High Dimensional Data

Alark Joshi



High dimensional data

e Data with multiple dimensions, multiple variables
or multiple attributes

e (Cars dataset
— Economy
— Cylinders
— Displacement
— Power
— Weight
— Mph
— Year



Scatterplots

e Great for visualizing 2D data
* Plot data attributes on x- and y-axis

e Scatterplot Matrix can be used to visualize
multiple attributes



Scatterplot Matrix

e http://mbostock.github.com/d3/ex/splom.html



Eyebrow slope

Eye eccentricity

Pupil size

Nose width

Mouth openness

Chernoff Faces

Eye spacing

Head eccentricity

Mouth width

Randomly selected parameters.
Change face.

Animation with random parameters.




Parallel Coordinates

e Instead of having only 2 orthogonal axes (scatter
plots), have parallel axes

Cars Dataset

165




Parallel Coordinates

 Connect variables for each data entity with a line

Image credits: Hyperdimensional Data Analysis Using Parallel Coordinates, Edward J. Wegman
Journal of the American Statistical Association, Vol. 85, No. 411 (Sep., 1990), pp. 664-675
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Figure 1: — Parallel axes for R".

The polygonal line shown represents the point
C=(C1y ooy Ci=1+Ciy Cit]s e s CN ).







Five-dimensional hypersphere

Figure 4. Parallel Coordinate Plot of a Five-Dimensional Hypersphere.
Every axis pair is correspondingly the parallel coordinate plot of a circle.
Notice the hyperbolic envelopes.

Image credits: Hyperdimensional Data Analysis Using Parallel Coordinates, Edward J. Wegman
Journal of the American Statistical Association, Vol. 85, No. 411 (Sep., 1990), pp. 664-675



Clustering in scatterplots vs PC

Clustering separated in x and y

Clustering separated in x but
notiny

Clustering not separated in
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Mileage

L = Gear Ratio

~ Displace

Figure 7. A Parallel Coordinate Plot in Five Dimensions of Automobile
Data. Note the negative correlation between gear ratio and weight.

Image credits: Hyperdimensional Data Analysis Using Parallel Coordinates, Edward J. Wegman
Journal of the American Statistical Association, Vol. 85, No. 411 (Sep., 1990), pp. 664-675



PC Plot showing American Cars

Mileage

- Weight

_ Displace

Image credits: Hyperdimensional Data Analysis Using Parallel Coordinates, Edward J. Wegman
Journal of the American Statistical Association, Vol. 85, No. 411 (Sep., 1990), pp. 664-675



Demo

e Parallel coordinates in D3
— http://bl.ocks.org/1341281



PC: Axis Ordering

e (Geometric interpretations

— Hyperplane, hypersphere

— Points do have an intrinsic order
e Nominal data

— No intrinsic order

— Indeterminate/arbitrary order
 Weakness of many techniques
 Downside: human-powered search
e Upside: Powerful interaction technique

 In mostimplementations, a user can interactively
swap axes



Dimensionality Stacking

attribute 4

attribute 3

attribute 1




Dimensionality Stacking

visualization of
o1l mining data
with longitude
and latitude
mapped to the
outer x-, y- axes
and ore grade
and depth
mapped to the
Inner x-, y- axes

Image credits: Matt Ward et al.
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Pixel-oriented techniques

dimension j

neg pos

~ imension i

Figure 1: dimensio

Spiral Shaped Arrangement
of one Dimension

Figure 3: 2D-Arrangement of one Dimension

relevance factor dimension 1 dimension 2

one data item
approximately &< 5 one data item
fulfilling the .~ fulfilling the
query ' query

dimension 3 dimension 4 dimension 5

Figure 2: Arrangement of Windows for Displaying five-dimensional Data

Image credits: Daniel A. Keim and Hans-Peter Kriegel. 1995. VisDB: a system for visualizing large databases. In Proceedings of the 1995 ACM
SIGMOD international conference on Management of data



Pixel-oriented techniques

M e T relevance

T e factor dim.1 dim.2
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wilf—

