Abstract

Hyperbolic geometry is much less well known than Euclidean geometry or spherical ge-
ometry. One important reason for this is that there is no smooth, distance-preserving
embedding of hyperbolic geometry in Euclidean 3-space, as there is for the Euclidean
and spherical geometry. Thus several distance-distorting models of hyperbolic geom-
etry have been used in order to understand it. These models are isomorphic, but
complex formulas and projections are required to convert from one model to another.

The goal of this thesis is to demonstrate that standard viewing projections of the
Weierstrass model can be used to obtain several other models. That is, simply by
viewing the Weierstrass model from special points, one can recover the other models.
But, the visualization software is completely general, allowing the user to navigate
around the Weierstrass model to any viewpoint. Thus the user can gain more insight

as to what hyperbolic geometry “really looks like” than with static models.
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Chapter 1

Introduction

Hyperbolic geometry is much less well known than Euclidean geometry or spherical ge-
ometry. One important reason for this is that there is no smooth, distance-preserving
embedding of hyperbolic geometry in Euclidean 3-space, as there is for Euclidean and
spherical geometry. Thus several distance-distorting models of hyperbolic geometry
have been used to represent it. These models are isomorphic, but complex formulas
and projections are required to convert from one model to another.

The goal of this thesis is to demonstrate that standard viewing projections of the
Weierstrass model can be used to obtain several other models. That is, simply by
viewing the Weierstrass model from special points, one can see the other models. But,
the visualization software is completely general, allowing the user to navigate around
the Weierstrass model to any viewpoint. Thus the user can gain more insight into
what hyperbolic geometry “really looks like” than with static models.

In the next sections, we will review hyperbolic geometry and its models, 3D view-

ing, and Java 3D. Then we will show how common models of hyperbolic geometry



can be recovered by viewing the Weierstrass model from special points. Next we show
samples of hyperbolic art obtained by viewing from these special points. Finally, we

indicate directions for future work.



Chapter 2

Hyperbolic Geometry and its
Models

2.1 Euclidean Geometry

The geometry that we are all familiar with is called Euclidean geometry. Euclid in
his series of books called The Elements defined certain postulates which form the
pillars of modern day geometry. In these books, he listed five postulates [10] , known

as axioms in modern mathematical terminology. They are:

e Postulate 1: It is possible to draw one and only one straight line connecting

two distinct points.

e Postulate 2: From each end of a finite straight line it is possible, to produce it

continuously in a straight line by an amount greater than any assigned length.

e Postulate 3: It is possible to describe one and only one circle with any center

3



and radius.
e Postulate 4: All right angles are congruent to each other.

e Postulate 5: If a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which the angles are less than two

right angles.

This is equivalent to John Playfair’s Postulate:

For every line ¢ and for every point P that does not like on ¢, there exists a unique
line m through P that is parallel to /.
Hilbert proved the consistency of these postulates.
Some other theorems that we are familiar with, regarding Euclidean geometry are:
The sum of all the angles in a triangle is always equal to 180°.

The sum of all the interior angles of a quadrilateral is equal to 360°.

2.2 Non-Euclidean Geometry

Euclid’s Fifth Postulate had always been thought of by mathematicians as special.
Mathematicians never doubted its truth, but always thought of it as a theorem, which
could be proved from the other four.

By the latter half of the 18th Century, this problem of proving the Fifth postulate
had become really famous and many mathematicians had attempted to prove it. It
was only a matter of time before the difficulty of the problem would cause some

to conclude that this problem was unsolvable. It did not in any way mean that
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Postulate 5 was unprovable. But, this unproven idea made the discovery of non-
Euclidean geometry inevitable. The logical transition behind it was that since neutral
geometry, the goemetry of Euclid’s first four axioms, itself did not imply Postulate 5,
there must be a new geometry different from Euclid’s.

It has been observed many times in the history of science and mathematics, that
when many people are working on the same problem, and when the communication
between them is infrequent, it leads to multiple independent discoveries. In this
sense, it seems that non-Euclidean geometry was discovered about four times in a
span of twenty years. Apparently, Carl Friedrich Gauss was the first to discover non-
Euclidean geometry. But, he did not publish any papers related to his discoveries.
He worked on this new geometry for many years and discovered many theorems.

