement Conference. pp. 1–8. IMC ’13, ACM

7. Henning, J.L.: Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News 34(4), 1–17 (Sep 2006), http://doi.acm.org/10.1145/1186736.1186737

8. Lu, G., Chen, Y., Birrer, S., Bustamante, F., Cheung, C.Y., Li, X.: End-to-end
inference of router packet forwarding priority. In: IEEE INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. pp. 1784–1792

9. Peterson, L.L., Bavier, A.C.: Using PlanetLab for network research: Myths, reali-
ties, and best practices. In: WORLDS

10. Pournaghshband, V., Afanasyev, A., Reiher, P.: End-to-end detection of compres-
sion of traffic flows by intermediaries. In: 2014 IEEE Network Operations and
Management Symposium (NOMS). pp. 1–8

11. Ravaioli, R., Urvoy-Keller, G., Barakat, C.: Towards a general solution for detecting
traffic differentiation at the internet access. In: Teletraffic Congress (ITC 27), 2015
27th International. pp. 1–9

12. Tariq, M.B., Motiwala, M., Feamster, N., Ammar, M.: Detecting network neu-
trality violations with causal inference. In: Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies. pp. 289–300.
CoNEXT ’09, ACM

13. Venezia, P.: Review: Ansible orchestration is a veteran unix admin’s dream; an-
sible and AnsibleWorks AWX bring simplicity and power to linux and unix
server automation http://www.infoworld.com/article/2612397/data-center/

review--ansible-orchestration-is-a-veteran-unix-admin-s-dream.html
14. Wachs, M., Herold, N., Posselt, S.A., Dold, F., Carle, G.: GPLMT: A lightweight

experimentation and testbed management framework. In: Passive and Active Mea-
surement. pp. 165–176. Lecture Notes in Computer Science, Springer, Cham

15. Weinsberg, U., Soule, A., Massoulie, L.: Inferring traffic shaping and policy pa-
rameters using end host measurements. In: 2011 Proceedings IEEE INFOCOM.
pp. 151–155

16. Zhang, Y., Mao, Z.M., Zhang, M.: Detecting traffic differentiation in backbone
ISPs with NetPolice. In: Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement Conference. pp. 103–115. IMC ’09, ACM

https://fedoraproject.org/wiki/Releases/8/Schedule
https://fedoraproject.org/wiki/Releases/8/Schedule
http://doi.acm.org/10.1145/1186736.1186737
http://www.infoworld.com/article/2612397/data-center/review--ansible-orchestration-is-a-veteran-unix-admin-s-dream.html
http://www.infoworld.com/article/2612397/data-center/review--ansible-orchestration-is-a-veteran-unix-admin-s-dream.html

	PLDetect: A Testbed for Middlebox Detection using PlanetLab
	Paul Kirth, Vahab Pournaghshband