Figure 4: Grouping Arrangement for five-dimensional Data

Image credits: Daniel A. Keim and Hans-Peter Kriegel. 1995. VisDB: a system for visualizing large databases. In Proceedings of the 1995 ACM
SIGMOD international conference on Management of data



Visualizing 8-dimensional data
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a. Basic Visualization Technique

C2D-Arran geme nt ¢. Grouping Arrangement

Image credits: Daniel A. Keim and Hans-Peter Kriegel. 1995. VisDB: a system for visualizing large databases. In Proceedings of the 1995 ACM
SIGMOD international conference on Management of data




Dimensionality Reduction

 Mapping multidimensional space into space of
fewer dimensions

— Typically 2D for clarify
— 1D /3D possible

— Preserve and communicate variance in data as
much as possible

— Show underlying structure of data

e Linear vs non-linear approaches



Linear Dimensionality Reduction

 Based on linear projections
e Given dimensions has a strong meaning
* Preserve the linearity in the layout

 Examples:
— Principal Component Analysis (PCA)
— Independent Component Analysis (ICA)
— Linear Discriminant Analysis (LDA), ...




Problems for Linear Approaches




Non-linear Dimensionality
Reduction

Does not assume any inherent meaning to given
dimensions

Minimize differences between interpoint distances
in high and low dimensions

Examples:
— Multidimensional scaling (MDS)

— Isomap
— Local linear embedding (LLE)



[somap

e 4096 D to 2D
e 2D: wrist rotation, fingers extension

Wrist rotation

Image credits: Global Geometric Framework for Nonlinear Dimensionality Reduction. Tenenbaum, de Silva and Langford. Science 290 (5500):
2319-2323, 22 December 2000,



CHEIR

* Preserve and communicate as much variance as
possible

e Find and display clusters

— Compare/evaluate with previous clustering
algorithms

 Understand structure
— Absolution position is not reliable
— Fine grained structure not reliable



Hierarchical Parallel Coordinates

YH Fua, MO Ward, and IA Rundensteiner (1999),
Hierarchical Parallel Coordinates for Exploration
of Large Datasets, Proceedings of IEEE
Visualization '99, pp. 43-50.

Interactive visualization of large multivariate data
sets

Proposed a number of novel extensions to the
parallel coordinates display technique

Presentation by Danny



Dimension Ordering

 Determining dimension ordering important
— Heuristic

— Divide and conquer
e [terative hierarchical clustering
e Representative dimensions



Dimension Ordering

e Choices
— Similarity metrics
— Importance metrics (variance, etc.)
— Ordering algorithms
e Optimal
e Random swap
e Simple depth-first traversal



Dimension Filtering

* Interaction
— Structure-based brushing
— Focus + context
— Manual interaction through Ul components



InterRing - Hierarchical Data Navigation

Circular edge Radial edee

Root node

Non-leaf node
Leaf node

Layer

Figure 1: An RSF display with labeled components

Image credits: Jing Yang, Matthew O. Ward, Elke A. Rundensteiner, and Anilkumar Patro. 2003. InterRing: a visual interface for navigating and
manipulating hierarchies. Information Visualization 2, 1 (March 2003), 16-30.



InterRing - MultiFocus Distortion




Filtering Interfaces - InterRing

Raw, order, distort and rollup (filter)

Image Credits: Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner, "Interactive Hierarchical Dimension Ordering, Spacing and Filtering for
Exploration of High Dimensional Datasets", IEEE Symposium on Information Visualization 2003 (InfoVis 2003), pp 105 - 112, October 2003.



Filtering Interfaces — Parallel
Coordinates
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Raw, order/space, zoom and filter

Image Credits: Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner, "Interactive Hierarchical Dimension Ordering, Spacing and Filtering for
Exploration of High Dimensional Datasets", IEEE Symposium on Information Visualization 2003 (InfoVis 2003), pp 105 - 112, October 2003.



Filtering Interfaces - InterRing

Raw, order/space, distort and filter

Image Credits: Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner, "Interactive Hierarchical Dimension Ordering, Spacing and Filtering for
Exploration of High Dimensional Datasets", IEEE Symposium on Information Visualization 2003 (InfoVis 2003), pp 105 - 112, October 2003.