In the meanwhile, he received a letter from Ferdinand Schweikart which indicated
that Schweikart himself had discovered non-Euclidean geometry and had basically
reached similar conclusions and results as Gauss.

None of them published any papers though, and hence, when Jands Bolyai pub-
lished his work on non-Euclidean geometry in the Appendiz of his father’s book, it
established the field of non-Euclidean geometry.

Bolyai though, was not the first person to have published a paper on non-Euclidean
geometry. A Russian mathematics professor, Nocolai Lobachevsky had already pub-
lished a paper on the topic. But, since the paper was published in Russian, it was
not well known in the European mathematical circles. Its translations into French
and German later on reaffirmed Lobachevsky’s work and discoveries in the field of
non-Euclidean geometry.

Non-Euclidean geometry is technically any geometry which is not Euclidean. One



of the most useful non-Euclidean geometries is spherical or elliptical geometry, which
describe the geometry of the sphere. Hyperbolic geometry, the geometry of hyperbolic
space, is another non-Euclidean geometry. This is the geometry discovered by Bolyai,

Gauss, Lobachevsky and Schweikart [10].

2.3 Hyperbolic Geometry

Hyperbolic geometry is defined as

The geometry you obtain by assuming all the axioms for neutral geometry (ge-
ometry without a parallel postulate) and replacing Hilbert’s parallel postulate by its
negation, which we shall call the “hyperbolic axiom.” [7].

Basically, in hyperbolic geometry all of Euclid’s postulates hold, other than Pos-
tulate 5. Instead of the fifth postulate, an axiom called the Hyperbolic Aziom is
used.

According to the Hyperbolic Axiom

If there exists a line £ and a point P not on line ¢, there are atleast two distinct
lines parallel to ¢ passing through P.

This postulate in turn, is used to prove and obtain many other useful results

including:
e There exists a triangle whose angle sum is less than 180°.
e All quadrilaterals have angle sum less than 360°.

e If two triangles are similar, they are congruent, that is, if the angles of the

triangle are equal, so are the sides.



To prove that any geometry is consistent, we have to have a model of it. A
model is an interpretation of the primitive terms under which the axioms become true
statements. Here interpretation does not allude to the “understanding of meaning”,
but in a more basic sense of “giving of meaning”.

Unlike Euclidean geometry models that are infinite, some models of hyperbolic
space can represent hyperbolic objects in a finite portion of Euclidean 2-space. The
Beltrami-Klein model and the Poincaré circle model are examples of such finite mod-
els, while the Poincaré’s Upper Half Plane model, the Weierstrass model and the
Minkowski model are infinite structures embedded in Euclidean space. The finite
models have boundaries, which play an important role in the definition of parallel

lines in hyperbolic space.

2.4 The Beltrami-Klein Model

The Beltrami-Klein Model is one of the most widely known and used models. It is used
to visualize hyperbolic objects such as points and lines [7]. We shall first obtain an
interpretation of terms like “point”, “lines”, “lies on” and “between”. The Beltrami-
Klein model is represented by the interior of a circle, a point in which represents a
point in the hyperbolic plane. We know that a chord of a circle is a line joining any
two points of the circle. The concept of an open chord is introduced in this model.
An open chord is the segment between the two points, omitting its endpoints. In the
Klein model, an open chord represents a hyperbolic line. The relation “lies on” has
the regular interpretation when we say that P lies on the open chord AB, it means

that it lies on the the Euclidean Line AB. The hyperbolic interpretation of “between”



is the same as its usual Euclidean interpretation.
Consider the following figure from [7], where we have a line £ and a point P outside

it. From the Hyperbolic axiom, we have lines m and n parallel to the open chord /.

Figure 2.1: Lines m and n parallel to a given line ¢

We can say that lines m and n are parallel to ¢, from the definition of parallel
lines. The definition states that the two lines are parallel if they have no points in
common. So in Klein’s representation two open chords are parallel when they have no
point in common. The fact that they will intersect outside the circle is not important

since the points outside the circle will lie outside the hyperbolic plane.



