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Abstract

We present a VTK-based implementation of our non-parametric vessel detection method that identi-
fies vascular structures using a polar neighborhood profile. To accelerate the computationally intensive
parts of the algorithm, we leverage the hardware capabilities in commodity graphics hardware using
Compute Unified Device Architecture (CUDA). We present the results of our performance analysis and
provide source code and examples to validate the reproducibility of our results.
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1 Introduction

In the field of cardiovascular pathology, the existence of a highly accurate, automated vessel detection
method is paramount. With current vascular segmentation algorithms, there is an inherent assumption that
each voxel belongs to a single cylinder. These techniques, which are based on identifying a single cylindrical
structure perform particularly well for long, structured cylindrical regions in vascular data. Indeed, the large
majority of techniques, including the matched filters of [2] and [8], and the Hessian-tensor based [3] and [7]
are particularly good at detecting vessel center points but fall short of single-scale comprehensive vascular
segmentation. While multiscale implementations of these methods do end up sufficing in the majority of
cases for the purposes of basic angiography, a much more robust and accurate method that consistently
detects branching points and vascular extents is needed for higher-level vascular structural analysis (e.g.,
vascular tree reconstruction).

We present the results of a VTK-based implementation of a non-parametric vascular detection technique
described in [6]. The polar neighborhood intensity profile underlies this vessel detection algorithm, with the
key intuition that vascular points are both globally bright and have at least one local orientation with low
intensity deviation. Our implementation of this algorithm follows the standard algorithmic filter model in
VTK in its modules, and leverages hardware accelerated versions of FFT and RFFT in CUDA ([1], [5]).

The input image and other parameters are read from the command line by a Tcl script, which invokes
the VTK-based source code to perform vascular detection. The convolution step can be computationally
expensive with filter kernels getting quite big (70x70x70). To accelerate this process, we compute the
FFT of the image as well as the kernel, multiply the two images and then take the inverse FFT of the
resulting image. The convolution step is even more accelerated by using the hardware accelerated version
of FFT/RFFT in CUDA.

The rest of the paper is structured as follows: In Section 2, a brief overview of our entropy-based vesselness
measure is discussed. In Section 3, our implementation and optimizations are presented. In Section 4,
experimental results are reported. The final section of this paper consists of a discussion of results and a
conclusion of this work.

2 The Entropy-based Vesselness Measure

In the non-parametric vessel detection method [6], rather than assuming that a voxel belongs to at most one
oriented structure, it is observed that a voxel belonging to a vascular structure tends to be both globally
bright as well as locally comparable in at least one direction to its neighbors–in the sense that, considering
a spherical neighborhood about the voxel, there is at least one “wedge” of the spherical neighborhood that
consists of relatively proximal voxels in brightness (identified by deviation in the wedge). Figure 1 depicts
partitioning of the neighborhood in the 2D and 3D case.
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2.1 The Polar Neighborhood Intensity Profile 3

Figure 1: Partitioning the neighborhood into wedges. On the left is a 2D example, where a circular neigh-
borhood is partitioned into 2D wedges whereas on the right is a 3D example showing the partition of a
spherical neighborhood into 3D wedges.

2.1 The Polar Neighborhood Intensity Profile

Let us formalize this intuition by beginning with our observation that vascular points are locally close to their
neighbors in brightness in certain directions. Consider the spherical neighborhood about a given voxel. On
dividing this neighborhood into wedges that span the full sphere, we compute the average squared intensity
deviation over all relative directions θ = {ψ,φ} (with ψ ∈ [0,2π), φ ∈ [0,π)) for each voxel x as:

Dev(x,θ) =
∫

h(u)(I(x−u)− I(x))2 du , (1)

where I is the intensity of the image, and h(u) is a function of relative position to x. h essentially acts as
a partition characteristic function of the spherical neighborhood about x, and different h(u) gives different
partition functions or weighting schemes to collect statistics of brightness in the neighborhood. Here x,y,z
refer to the x, y, z-coordinates of the voxel x under consideration.

Figure 2: Our wedging implementations. The left image shows the spherical neighborhood sampling method
which results in non-uniform sampling at the poles. The right image shows icosahedron-based sampling
which results in uniform sampling over the neighborhood.

We implemented two different partitioning schemes for the spherical neighborhood.
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Figure 3: Wedge-based distributions of the subdivided icosahedron. The left image shows a short wedge
which converges at the center. The right image shows a long wedge where the triangular prism-shaped
wedge connects triangles on opposing faces of the sphere.

