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Abstract

Despite an increasing need for thread support in language
run-time systems and parallel libraries such as in Java and
OpenMP, there is limited support for custom, multiproces-
sor capable, user-level thread systems in the Linux kernel.
To address this lack of support we have developed the vir-
tual processor interface (VPI) for Linux. Our VPI imple-
mentation consists of a small set of kernel modifications
and new system calls combined with a small user-level li-
brary that provide an interface that can be used to build
thread systems. VPI uses a form of scheduler activations
so that user-level thread systems can have complete con-
trol over the amount of parallelism for an application and
the scheduling of threads onto processors. In addition, VPI
allows user-level thread systems to schedule new threads
in the presence of blocking system calls and page faults.
This paper describes VPI and our implementation. We have
implemented a complete thread system using VPI, called
VPIthreads, and compare its performance to that of current
user-level and kernel-level thread systems. Our initial re-
sults show the VPI-based thread systems can perform better
than current production thread systems.

Keywords: High Performance Computing and Network-
ing, Parallel computing, User-level threads, Linux kernel

1 Introduction

Thread systems are crucial to the performance and correct
implementation of language run-time environments, paral-
lel libraries, and parallel applications. However, Linux as
well as most operating systems offer only two choices for
thread implementation: use the OS supplied implementa-
tion of threads, typically Pthreads, or write a thread system
from scratch. The former choice is often not suitable for
many thread systems due to overhead from unneeded func-
tionality and added code needed to get Pthreads to match
the requirements of the application [3]. The latter choice is
prohibitive to due the complexity of user-level thread sys-
tems and the lack of kernel support.

The problem facing language and library implemen-
tors is that there is no middle ground. To address this
problem we have developed the virtual processor interface

(VPI) for Linux to provide a foundation on which to build
custom user-level thread systems with kernel support. Our
VPI implementation consists of a small set of kernel modi-
fications and new system calls combined with a small user-
level library that provides an interface and execution model
that enables the development of arbitrary thread systems.
VPI can be used to implement any type of thread system
such as threads for a Java virtual machine, OpenMP, or
Pthreads (see Figure 1).
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Figure 1. The structure of thread systems built with VPI

To enable kernel coordination with user-level threads,
VPI uses an approach similar to scheduler activations [1].
The kernel informs the user-level thread system of schedul-
ing events through an upcall mechanism. Unlike scheduler
activations, VPI is designed to work in a multiprogram-
ming environment where several multi-threaded applica-
tions may be executing simultaneously on all of the pro-
cessors in a multiprocessor machine. In addition, we have
streamlined the upcall mechanism so that kernel contexts
are preallocated to handle future upcalls. Our approach to
upcalls allow kernel contexts to be used not only to execute
user-level threads but also to handle thread system func-
tionality such as timers and signals.

Two key design issues for VPI are portability and flex-
ibility in the programming interface. We achieve portabil-
ity at the kernel level by modifying only C code portions of
the Linux kernel. At the user-level, a context switch mech-
anism is required. A developer can use either architecture-
specific assembly code or portable context switching tech-



niques such as those used in the GNU Pth thread library
[6]. Flexibility in the programming interface is achieved
using a template approach. The problem is that it is nearly
impossible to provide a conventional functional interface
to VPI without greatly restricting the way in which thread
systems can be implemented because user-level scheduling
is tightly coupled with the upcall mechanism. As such, we
opt for greater flexibility at the cost of a greater burden on
the developer of a user-level thread system. To manage this
the complexity of building a new VPI thread system from
scratch we have identified common templates that can be
as a foundation for new thread systems.

We have constructed a thread system using VPI called
VPIthreads and use it to run performance tests. Our exper-
imental results show that the overhead of VPI varies with
the amount of resulting upcalls. However, compared to cur-
rent multiprocessor thread systems VPI performs well on
both microbenchmarks and synthetic tests. We show that
a simple custom thread system can avoid the overhead in
using an OS supplied thread library, but still have effective
multiprocessor support.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief overview of thread systems and iden-
tifies related work. Section 3 describes the virtual processor
interface and its execution model. Section 4 provides some
details of the Linux implementation of VPI. Section 5 de-
scribes the VPIthreads implementation. Section 6 summa-
rizes experimental results that characterize the overhead of
VPI and that compare a VPI thread system to other Linux
thread systems. Section 7 makes some concluding remarks
and gives directions for future work.