2.5 The Poincaré Model

The Poincaré circle model was developed by the French Mathematician Henri Poincaré
[7]. This model is also represented by the interior of a circle, a point of which rep-
resents a point in the hyperbolic plane. Hyperbolic lines are represented differently
in this model. Firstly, all the open chords that form diameters (i.e. pass through
the center) represent lines. The other lines are represented by open arcs of circles
orthogonal to this circle. Two circles are said to be orthogonal if, at the point of
intersection their tangents are perpendicular.

Figure 2.2 shows both the possible representations of lines in the Poincaré model.

The diameter as well as the arcs in the interior of the circle can be seen.

Figure 2.2: Line representations in the Poincaré circle model



So, we will call either an open diameter or an open circular arc a Poincaré line.
The interpretation of “lies on” and “between”, in this model, is same as that of their
usual Euclidean interpretation.

Congruence for angles in the Poincaré model has the usual Euclidean meaning.
This is an advantage over the Klein model, since angles are represented accurately
unlike in the Klein model. If two arcs intersect at a point, the number of degrees
measured between the tangents to the two arcs at the point of intersection, is the
angle between the two arcs.

Having interpreted all the undefined terms, we can now define the meaning of two
lines being parallel. In the Poincaré model, if two lines do not have any point in
common, they are parallel to each other.

Figure 2.3 from [7] contains lines ¢,m and n. Line ¢ is a diameter and hence
is a straight line, whereas the lines m and n are circular arcs perpendicular to the
bounding circle D.

Lines m and n are not parallel since they share a common point. Line £ and line

n are divergently parallel, and line ¢ and line m are asymptotically parallel.

2.6 The Isomorphism between the Beltrami-Klein
and the Poincaré model

There exists an isomorphism between the Klein and the Poincaré model. This means
that a one-to-one correspondence can be set up between the points and lines in one

model and those in the other, which preserves incidence, congruence, and betweenness.
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Figure 2.3: Some lines in the Poincaré model and their relationship

The formulae for converting from the Klein model to the Poincaré model are:

T
Y
YTt 1—2%2—y? (22)

where the Klein coordinates (x,y) are converted into the Poincaré coordinates

(u,v).

The formulae for converting from the Poincaré model to the Klein model are:
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2u

T (23)
2v
YT it et (2:4)

where Poincaré coordinates (u,v) are converted into the Klein coordinates (x,y).

The mapping from the Klein model to the Poincaré model can be described as
a succession of two projections. Another mapping between the two models can be
found by the use of Stereographic projection.

Consider a sphere of exactly the same radius placed on the Klein’s model. First,
orthogonally project all the lines and points upwards onto the lower hemisphere of
the sphere. By this projection, the lines on the Klein model become circular arcs on
the lower hemisphere of the sphere perpendicular to the equator. Secondly, project
all the arcs stereographically from the north pole of the sphere back onto the original
plane. The equator of the sphere will project onto a circle twice as large as that of the
Klein model and the arcs on the lower hemisphere will form arcs in this larger circle.
By these projections, the chords of the Klein model are mapped one-to-one onto
the diameters and arcs of the Poincaré model. This is another way of establishing
the isomorphism between these two models. Figure 2.4 below, from [7], shows a
diagrammatic representation of the isomorphism and the process of stereographic

projection.
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Figure 2.4: An Isomorphism between the Klein and the Poincaré model

2.7 The Upper Half-Plane Model

The upper half-plane model is another model of hyperbolic geometry developed by
Henri Poincaré [7]. This model consists of all those points in the upper hall of the
xy-plane, excluding those point on the z axis, which is the boundary for this model.
The “lines” are represented in two ways: a) by semicircles in the upper half-plane
whose centers lie on the z axis. b) as upward rays perpendicular to the z axis, as can
be seen in Figure 2.5.

Here, lines m, n and k are divergently parallel, whereas lines ¢ and n are not
parallel, since they have a point in common. Lines ¢ and m are also divergently

parallel, whereas line ¢ and k are asymptotically parallel.

13



Figure 2.5: The Upper Half-Plane model

The properties of incidence and betweenness have their usual Euclidean meaning

and degrees of angles are measured in the Euclidean way.

