
Notes on Transport Layer Security

Vahab Pournaghshband
Computer Science Department

University of California, Los Angeles

vahab@cs.ucla.edu

Abstract

This note provides a brief overview of Transport Layer Security
(TLS) protocol version 1.2 which provides security for communications
on the Internet. TLS, similar to its successor SSL, allows client/server
applications to communicate in a way that is designed to prevent
eavesdropping,tampering, or message forgery for secure communica-
tion on the Internet[1]. Block cipher and keyed-Hash Message Au-
thentication Code are first introduced prior to the discussion on the
details of the two main components of TLS, Handshake and Record
protocols.

1 Background

1.1 Block Cipher

Block cipher is a symmetric key encryption algorithm which uses the idea of
encrypting blocks of letters in a message as opposed to encrypting individual
letters independently.

1.1.1 Electronic Codebook (ECB)

ECB is the simplest type of block cipher which first breaks the plaintext,
P , into L pieces P = [P1, P2, ..., PL] and then encrypts each individual block
independently using a keyed-function: Ci = EK(Pi). The ciphertext is the
concatenation of all encrypted blocks, C = [C1, C2, ..., CL].

1

1.1.2 Cipher Block Chaining (CBC)

Unlike ECB, CBC block cipher does not encrypt individual blocks indepen-
dently. To introduce some dependency, CBC uses a feedback mechanism that
involves earlier encrypted blocks into encrypting subsequent blocks:

Cj = EK(Pj ⊕ Cj − 1)

Where ⊕ is the binary XOR operator, and C0 is called the initialization
vector and is preselected.

1.2 HMAC-based Pseudorandom Function

Message Authentication Code (MAC) is a piece of information used for both
authentication and integrity checking of a message. A MAC algorithm is
a key-based algorithm that produces the MAC. The MAC algorithm is a
deterministic algorithm, meaning that it always produces the same MAC
for a given message. A keyed-Hash Message Authentication Code (HMAC),
specifically employs an iterative cryptographic hash function in combination
with a secret key. HMAC with a secret key, k, and an iterative hash function,
h, is computed as follows:

HMACk,h(m) = h((k ⊕ opad)||h((k ⊕ ipad)||m))

where opad and ipad are outer and inner padding with constant hexadec-
imal values of 0x5C5C...5C and 0x3636...36 respectively. SHA-256 is widely
used in practice as the HMAC hash function in TLS current implementations.

Hash functions in TLS are used to generate a pseudorandom number
known to both parties but constructed independently as a mean to agree on
an arbitrarily large shared private key. HMAC, however, produces a fixed
length message digest which may not be sufficiently long. To remedy this,
successive concatenation of HMAC with different values is done. Formally
we define Phash, a hash function with aribitrary long message digest, as:

Phash(k, s) = HMACk,h(A1||s)||
HMACk,h(A2||s)||
HMACk,h(A3||s)||

· · ·

2

Where k is the secret key, s is the seed, Ai =

{
s i = 0
HMACk,h(Ai−1) i 6= 0

,

and || indicates concatenation.
In TLS terminology, Pseudorandom Function (PRF) is designed to generate
shared private keys. The TLS pseudorandom function takes a secret key k,
seed s, and an identifying label denoted as L in the definition, and produces
an output of arbitrary length. PRF in the TLS specification is defined as
follows:

PRF (k, L, s) = Phash(k, L||s)

The label, L, in the pseudorandom function is a numerical representation
of an ASCII string without the trailing null character.

2 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic protocol that is designed
to provide both security and data integrity for communications over a reli-
able transport protocol such as Transport Control Protocol (TCP). TLS al-
lows client-server applications to communicate across a public network while
preventing eavesdropping, tampering, and message forgery by providing end-
point authentication and confidentiality over the Internet. The goals of the
TLS protocol, in order of priority, are cryptographic security, interoperability,
extensibility, and relative efficiency. TLS is designed to be application proto-
col independent. TLS protocol consists of two main components: Handshake
protocol, to set session states and shared private keys, and Record protocol,
to transmit data securely using the shared keys.