2 Background and Related Work

Thread systems can be categorized by their underlying im-
plementation. Broadly, a thread system can be imple-
mented with kernel-level threads, user-level threads or a
user-kernel hybrid approach. Kernel-level threads are com-
pletely managed by the operating system kernel just like
processes except threads that belong to the same process
share memory and I/O descriptors. Kernel-level threads
have good support for blocking I/O and multiprocessor
scheduling because everything is managed by the kernel.
However, kernel threads have overhead because switching
threads always requires a trap into the kernel.

In contrast, user-level thread systems perform all
thread scheduling in user-mode without kernel knowledge.
Such thread systems can provide fast thread switching and
synchronization, which is useful for applications that re-
quire fine-grained threads. Unfortunately, pure user-level
threads have no support for multiprocessor scheduling and
poor support for blocking I/O operations.

A hybrid approach maps user-level threads onto a set
of kernel-level threads. Thus, attempting to achieve the best
of user and kernel threads. However, a naive implemen-
tation that simply runs user threads on kernel threads can
not eliminate the blocking I/O problem and can result in

poorer than expected performance because the kernel-level
scheduler has no knowledge of the user-level scheduler. A
more sophisticated hybrid approach requires coordination
between the kernel scheduler and the user scheduler.

The concept of kernel support for user-level threads
was pioneered by Anderson et al with scheduler activa-
tions [1] and Marsh et al with first-class user-level threads
[12]. These early investigations demonstrated the ben-
efits of user-level thread systems over pure kernel-level
threads and the problems that can arise from implement-
ing user-level thread systems on top of kernel-threads with-
out proper kernel support. The fundamental problem is
that without kernel support for user-level threads the kernel
scheduler may make scheduling decisions without consult-
ing the user-level thread scheduler. Such decisions can re-
sult in poor performance in the presence of user-level syn-
chronization or improper execution of user-level threads in
the presence of thread priorities.

Some commercial implementations of UNIX adopted
the scheduler activations approach, including Digital UNIX
[18] and Sun Solaris [13]. Although, the latest version of
Solaris, version 9, has dropped support of scheduler acti-
vations for a pure kernel-level thread implementation [17].
In addition, scheduler activations have been incorporated
into Mach 3.0 [2], BSD/386 [16], SPIN [4, 15], Linux [5],
NetBSD [19], FreeBSD [7], and K42 [9]. However, in al-
most all of these systems the kernel interface to scheduler
activations is hidden or only intended to be incorporated
into a single user-level thread system. No attempt has been
made to expose the scheduler activation interface to devel-
opers of thread systems. Therefore, in order to have coordi-
nation between user-level and kernel-level threads, the OS
supplied thread system must be used.

Good thread support in Linux has developed slowly.
The original and still dominate thread system for Linux
is LinuxThreads [11], a kernel-thread based implemen-
tation of Pthreads. Until recently, two different groups
have worked to improve the performance and correctness
of Pthreads support for Linux. A group at IBM have de-
veloped NGPT (Next Generation POSIX Threading) for
Linux [8]. NGPT is a “two-level” thread system based
on the GNU Pth thread library [6] that maps user-level
threads onto kernel-level threads, although it does not rely
on user-kernel coordination. A group at Redhat has devel-
oped NPTL (Native POSIX Thread Library) [14], which
is an optimized pure kernel-based implementation. Both
NGPT and NPTL show significant improvements over Lin-
uxThreads. NPTL is now the standard thread system in
Redhat Linux 9. While these projects have improved Linux
support for Pthreads, they have not directly improved sup-
port for custom user-level thread systems.

3 Interface and Execution Model

The VPI library provides a set of functions used to build
thread systems for uniprocessor and multiprocessors. In
order to correctly use the VPI functions, it is important to



understand the VPI execution model. The central concept
in VPI is the virtual processor (VP). VPs are special Linux
kernel threads that provide an execution context for user-
level threads. In addition, VPs are used by the kernel to
issue notifications (upcalls) to the user-level thread system.
One of the main responsibilities of a thread system built
with VPI is to manage VPs. VPI gives a client thread sys-
tem complete control over VP execution.

At program startup only one kernel thread is asso-
ciated with the process. A VPI thread system must in-
voke the vpi_init() function. Among other tasks,
vpi_init() informs the kernel that this process is a VPI
process. This allows the kernel to treat VPs differently than
normal kernel threads. The main kernel thread is turned
into a VP during vpi_init(). The vpi_init() func-
tion also allows a thread system to create zero or more ad-
ditional VPs. This is useful if a thread system knows it will
need a certain number of execution contexts at startup.