2.8 The Gans’ Model

This model was proposed by David Gans in his paper A New Model of the Hyperbolic
Plane [6]. We shall refer to this model as the The Gans’ Model.

This model, unlike the other more famous models, utilizes the entire Euclidean
plane rather than some part of it. In this model, the points are points of the Euclidean
plane and so the interpretation of points is not different. A “line” in this model is a
branch of a hyperbola centered at the origin or a line through the origin (a special
case).

The two hyperbolic lines are lines in the Gans’ model. The dotted lines are also

14



lines, but are a special case of a hyperbola in which the eccentricity of the hyperbola

becomes infinite and the branch approaches the straight line containing the diameter.

Figure 2.6: The Gans’ Model

2.9 The Weierstrass Model

The Weierstrass model is a model which demonstrates the consistency of hyperbolic
geometry on the surface of a hyperboloid Euclidean 3-space [4]. It is a lesser known
model than the Klein and Poincaré models. It has many properties similar to el-

liptical or spherical geometry. This model readily generalizes to n dimensions and
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it introduces an analogue of the Lorentz metric, which is central to the theory of
relativity.

Before we define the interpretation for “point”, “line”, “lies on” and “between”,
we shall go over some preliminaries.

“Points” in the real 3-dimensional coordinate system are defined as triples of real
numbers, such as X = (z,y,2) . X can be thought of as not only a point, but also as
a wvector, visualized as an arrow drawn from the origin, 0(0,0,0), to X.

Following Faber, we define hyperbolic product of two vectors X; and X5 is defined

by the following formula

< X1, X9 >= 2122 + Y1Y2 — 2122

We can now understand the Weierstrass model and prove the consistency of hy-
perbolic geometry. We have to define the interpretation of terms like “point”, “line”,
“lies on” and “between”. The surface (with constant curvature k) can be represented
by

<X, X>=z+y* 2% = —k?

forms a hyperboloid of two sheets in the Euclidean 3-space. We do not take the lower
sheet into account, so that we do not have to deal with antipodal point pairs.

A point X in the Weierstrass model is represented as a point (or vector) such that
< X,X >= —k? and z > 0. Any such point will form the upper hyperboloid surface,
which we shall denote by H2.

A hyperbolic “line” is defined as the intersection of the surface H? with a plane

passing through the origin. We know from Euclidean geometry that this defines the
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two branches of a hyperbola. The upper branch is shown in Figure 2.7, whereas the

lower branch is on the discarded lower sheet of the hyperboloid.

x, =0

>x,

Figure 2.7: A “Line” in the Weierstrass model

Now, a plane passing through the origin would have the equation < X,/ >= 0
where £ is a hyperbolic-normal of the plane.

In the Figure 2.9, ¢ is outside H? and hence < £,/ > > 0. But, since any scalar
multiple of £ determines the plane < X, ¢ >= 0, we will always choose £ to be a point
such that < £,¢ >= k2, so that ¢ will always be a point on the hyperboloid of one
sheet < X, X >= k? as shown in the Figure 2.8.

Hence, a “line” is a section of the surface H? by a plane passing through the
origin. It is determined by the equation < X, ¢ >= 0 or simply by naming its vector
‘.

A point X lies on a line [, only if < X,/ >= 0. Two points X and Y, lie on a

17



Figure 2.8: < X, ¢ >= 0 in the Weierstrass model

unique line, since they form a plane with the origin, which intersects the H? surface.
This intersection is one branch of a hyperbola. If there are three points A, B and C
on the line, we will say that C is between A and B if, when the branch is traversed in

either direction, the points are encountered in the order ACB or BCA.