Filtering Interfaces - InterRing
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Raw and filter

Image Credits: Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner, "Interactive Hierarchical Dimension Ordering, Spacing and Filtering for
Exploration of High Dimensional Datasets", IEEE Symposium on Information Visualization 2003 (InfoVis 2003), pp 105 - 112, October 2003.



Polaris

e Multiscale Visualization Using Data Cubes, Chris
Stolte, Diane Tang and Pat Hanrahan, Proc. InfoVis
2002.

e Stolte, C., Tang, D., and Hanrahan, P, Polaris: a
system for query, analysis, and visualization of
multidimensional databases, Commun. ACM 51, 11

(Nov. 2008), 75-84.



Large, Multi-Dimensional Databases

Data acquisition not a problem anymore

Extracting useful meaning from the data is a

chall
“Pat

Ana
and

enge
n of exploration is unpredictable”

ysts want to be able to change the type of data
the visualization technique to examine the

data
Need to be able to visualize large subsets of data



Polaris

* An interactive exploration system that facilitates

exploration of large, multi-dimensional relational
databases

* Treat each attribute as a data cube (n-dimensional
databases = n data-cubes)

e Polaris can facilitate multi-dimensional data
exploration through a table-based display



Database Schema: Layer Tabs: Axis Shelves: Context Menu: )
The user drags fields from the Each layer has its own tab; different The fields placed here determine the ~ The context menu provides access to the data ;
database schema to shelves to transformations and mappings can be  structure of the table and the types of transformation and interaction capabilities of Polaris

define the visual specification. specified for each layer. graphs in each table pane. such as sorting, filtering, and aggregation.
E% Schema @ trnwrf‘ C:l Back ED Forw QCIea!
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Image credits: Chris Stolte, Diane Tang, and Pat Hanrahan. 2008. Polaris: a system for query, analysis, and visualization of multidimensional databases.
Commun. ACM 51, 11 (November 2008), 75-84.




Table Algebra

* Define a formal mechanism to specify table

configurations
* Consists of three separate expressions

— Two expressions define the x and y axes of the table

— Third expression defines the z-axis (partitions the

display into layers)

Layer Tabs:
Each layer has its own tab; different

Axis Shelves:

he user drags fields from the The fields placed here

determine the

database schema to shelves to  transformations and mappings can be  structure of the table and the types of
s

define the visual specification. specified for each layer.

Lﬁ Ikhm., \,.'3 Imp:nﬂ‘ <::| Back l::>
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are partitioned into layers. 150z
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=/ I
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Operators

e Cross (x) operator: Cartesian product

0 = Quarter = {Qtr1, Qtr2, Qtr3, Qtr4} = Qtr1 + Qtr2 + Qtr3 + Qtr4:

Qtr1 Qtr2 Qtr3 Qtr4

0x0 = Quarter X Product = {(Qtr1,Coffee), (Qtr1,Espresso), (Qtr1,Herbal Tea), (Qtr1, Tea), (Qtr2, Coffee) ... (Qtr4, Tea)}:

Qtr1 Qtr2 Qtr3 Qtr4

Herbal | 103 | Coffee |Espresso| He™Pal | 14

Tea Tea

Herbal
Tea

Herbal
Tea

e
0xQ = Quarter x Profit = {(Qtr1,Profit), (Qtr2, Profit), (Qtr3, Profit), (Qtr4, Profit)}:

Coffee | Espresso Tea Coffee |Espresso Tea Coffee |Espresso

o Qtr1 Qtr2 Qtr3 Qtr4
Profit (in thousands) Profit (in thousands) Profit (in thousands) Profit (in thousands)
10 0 30 40 50 & 10 0 k] 40 50 (] 10 0 30 40 50 &0 10 0 k] 40 50 (]
s b b b b e e B e b b v B b B B b b b o] Do B b b b b b B Do b D b b b b e b e B bl B o D e b B Do B b e b e
Ordinal fields partition an Quantitative fields are spatially
axis into columns (or rows) encoded along the axis of

the column (or row)



A(r) =a; &B(r) = b; }.