VPs can be in different states. The main VP states are:
ACTIVE, REGISTERED, BLOCKED, WAITRESUME,
and WAITREGISTER. If a VP is active it means the VP is
running or waiting to run on the kernel ready queue. If a VP
is REGISTERED, it is blocked in the kernel waiting for an
event. The thread system must explicitly register VPs in or-
der to receive notifications from the kernel. A VP enters the
BLOCKED state if it issues a blocking system call from the
user level or if a blocking page fault is generated. Once the
kernel tries to unblock a blocked VP – e.g., if a read request
is satisfied – rather than allow it to return to the user-level,
it is put into the WAITRESUME state. A VP in the WAIT-
RESUME state must be explicitly resumed by another VP.
This functionality gives the thread system complete control
over which user-level threads are allowed to execute on the
physical processors. Finally, a VP in the WAITREGISTER
state is blocked waiting for VPs to become registered. This
is need to ensure that initial VPs have registered to receive
kernel notifications before starting the application proper.
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Figure 2. The VP Execution Model

Figure 2 provides a sample snapshot of a thread sys-
tem in execution. The figure shows that all VPs execute in

the same process address space just like kernel threads. Ac-
tive VPs are used to execute user-level threads. Registered
VPs wait to deliver notifications to the user level. When a
registered VP wakes up, it returns the type of notification
to the user-level. This way, the thread system can deter-
mine how to respond to the notification. Figure 2 shows
how a user-level thread that blocks in the kernel generates a
BLOCKED notification. The notification wakes up a regis-
tered VP. This VP can be used by the user-level to schedule
a new user-level thread.

Registered VPs can deliver different types of noti-
fications. The supported types are: BLOCKED, UN-
BLOCKED, PREEMPT, RESUMED, and SIGNAL. As
described above, A BLOCKED notification occurs when
a VP blocks in the kernel, thus freeing up a physical pro-
cessor. An UNBLOCKED notification is delivered when
a previously blocked VP is unblocked by the kernel. This
notification allows the thread system to defer the execution
of the unblocked user-level thread until a later time. When
a UNBLOCKED notification is delivered, a handle to the
blocked VP is passed to the thread system. The thread
system can use this handle to explicitly resume the UN-
BLOCKED thread. The PREEMPT notification is issued
each time the kernel preempts an executing VP. The RE-
SUMED notification is delivered when the thread system
explicitly resumes a registered VP. The thread system can
pass an additional parameter to indicate why the VP was re-
sumed. The SIGNAL notification is used to tell the thread
system that a VP was resumed because a signal woke up
the VP. The thread system can configure VPI to only de-
liver certain notifications. For example, it is costly to de-
liver PREEMPT notifications and not necessary for many
applications.

A thread system may need to disable notifications at
particular points in a program. For example, inside an idle
loop it may be desirable to introduce a small delay with
nanosleep(). However, if nanosleep() blocks, the
thread system does not want a notification.s The VPI func-
tion, vpi_kernel_mode() can be used to change the
kernel notification mask at run time.

Using VPs and notifications, a thread system can con-
trol the mapping of user-level threads to kernel execution
contexts. The thread system can also control the number
of active kernel contexts for a particular program instance.
Controlling the number of contexts is important to ensure
efficient utilization of the physical processors. It is not ef-
ficient to have more kernel contexts than actual physical
processors. Note that VPI does not give the thread system
control over which VPs run on specific processors. Thus,
the kernel may still use multiprogramming to run other ap-
plication in conjunction with one or more VPI applications.

The thread system is responsible for ensuring that
there are enough registered VPs that may be needed for
notification delivery. On each notification, the thread sys-
tem is passed the registered VP count. This count can be
examined to determine if more VPs should be created and
registered.



VPI does not provide an interface to create and ma-
nipulate user-level threads. This is left to the thread system
to decide how to create and switch between threads. This
gives the developer complete control on how to implement
threads and, consequently, their granularity. One option is
to use existing user-level code such as QuickThreads [10].
VPI provides functionality to associate a user-level thread
with a VP. This allows the thread system to find out which
user-level thread is running on a particular VP. This is nec-
essary for basic scheduling and synchronization operations.
VP thread association can also be used to implement high-
performance multiprocessor locks such as those used in the
Solaris thread implementation [13].