2.10 Isomorphism between the Weierstrass Model
and other models

The Weierstrass model is isomorphic to the Beltrami-Klein model, the Poincaré model
and the Gans’ model.
The Weierstrass model is related to the Poincaré model, embedded as the unit disk

in the zy-plane. This can be observed by stereographically projecting the Weierstrass
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model onto the zy-plane toward the point (0,0,-1). The projection is given by:

T T
_> 1

Y 1+2)| Y

z 0

The inverse projection from the Poincaré model to the Weierstrass model is given

by:

T 2z
_> 1

Y (1— 22— ) 2y

0 14 2% + 92

Similarly, the relation between the Klein model and the Weierstrass model is
obtained by projecting the Weierstrass model onto the plane z = 1 towards the origin

(0,0,0). The Klein model is obtained as a unit disk on the plane z = 1. The projection

is given by :
x z/z
y | — | v/=
z 1

The inverse from the Klein model to the Weierstrass model can be given by:

T

T [1—z2—y?2

— '

y e
1 1

1—z2—y2

The relation between the Gans’ model and the Weierstrass model is intriguing.
The Weierstrass model when projected orthographically onto the xzy-plane results in

the Gans’ model. The formulae for this projection are:
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The inverse from the Gans’ model to the Weierstrass model can be obtained by:

x x
y | — Y
0 T8
There is no simple projection that allows us to transform from the Weierstrass
model to the upper half-plane model. However, it can be done by a succession of
three projections: first project onto the Poincaré model as above, then project ver-
ticall(orthogonally) upward onto the unit hemisphere centered at the origin (whose
equator is the bounding circle of the Poincaré circle model) and finally project the
hemisphere stereographically from the point (-1,0,0) onto the plane x = 1 (which is

tangent to the hemisphere at (1,0,0).
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Chapter 3

3D Viewing

In comparision to two-dimensional viewing, three-dimensional viewing is much more
complex. This can be attributed to the fact that there is an additional dimension
which needs to be taken into account. In 2D viewing, the object to be viewed has
to be clipped into the current view and then transformed to the viewport for display.
In 3D, the complexity is further increased because the objects are 3-dimensional and
the display is 2-dimensional.

The solution is to project the 3D object onto a 2D plane and then transform it
to the 2D display. A view volume is specified in 3D. The 3D object is clipped to the
view volume and is then projected onto a 2D projection plane.

Projections transform points in a coordinate system of dimension n into points of
a coordinate system of dimension less than n [5]. In this case specifically, we need to

project 3D objects onto the 2D display after clipping.
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There are two types of projections commonly used in computer graphics:
e Perspective projection
e Parallel projection

The distinction is in the relation of the center of projection to the Projection
Plane. For parallel projection, the distance between the center of projection and the
projection plane is infinite. This essentially means that the projectors are parallel
and the center of projection is at infinity.

For a perspective projection, the center of projection is at a finite distance from
the projection plane. The projectors meet at the center of projection. A perspective
projection whose center moves to a point at infinity becomes a parallel projection.
The visual effect of a perspective projection is similar to that of photographics systems
and also the human visual system. The surface or edge closest to the viewer seems
the biggest, whereas an object surface or edge length decreases as its distance from
the viewer increases. Thus, the size of the object varies inversely with its distance
from the user. Perspective projection gives a realistic view, but it distorts the actual
distances and angles of objects. Most parallel lines in the actual object will not remain
parallel and will seem to converge.

Parallel Projection gives a less realistic view because there is no relation between
the distance to the user and the size of the object. Parallel lines will always remain
parallel and all measurements will be exact. Both the projections preserve the angles

only on faces of the object parallel to the projection plane [5].
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Chapter 4

Java 3D

4.1 Java 3D: An Introduction

Java 3D is an application programming interface (API) developed by Sun. It is
used for creating 3D graphical applications and applets. It adds to the core Java
language and it gives the user the capability to develop 3-dimensional models using
the Java Language. It allows the user to develop 3D scenes faster than other available
options for creating 3D scenes, mainly because it simplifies the tasks of building
scenes, allowing the developer to disregard non-essential or obscure details if they
choose to do so.

The API provides a set of object-oriented interfaces that support a simple, high-
level programming model. This enables developers to build, render, and control the
behavior of 3D objects and visual environments.

Hardware acceleration is obtained in Java 3D either using the lower level API

of DirectX, QuickDraw3D or OpenGL. It uses OpenGL on Unix (and its flavors),
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QuickDraw3D on the Macintosh Operating system, and DirectX on all Windows
versions, thus providing the platform-independence that is expected from a Java APL.
These API’s in turn have optimized implementations that provide support for various

graphics hardware subsystems [9)].