1. Spherical separable filter h(u) = hr(u)hθ(u) = hr(r)hθ(ψ,φ), with r =
√

x2 + y2 + z2, ψ =
arctan(y/x), and φ = arctan(z/

√
x2 + y2), which gives nψ× nφ wedges, distributed as shown in left

image in Figure 2. This causes non-uniform sampling over the spherical neighborhood due to over-
sampling at the poles.

2. To address the non-uniform sampling of the spherical neighborhood, we have implemented a way to
obtain uniform sampling by subdividing an icosahedron. The uniform icosahedron-based sampling
can be seen in the right image in Figure 2. We subdivide the icosahedron in two ways which leads to
“short” and “long” wedges, as shown in Figure 3. For “short” wedges, each triangle T = (x,y,z) is
connected to the center point c, creating a tetrahedral wedging of the icosahedron. For “long” wedges,
each triangle T = (x,y,z) is connected to its “opposite” triangle, forming a triangular prism. Note that
the “opposite” face of an icosahedron is actually the original triangle reflected through the center, c.
Hence, a rotation by π

2 (or reflection through its own centroid) must be done to align the triangles.
This construction can be obtained quickly through coordinate geometry per the connection of T and
T ′, which is defined as follows:

T ′ =
(

2c− 2y+2z−x
3

,2c− 2x+2z−y
3

,2c− 2x+2y− z
3

)

We continue with our formulation by expressing the probability of our voxel x having, in the orientation θ,
small intensity variation, pv(x,θ) as:

pv(x,θ) = ce−βDev(x,θ), (2)

where c is the normalization factor and β is the emphasizing factor.

We notice that this gives us a probability density function describing local brightness over our image, and re-
call that the entropy, H, of a density function describes its spread. Therefore, we may compute the “tightness
measure” v(x) as:

v(x) = e−τH(pv) = eτ
∫

pv(x,θ) log pv(x,θ)dθ. (3)
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2.2 Local Brightness

We continue to the second part of our observation: candidate voxels are globally bright. To formalize this
notion, we define a brightness function b(x):

b(x) = s(µ(ISθmin
(x))−µ(ISθmax

(x))) , (4)

where s(k) = 1/(1 + e−αk) is a sigmoid function, µ(ISθmin
(x)) is the average intensity of the wedge with

minimum deviation, and µ(ISθmax
(x)) is the average intensity of the wedge with maximum deviation.

In our implementation, however, we use a simpler brightness measure. Observe that for a voxel to be
labeled globally bright, its intensity must be large relative to the range of values taken on by the rest of the
image. Since we implement this algorithm by first normalizing our input image, we smooth the input image
using vtkImageGaussianSmooth and take the intensity value at each smoothed voxel to be that voxel’s
“brightness measure”.

2.3 The Polar Profile Vesselness Measure

Our entropy-based polar profile vesselness measure PPV (x) is defined as the product between the “tight-
ness” and “brightness” measures v(x) and b(x):

PPV (x) = b(x)× v(x). (5)

3 Implementation and Optimizations

3.1 Implementation

We implement the algorithm within the new framework of the VTK pipeline. [1]. Our main image-to-image
filter is written in Tcl and uses classes written in C++, derived from appropriate VTK parent classes. The
code execution is described below as well as in Figure 4.

1. We first load the input image (in .vtk format) into a convolution filter, vtkNewImageConvolution
to compute, for each voxel x, pv(x,θ) for each θ, with optional outputs giving Dev(x,θ) and
µ(ISθ

(x))(e.g., for the purposes of computing the original “brightness measure”).

2. This filter constructs neighborhoods based on user input, with the values of usenewsphere (use the
icosahedral neighborhoods) and usenewwedges (use the “long wedges”, as described in the previous
section) options specifying the precise constructions.

3. If usenewsphere is 1, vtkjoColoredSphereSource, which derives from vtkjoSphereSource, is
called to construct these neighborhoods (based on usenewwedges), whereas otherwise the neighbor-
hoods and wedges are constructed inside vtkNewImageConvolution itself.

4. We then pass this information into vtkNewODFVesselnessFilter to compute the entropy and “tight-
ness measure”, and produce the resultant “vesselness” image, using vtkImageMathematics, with our
Gaussian-smoothed input to arrive at the resultant Polar Profile Vesselness output.
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Figure 4: This diagram shows the way in which the input image is processed based on the selected pa-
rameters to give an output “vesselness” image. Here we show the three ways in which the neighbor-
hood around a voxel can be divided. The first two methods are the result of subdividing an icosahe-
dron (vtkjoColoredSphereSource), while the third way uses a spherical neighborhood-based sampling
(vtkNewImageConvolution).