The complete VPI interface is relatively small. The
current exported functions consist of:

int vpi_init(int vpcount, void *ptr, vpi_user_func vpman,
vpi_user_func vpresume, int mask);

int vpi_create(vpi_user_func vpfunc);
int vpi_create_system(vpi_user_func vpfunc);
int vpi_exit(void);
int vpi_finish(int status);
int vpi_get_cpu_count(void);
int vpi_get_vp_count(void);
void* vpi_get_data();
void vpi_set_data(void *);

int vpi_kernel_register(vpi_user_data_t *);
int vpi_kernel_resume(void **);
int vpi_kernel_wait_register(int);
int vpi_kernel_status(void);
int vpi_kernel_mode(int m);

void vpi_lock_init(vpi_lock_t *l);
void vpi_lock_free(vpi_lock_t *l);
void vpi_lock_acquire(vpi_lock_*l);
void vpi_lock_release(vpi_lock *l);

4 Implementation

The implementation of VPI consists of kernel modifica-
tions and a small user-level library. The user-level library
provides wrapper functions to the VPI system calls and
manages some for the VP state at the user level. We have
incorporated VPI into Linux kernel 2.4.18. However, the
changes are minimal, so it is easy to port VPI to newer ker-
nels.

Kernel Modifications One of our goals in mod-
ifying the kernel is to keep the changes portable
across different processor architectures. As such
we only modify the C code. The only files
we modify are include/linux/sched.h,
init/main.c, kernel/fork.c, kernel/exit.c,
kernel/sched.c. We have added one additional file:
kernel/schedvpi.c The modifications are designed
so that non-VPI applications are not affected by the VPI
functionality. We have minimized the amount of code on
the critical paths in process management.

The modifications add several new fields to the
task_struct for VP management. These fields in-
clude links for new wait queues used for VP synchroniza-
tion, state fields, notification type, and a pointer to a per-
application data structure called the kernel control block

(KCB). A new KCB is allocated for each VPI application.
The KCB stores run-time data common to all VPs. The
KCB is a shared data structure so it includes a spinlock.
Other fields include: a reference count, an registered VP
list, a registered VP count, a mode mask, and various statis-
tics variables.

BLOCKED notifications are handled in
do_schedule(). When a VP (or any kernel thread)
blocks, it is put on a wait queue, then do_schedule()
is called. We check to see if the previous thread is a VPI
thread and if it just blocked. If so, a registered VP is
resumed to send a BLOCKED notification. PREEMPT
notifications are also handled in do_schedule().

UNBLOCK notifications are handled in the
try_to_wake_up() functions. When a blocked kernel
thread is woken up, a call to try_to_wake_up() is
issued. In this function we determine is the waking thread
is a VP. It checks to see if the notification mask is set for
UNBLOCK notifications. If so, it wakes up registered VP
to delivery the UNBLOCK notification and pass a handle
of the unblocked VP to the user-level. The unblocked VP
is not really unblocked; it is suspended until the thread
system issues a resume system call on the VP handle.

The kernel/schedvpi.c file contains all the VP
management functions and system calls. It also implements
a proc file system entry for debugging and analyzing VPI
applications.

User-level Library The user-level part of VPI consists
of public functions to be used by a thread system. It also
maintains some VP state in the user-level, including a count
of currently registered VPs. Each VP is assigned a user-
level virtual processor control block (VPCB) for its entire
life. The VPCB is used to hold a pointer to the currently
executing user-level thread, a pointer to the thread system
supplied manager function, and the type of the VP. The
user-level code also coordinates program termination and
ensures that all VPs are destroyed. Architecture-specific
multiprocessor locks are exported to the thread system.

5 VPIthreads

We have implemented a complete thread system using VPI
called VPIthreads. We used VPIthreads as a vehicle for de-
veloping the VPI interface and to establish some common
templates for building new thread systems with VPI. The
VPIthreads interface supports many of the core Pthreads
functions: thread create, thread join, mutex locks, condi-
tion variables, and semaphores. The main features of the
current VPI implementation include:

� Multiprocessor support

� Blocking I/O support

� Complete upcall support

� Strict parallelism management



While developing VPIthreads we have identified
some core program templates that require a tight coupling
of the user-level thread system and VPI. These templates
include:

� VP initialization

� VP manager

� VP notification handling

� Thread blocking

� Idle loop

Each of these templates require the thread system to
follow VPI conventions, but they also require significant
contributions from the thread system based on its require-
ments. We are working on a documentation scheme that
makes it easy to understand how to instantiate the tem-
plates.