4.2 Java 3D and VRML

The Virtual Reality Modeling Language (VRML) is a modeling language that allows
the developer to create 3D content. It is the International Standard (ISO/IEC 14772)
file format for describing interactive 3D multimedia on the Internet. It follows the
World file format (.wrl). The source file is dynamically interpreted and the final scene
is then generated. It requires a VRML browser which will browse its source files and
interpret them. Hence, VRML is bound to its file format, and it is also a higher level
modeling language, and hence hardware acceleration cannot be leveraged. Platform-
independence is not possible, unless a VRML browser for that platform is available.
Browsers for IRIX and Windows are freely available, but for other platforms the
browsers are not freely available.

On the other hand, Java3D does have a lower level interface since it is built on
DirectX, OpenGL and QuickDraw3D and can leverage lower level control, and so is
more scalable and demonstrates a higher level of performance. It does not require any
specific file format and is basically an extension of the Java core language, and hence
is a part of the Java’s “write once, run anywhere” commitment. It provides support
for applications such as mechanical CAD, real-time simulation, data visualization,

and scientific modelling.
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For the problem at hand, the need was for superior rendering, texturing capabil-
ities, viewing, interaction and 3D geometry. Compared to VRML, Java3D provides
extensive support for all of the above. It also excels in transforms, lighting, fog, sound
playback and reverberation, and gives the programmer total control over the input
devices and their use.

Java3D is a programming API, and the model it uses is that people will write
programs that cause geometry to appear and do things. It is more program-centric
than VRML and allows the user more control to create the 3D objects in the scene.
VRML is scene based, and its model is that scripts and the External Authoring
Interface (EAI) manipulate objects in the scene [9].

Hence Java 3D was the natural choice for the implementation of the visualization
of the 3D Weierstrass model. The problem required a more program-centric option,

and hence Java 3D was chosen.
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Chapter 5

The Visualization Problem and its

Solution

As we have seen in Section 2.9, the conversion from one hyperbolic geometric model
into another model can be difficult and often requires complex mathematical formulae.
In addition, if we want to visualize a hyperbolic object in two different models, it has
to be converted independently from one model to another, and there is no easy way
to switch between all these models.

By using standard viewing projections of 3D graphics and using the less well-
known Weierstrass model, we can view the well known Poincaré circle model, the
Klein model and the not-so-familiar Gans’ model. Gans’ model is the only model in
which the hyperbolic lines are represented by Euclidean hyperbolas. Visualization of
the 3-Dimensional Weierstrass model from different viewpoints displays each of these
models.

A viewer at the origin looking upward would see the projection of the Weierstrass
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model onto the Klein model. Similarly, a viewer looking at the Weierstrass model from
(0,0,-1) would see the projection onto the Poincaré model. Both of the projections are
perspective projections. As regards, Gans’ model, it can be observed as the viewer
moves to negative infinity along the Z-axis, thus obtaining a parallel projection of the
Weierstrass model.

A program was developed which displays the 3-dimensional Weierstrass model.
The viewer can make smooth transitions between the views, dynamically showing
the transformation of one model into another. Thus, the viewer can interactively
change the viewpoint and observe hyperbolic geometry as it would be represented
using different models.

This should allow the user to get a better feel of what hyperbolic geometry really

“looks like”.
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Chapter 6

Hyperbolic Geometry and Art

M.C.Escher was the first artist to use hyperbolic geometry to create hyperbolic pat-
terns. There is a distinctly mathematical theme to his artwork. He used the idea of
tessellations in the hyperbolic plane.

Escher used the Poincaré model as the basis for his art. His famous Circle Limit
patterns use hyperbolic geometry and the Poincaré model in particular. They are:
Circle Limit I (Black and White fishes), Circle Limit II (Red and Black crosses),
Circle Limit III (Colored Fishes) and Circle Limit IV (Heaven and Hell, with bats
and angels). Circle Limit I, IT, IIT and IV are shown below [2][3].

The hyperbolic points of this model are the interior points of the fixed circle, which
is the boundary of the Poincaré model. The Poincaré model is conformal which means
that its representation of angles is the same as Euclidean angles, so that a transformed
object has roughly the same shape as the original.