3.2 Optimizations

Originally, this implementation took about 4 hours for a 100 x 256 x 100 image on a 2.0 GHz Intel Xeon
CPU running Windows XP [4]. Clearly, for a large database of images, this is a critical bottleneck for
analysis. To significantly speed up the running time of our code, we implemented its most computationally
expensive procedure–the calculation of Dev(x,θ)–on a Graphics Processing Unit (GPU). This was done
using the capabilities in CUDA (hardware acceleration library for programming graphics processing units).
Recall from equation (1) that,

Dev(x,θ) =
∫

h(u)(I(x−u)− I(x))2 du .

Therefore, expanding out the integrand:

Dev(x,θ) =
∫

h(u)(I(x−u))2−2(I(x−u)I(x))+(I(x)2)du

=
∫

h(u)I(x−u)2 du−
∫

2h(u)(I(x−u)I(x))du+
∫

h(u)I(x)2 du

= (h∗ I2)(x)−2I(x)((h∗ I)(x))+ I(x)2
∫

h(u)du

Note that if we normalize the wedges such that
∫

h(u)du = 1 we obtain:

Dev(x,θ) = (h∗ I2)(x)−2 I(x)((h∗ I)(x))+ I(x)2 .

Recalling the Convolution Theorem, which states that, for functions f and g: ( f ∗g)= F −1{F { f}×F {g}},
we can change this into a more usable form:

Dev(x,θ) = (F −1{F {h}×F {I2}})(x)−2I(x)((F −1{F {h}×F {I}})(x))+ I(x)2 (6)
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Figure 5: Timing results for the various implementations of the algorithm. The GPU versions of all the
algorithms are significantly faster regardless of the neighborhood radius used.

It is well-known that the Fast Fourier Transform (FFT) and its inverse (RFFT) are highly parallelizable.
We leverage the optimized FFT/RFFT functionality [5] in CUDA to accelerate our convolution step. We
wrote the classes vtkNewCUDAFFT and vtkNewCUDARFFT, as well as the function and kernel inside of
NewCUDAFFT.cu and NewCUDAFFT kernel.cu, which invokes CUDA’s FFT/RFFT functionality. Our mea-
sured speedup of approximately 18 times (470 times relative to the original implementation) considerably
speeds up the execution time on a 100 x 256 x 100 image, as shown in Figure 5. Note that the GPU imple-
mentations of all the versions are significantly faster than their CPU versions and scale well for larger radii.
Table 1 provides the timing results for each variation of the algorithm.

Our optimization is coded as follows:

Listing 1: ../Source/vtkNewImageConvolution.cpp
1 //

-------------------------------------------------------------------------------------------------------------

2 void vtkNewImageConvolution::SimpleExecute(vtkImageData* input ,vtkImageData* output)
3
4 vtkImageData *FI=NULL , *FI2=NULL;
5 {
6 if (out2!=NULL)
7 out2 ->FillComponent(frame ,0.0);
8 gettimeofday(&start , NULL);
9 starttime=start.tv_sec+(start.tv_usec /1000000.0);

10 #endif
11 endtime=end.tv_sec+(end.tv_usec /1000000.0);
12 }
13
14 #endif
15 for (int j=0;j<nt;j++)//compute Dev per our previously derived formula
16 if (j==debugv && this->Debug)
17 }
18 fprintf(stderr ,"Mode=0, frame=%d\n",frame);
19 out->GetSpacing(spa);
20 }
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Timing results for the various implementations (seconds)
Radius New Sphere New Sphere Old Sphere New Sphere New Sphere Old Sphere

Old Wedges (GPU) New Wedges (GPU) GPU version Old Wedges (CPU) New Wedges (CPU) CPU version

4 14.06 14.00 13.55 18.88 18.84 17.19
6 15.77 16.07 15.24 53.59 53.42 48.65
8 17.38 17.47 16.49 25.21 25.18 22.99
10 18.89 18.80 17.96 33.74 33.81 30.80
12 21.00 21.00 20.14 81.24 81.55 74.42
14 22.42 22.38 21.63 35.44 35.66 32.84
16 24.45 24.50 23.75 47.43 47.54 43.94
18 27.24 27.37 26.83 118.47 118.51 109.69
20 29.70 30.27 29.85 134.73 133.90 124.12

Table 1: This table shows the time required for the various implementations of the algorithm. Notably, the
GPU versions are faster for all the radii and, more importantly, provide a significant speedup for higher
values of the spherical neighborhood radius.