Operators

 Nest (/) operator: A/B =B within A

0 = Quarter = {Qtr1, Qtr2, Qtr3, Qtr4} = Qtr1 + Qtr2 + Qtr3 + Qtr4:

0/0 = Quarter / Month = {(Qtr1,Jan), (Qtr1,Feb), (Qtr1,Mar), (Qtr2, Apr), (Qtr2, May) ... (Qtr4, Dec)}:

|

The set entry (Qtr4,Nov)
corresponds to this column




Operators

e Concatenation (+) operator

0 = Quarter = {Qtr1, Qtr2, Qtr3, Qtr4} = Qtr1 + Qtr2 + Qtr3 + Qtr4:

O + O = Quarter + Product = {Qtr1, Qtr2, Qtr3, Qtr4, Coffee, Espresso, Herbal Tea, Tea}:

Profit (in thousands) Sales
30 40 50 100 150 200 250 300
Cc e b b b b b P b b b Lo b




Space of Graphics

e Structured into three families
— Ordinal-Ordinal
— Ordinal-Quantitative
— Quantitative - Quantitative



Ordinal-Ordinal
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Ordinal - Quantitative
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~ Ordinal - Quantitative
S —
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Polans v2.0

ArgusCPU
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Thread scheduling and locking activity on a CPU within a multiprocessor computer




Quantitative - Quantitative

{5 Polaris v2.0
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Quantitative - Quantitative

Polarig ¥2.0 BEEE

@smema @lmpon (;Jaack C>

Airports Flights USA
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Color: [
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Flight scheduling varies with the region of the country the flight originated in




Scenarios

 CFO told to cut expenses - Scatterplots of
marketing costs and profit categorized by product
type and market

: (a) Some products are
Mark: . . yielding negative profit
crele = despite marketing.

-
-
o vy - o

MMMMMMMMMMMMMMMMMMMMMMMMMMM



Scenarios

(=) Polaris ¥2.0

e Further s e G -
creating two
linked

displays

4
. (b) Selecting points in the graph

, * brushes data. from the same state.
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Scenarios
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Multiscale Visualizations

e Data Abstraction through Data Cubes

(a) The lattice of data cubes (b) Projecting a three dimensional data cube

all locations
Least detailed

type
market

state

/
P ><

product

month

N

product

market

type

state

market

state

quarter

N

product
quarter

><

market

product

month

maonth

Most detailed

state

quarter

quarter

herbal tea

: A two
i 4 dimensional
" | projection.

—_—
Projection onto
(Time, Products,*)

Prajection onto

dimensional
projection.

Prajection onto
i *y




Multiscale Visualizations

e Visual Abstraction: Polaris

The table expressions are
depicted next to two orthogonal
axes.

The internal level of detail is
shown next to a curved arrow
above the axes.

.} each layer is shown as a
horizontal grey band




Multiscale Visualizations

e Visual Abstraction: Polaris

ordinal/nominal mapping quantitative mapping

rectangle, circle,
glyph, text

orientation | rectangle, line, text

rectangle, circle, line,
glyph, y-bar, x-bar,
text, gantt bar



Multiscale Visualizations

Zoom Graphs:

(5 Rivet GLWindow

7 Rivet GLWindow

7 Rivet GLWindow
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Fast Multidimensional Filtering for
Coordinated Views

e http://square.github.io/crossfilter/

Arrival Delay (min.) Distance (mi.)




Multiscale Design Patterns: Chart Stacks

Week.Day




Multiscale Design Patterns: Thematic
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MDP: Dependent Quantitative-
Dependent Quantitative Scatterplots

{52 Rivet GLWin: dow =10 x|

AvgSales || (

Avg




Multiscale Design Patterns: Matrices

Array Clusters
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Evaluation of Multivariate
Trend Visualization

 Mark A. Livingston, Jonathan W. Decker:
Evaluation of Trend Localization with Multi-
Variate Visualizations. IEEE Trans. Vis. Comput.
Graph. 17(12): 2053-2062 (2011)

e Evaluates the multivariate visualization
techniques
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