The Poincaré model is better than the Klein model, since it conforms to the

Euclidean sense of angles, contrary to the Klein model. It is also observed that in
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the Klein model, there is a less uniform distribution of the hyperbolic pattern. It is
more dense towards its circular boundary and more rarified as we move in towards
the center.

The Weierstrass model is the ideal model to be used for generating hyperbolic
patterns using computers. Programs to generate hyperbolic patterns are more easily
to develop using the Weierstrass model. The main reason for this is that the Weier-
strass model represents its points as 3D vectors. They can then be transformed by
using 3x3 matrix transformations, which are preferred when we need to carry out

transformations in computer graphics.

Figure 6.1: Escher’s Circle Limit I
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Figure 6.3: Escher’s Circle Limit III
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Figure 6.4: Escher’s Circle Limit IV

31



Chapter 7

Results

In this chapter, we shall look at the results obtained by viewing the Weierstrass
model from different viewpoints. Escher’s Circle Limit I was used to test the standard
viewing projections of the 3D Weierstrass model to show views of other models of
hyperbolic geometry.

Figure 7.1 shows a side view of the Weierstrass model with the Circle Limit I
pattern on it.

Figure 7.2 shows the expected Poincaré model obtained by observing the Weier-
strass model from the (0,0,-1) point in the 3D space. Figure 7.3 shows the observed
Poincaré model.

Figure 7.4 shows the expected Beltrami-Klein model obtained by observing the
Weierstrass model from the origin (0,0,0) in the 3D space. Figure 7.5 shows the
observed Klein model.

Figure 7.6 shows the expected Gans’ model obtained by observing the Weierstrass

from a large distance (theoretically infinity). Figure 7.7 shows the observed Gan’s
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model. The lines in this case are hyperbolas and hence, this observed model is the

Gans’ model.
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Figure 7.1: Escher’s Circle Limit I: A side view of the Weierstrass Model from (0,5,0)
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Figure 7.2: Escher’s Circle Limit I: Expected Poincaré Model observed at (0,0,-1)

Hence, the Poincaré model, Klein model and the Gans’ model can be seen from

different viewpoints around the 3D Weierstrass model.
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Figure 7.3: Escher’s Circle Limit I: Observed Poincaré Model
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Figure 7.4: Escher Limit I: Expected Beltrami-Klein Model observed at the origin
(0,0,0)

37



Figure 7.5: Escher Limit I: Observed Beltrami-Klein Model
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Figure 7.6: Escher Limit I: Expected Gans’ Model
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Figure 7.7: Escher Limit I: Observed Gans’ Model
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Chapter 8

Future Work

In this thesis, we have demonstrated that standard viewing projections of the 3D
Weierstrass model can show views of other models of hyperbolic geometry. Thus, it
facilitates the visualization of hyperbolic geometry through its different models. This
has given us a better understanding of the various models and hyperbolic geometry
in general.

However, there are a number of improvements to the graphical interface that could
be made to the program to make it more user-friendly. For example, we could provide
more controls to the user and allow the user to view his position in the 3-space.

We could allow the user to select a motif file and then generate an entire repeating
hyperbolic pattern.

We could set several viewpoints and enable the user to jump to one of them by
clicking, and thus instantly observe the model from that view. The user could also
be allowed to specify viewpoints by using sliders or typing in coordinates, which

would be more precise than trying to control the viewpoint with mouse movements.
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This would allow the user to observe from any specified viewpoint. Seeing multiple
view and viewpoints at the same time would be of great use to the viewer. Having
different views at the same time would also allow the user to visualize the same
hyperbolic object from different viewpoints, and also to directly compare the models.
This would facilitate comparison and understanding of the Weierstrass and other
isomorphic models.

This would make the program more intuitive and a better understanding can be

obtained from observing different models.

42



Chapter 9

Appendix: Source Code

The source code for the Visualization of the Weierstrass Model using Java3D is pro-
vided in the following pages. The source code which performs the customized Texture
Loading is also attached. This is provided by Sun Microsystems in their Tutorial on

Java3D [1].
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