2.1 Handshake Protocol

The cryptographic parameters of the session state are produced by the Hand-
shake Protocol. The TLS Record Protocol will then resume the connection
between the two parties. In the Handshake protocol, both parties acknowl-
edge their protocol versions, agree on cryptographic and compression al-
gorithms, optionally authenticate each other through certificates, and use
public-key encryption techniques to generate shared private keys. A step-
by-step overview of what and how client and server communicate in the
Handshake protocol is presented below.

3

1. Client sends a message publicly containing the following information:

• The highest version of TLS the client’s computer can support

• 32-byte random number rA consisting of a 4-byte timestamp and
a 28-byte random number 1

• A Cipher Suite list in decreasing order of preference for each of
the following algorithm families: Public-Key Algorithm (PKA),
encryption algorithm used in the Cipher Block Chaining, and com-
pression algorithm (COMPRESS).2

2. Server informs the client about the winning algorithms (after examining
the Cipher Suite list sent by the client) along with a 32-byte random
number rB constructed similarly as rA.

3. Client replies with a number called pre-master secret spm using the
public key algorithm PKA with public keys retrieved from the server’s
certificate signed by a Certifying Authority (CA).

4. Both parties independently calculate the 48-byte long master secret,
sm, to further obtain the keys to exchange data. The master secret is
calculated using PRF:

sm = PRF (spm, ”master secret”, rA||rB)

It is worth mentioning that in the previous version of TLS the master
secret was computed as follows, before MD5 proven to be insecure[4]:

MD5(spm||SHA-1(A||spm||rA||rB)) ||
MD5(spm||SHA-1(BB||spm||rA||rB)) ||
MD5(spm||SHA-1(CCC||spm||rA||rB))

Where A, BB, and CCC are strings added for padding.

1The timestamp used in generating rA will be used to avoid reply attack which is an
attempt by attacker to reuse a used session state.

2Since there are various encryption algorithms with different levels of security and
computation time, it is legitimate to leave this as an option to the parties.

4

5. At this stage, both parties know sm, spm, rA, and rB. they indepen-
dently compute the Key Block (KB) that contains all needed private
shared keys for this session:

KB = PRF (sm, ”key expansion”, rA||rB)

KB is then broken into six pieces and labeled as K1, K2, . . . , and K6,
before terminating the Handshake phase.

2.2 Record Protocol

Now the client and the server are ready to communicate securely using the
key block as a set of security parameters obtained by the Handshake pro-
tocol. The Record protocol takes data to be transmitted in one endpoint,
fragments the data into manageable blocks, compresses the data, applies a
MAC, encrypts by block cipher, and transmits the result. Received data is
then decrypted, verified, decompressed, reassembled, and then delivered to
higher-level application on the other endpoint. In short, Record protocol
ensures that the connection is private via symmetric encryption by session-
unique keys and reliable via integrity check. Suppose the client wants to send
data chunk, d. The client:

1. Compresses the data using the agreed algorithm: d′ = COMPRESS(d)

2. Hashes the compressed data for data integrity using K2:
d′′ = {d′, HMACK2(d

′)}

3. Encrypts the data along with its MAC using CBC mode block cipher
BCA where the secret key is K1 and the initialization vector is K3:
d′′′ = BCAK1(d

′′, K3)

4. Sends d′′′ over the public channel

And the server retrieves d from d′′′:

1. Decrypts the data along with its MAC using BCAK1.

2. Verifies data integrity by computing HMAC of data using K2 and com-
paring it with the HMAC computed on the client side

3. Decompresses to retrieve d

The process is reveresed when server wants to send data to the client
while the last three pieces of the key block is used instead.

5

References

[1] Dierks, T. and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, RFC 5246, August 2008.

[2] Dierks, T. and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.1, RFC 4346, April 2006.

[3] Krawczyk, H., Bellare, M., and R. Canetti, HMAC: Keyed- Hashing for
Message Authentication, RFC 2104, February 1997.

[4] Marc Stevens, Arjen Lenstra, Benne de Weger, Vulnerability of soft-
ware integrity and code signing applications to chosen-prefix collisions
for MD5, Nov 30, 2007.

6