6 Experimental Results

In order to assess the viability of VPI for building effi-
cient thread systems we have performed some preliminary
benchmarking with VPIthreads. We use microbenchmarks
to compare basic thread operations between VPIthreads
and different Pthreads implementations. We use a synthetic
benchmark to reveal the overhead of VPI notifications. All
experiments were run on a Dual 1 GHz Pentium III ma-
chine with 1 GB of RAM. For VPI, LinuxThreads (LT),
and NGPT we used a Redhat 8 installation. For NPTL we
used Redhat 9. Note that a direct comparison of VPIthreads
to LT, NGPT, and NPTL is not completely fair because VP-
Ithreads is not as sophisticated as these implementations.

Microbenchmarks We consider three microbench-
marks: create/join, condition signal, and barrier. Figure 3
shows the basic performance of executing a create/join
pair. The main thread creates a new thread, then im-
mediately joins with the new thread. The new thread
simply exits once it executes. LT and NPTL show similar
performance because they both must enter the kernel in
order to create a new thread. Both VPI and NGPT do a
thread create in user space.

Figure 4 shows the cost of synchronizing two threads
with condition variables. Again, the user-level implemen-
tation, NGPT and VPI perform better than the kernel-
level implementations. However, VPI performs worse than
NGPT. This is because we have not yet optimized synchro-
nization in our simple thread system. Figure 5 shows the
performance of a 32 thread barrier synchronization. The
results are similar to the condition variable benchmark.
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Figure 3. The performance of thread create/join
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Figure 4. The performance of condition wait/signal

Sun Ping-Pong We used the slightly more sophisticated
ping-pong benchmark from Sun Mircosystems [17]. This
benchmark is used to determine the scalability and perfor-
mance of a thread system. The benchmark creates pairs of
threads that repeatedly block and unblock each other. The
benchmark allows multiple “games” to be executed at the
same time. It has been used to benchmark both NGPT and
NPTL [8]. Figure 6 shows the results of running the base-
line parameters for the ping-pong benchmark. The good
performance of VPIthreads is due to its low-overhead user-
level context switching. Figure 7 shows the results of run-
ning a more complicated instance of the ping-pong bench-
mark. VPIthreads still performs better than the other thread
systems, but not as much as in the baseline test because 8
threads must be multiplexed onto 2 physical processors.

Notification Overhead In order to measure the cost of
notifications, we developed a benchmark that simulates an
application that computes and issues blocking system calls.
A VP performs a fixed amount of computation then issues
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Figure 5. The performance of a 32 thread barrier
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Figure 6. The performance of Sun ping-pong (2 threads, 1
game)

a blocking system call. It is then unblocked by a separate
kernel thread. Our benchmark can create any number of
thread pairs. The overhead benchmark completes a fixed
amount of work in terms of compute time. We measure
the execution time of completing the work with pure kernel
threads and no notifications. Then we measure the execu-
tion time to complete the same amount of work using VPI
with different mode masks: no notifications, BLOCK no-
tifications, and BLOCK and UNBLOCK notifications. We
calculate the overhead ratio as VPI - KERNEL / KERNEL.
In the graphs we vary the frequency of the blocking system
calls to show the overhead as a function of notification fre-
quency.

Figure 8 shows the overhead ratios for a single pair
of threads. As expected the overhead ratio decreases as
the compute time between blocking calls increases as this
results in fewer notifications. Real applications will have
a considerable amount of computation between blocking
calls, thus it is reasonable to expect the overhead from no-
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Figure 7. The performance of Sun ping-pong (8 threads, 4
games)
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Figure 8. Notification Overhead for 1 pair of threads

tifications to be small. Figure 9 shows the data for 16 pairs
of thread. Notice the absolute values of the ratios are lower
because much more work is begin done, and the contribu-
tion of the notification time becomes smaller. In addition,
more threads means more scheduling. In a real application,
other costs will diminish the cost of notifications.

7 Conclusions

In this paper, we described the design, implementation, and
performance of the virtual processor interface for build-
ing custom, user-level thread systems on Linux. VPI al-
lows developers to build application or language specific
thread systems. Our preliminary results show that VPI-
based thread systems can perform much better than the
stock Linux Pthread implementations. For future work we
intend to optimize the VPI notification mechanism, imple-
ment high-performance multiprocessor locks, and explore
the integration of proportional-share scheduling with VPI
and user-level threads.
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