Binary numbers and data

types

Alark Joshi

Credits: CS Unplugged - http:/ /csunplugged.org

How is data stored?

a Data is stored on a computer in the form of bits
$\propto<$ What is a bit?
© A unit of information expressed as either a 0 or 1 in binary notation
\propto_{\gtrless} Everything on a computer (music, photos, text, movies, spreadsheets, etc) is represented and stored in binary form (as a combination of 0 's and 1 's)

Activity

Take your deck of cards and lay them out exactly as shown in the figure below

Binary representation Activity

\bigcirc Now flip the cards so exactly 5 dots show-keep your cards in the same order!

Try more examples

CP Find out how to make the numbers $3,12,19$.
∞_{2} Is there more than one way to make any number?
C_{B} What is the biggest number you can make?
© What is the smallest?
\propto Is there any number you can't make between the smallest and biggest numbers?

Binary system

$\propto<$ The binary system uses zero and one to represent whether a card is face-up or not. 0 shows that a card is hidden, and 1 means that it is face-up and you can see the dots.
© For example, $01001=9$

$\begin{array}{lllll}0 & 1 & 0 & 0 & 1\end{array}=9$

Working with binary representations

\propto Can you work out what 10101 is?
∞ Can you work out what 11111 is?
as What day of the month were you born? Write it in binary
\propto_{s} Find out what your neighbor's birthday is and represent it in binary

Counting beyond 31

C Look at the binary cards again. If you were going to make the next card in the sequence, how many dots would it have?
as If you look at the sequence carefully, you can find a very interesting relationship:
© $1,2,4,8,16, \ldots$
Q_{3} What about the next card after that?
∞ What is the rule that you are following to make your new cards?

Counting beyond 31

$\propto \&$ As you can see, only a few cards are needed to count up to very big numbers.
\& 6 cards can count up to 64
$\propto 10$ cards can count up to 1024

Bits, Bytes and so on

α_{s} One bit on its own can't represent much, so they are usually grouped together in groups of eight, which can represent numbers from 0 to 255 .
\propto A group of eight bits is called a byte.
$\propto 8$ A thousand bytes form a Kilo-byte (Kb)
Q A thousand Kilobytes form a Mega-byte (Mb)
© A thousand Megabytes form a Giga-byte (Gb) and so on (Terabyte, Petabyte, ...)

Binary system

\& The binary system uses powers of 2 to represent the numbers
$\infty 2=10=1 * 2^{1}+0 * 2^{0}$
$\infty 3=11=1 * 2^{1}+1^{*} 2^{0}$
Q $4=100=1 * 2^{2}+0 * 2^{1}+0 * 2^{0}$
\& $7=111=1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}$

A Byte

Coz A byte can store 8-bits of information
Cs Has a range from 0-255
\propto_{B} Any character (A, 1, \$, ; ...) can be stored in a byte
C A An integer can be stored in 2-bytes
© Can represent numbers from 0-65535. Alternately, you can represent numbers between -32768 to 32767

Floating point

\propto_{8} As you have seen, integer data types (int) are used to store integer values ($3,6,121,5423$, etc.)
$\propto \&$ To store decimal values, you use the floating point data type (float)
\propto float e = 2.718;
\propto float area $=22.14$;
\propto_{8} Any other examples for floating point values?