21 comp ->SetInput(img);
22 tmp=this->PadImage(comp ->GetOutput(),paddim);
23 }
24 }
25 fprintf(stderr ,"\nUsing CUDA\n");
26 vtkNewCUDAFFT* fft2=vtkNewCUDAFFT::New();//implement CUDA’s FFT/RFFT functionality
27 fft2 ->SetDebugMode(this->Debug);
28 fft2 ->SetForward(1);//set to FFT
29 fft2 ->SetTimingMode(this->TimingMode);
30 fft2 ->SetDoComplex(this->DoComplexFFTs);
31 // if (inData!=NULL)
32 // fft2->SetinData(inData);
33 fft=fft2;
34 }
35 else
36 }
37 if (dosquare)
38 {
39 double range1[2];
40 if (this->Debug)
41 double range2[2];
42 if (this->Debug)
43 if (this->Debug)
44 dim1[0],dim1[1],dim1[2],nc1,
45 dim2[0],dim2[1],dim2[2],nc2,
46 ori1[0],ori1[1],ori1[2],
47 math ->SetOperationToComplexMultiply();
48 if (usegpu)
49
50 }
51 #endif

Listing 2: ../Source/vtkNewCUDAFFT.cpp
1 extern "C" void NewCUDAFFT(float *input , int dim[3], int forward , int doComplex , int

time);
2 void vtkNewCUDAFFT::SimpleExecute(vtkImageData* input ,vtkImageData* output)
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3 {
4 NewCUDAFFT(inputdata , dim, this->Forward , this->DoComplex , this->TimingMode);

Listing 3: ../Source/NewCUDAFFT.cu
1 #include <cuda.h>
2 #include <cuda_runtime.h>
3 #include <cufft.h>
4 extern "C" void NewCUDAFFT(float *input , int dim[3], int forward , int doComplex , int

time)
5 {
6 cufftComplex *d_in;
7 cufftComplex *d_out;
8 cufftComplex *h_in;
9 cufftComplex *h_out;

10 int x = dim[0];
11 int y = dim[1];
12 int z = dim[2];
13 int size=x*y*z;
14 int mem_size=sizeof(cufftComplex)*size;
15 h_in=(cufftComplex*)malloc(mem_size);
16 h_out=(cufftComplex*)malloc(mem_size);
17 for(int i = 0; i < size; i++)//initialize values
18 {
19 h_in[i].x = input[2*i];
20 h_in[i].y = input[2*i+1];
21 }
22 cudaMalloc((void**)&d_in , mem_size);//allocate memory on device
23 cudaMemcpy(d_in , h_in , mem_size , cudaMemcpyHostToDevice);//copy memory to device
24 cufftHandle planForward;//create a plan--much like LAPACK’s procedure for

optimization
25 cufftPlan3d(&planForward , x, y, z, CUFFT_C2C);//initialize plan
26 d_out=d_in;
27 if (forward==1)
28 cufftExecC2C(planForward , d_in , d_out , CUFFT_FORWARD);//execute FFT
29 else
30 cufftExecC2C(planForward , d_in , d_out , CUFFT_INVERSE);//execute RFFT
31 cudaMemcpy(h_out , d_out , mem_size , cudaMemcpyDeviceToHost);
32 int normalizer;//note: when using CUFFT, upon RFFT a normalization factor of 1/

pixels = (pixelsˆ(-1/2))ˆ2 must be applied, since the device doesn’t normalize
on its own

33 if(forward == 0)
34 normalizer = size;
35 else
36 normalizer = 1;
37 for(int i=0;i<size;i++)//copy out results
38 {
39 input[i*2] = h_out[i].x/normalizer;
40 input[(i*2)+1] = h_out[i].y/normalizer;
41 }
42 }

4 Results

Our implementation was tested on a synthetic 80 x 80 x 80 image consisting of 3 cylinders, a sphere, and a
central cylinder with a branching point, as shown in Figure 6. In the 3D representation, the left image shows
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the original synthetic input image and the right image shows the output of our algorithm. Various structures
such as branch points, cylindrical and spherical structures are identified by our algorithm.

To highlight certain features of our algorithm, zoomed in representations are shown in Figure 7. The left
set (A), shows the branch points highlighted by the red circle, where the left image is the original synthetic
image and the right image shows the output of our algorithm. The branch point and connecting cylindrical
structures are accurately detected. In the right set (B) of Figure 7, we highlight the ability of our algorithm
to perform equally well on cylindrical as well as spherical features. Spherical structures are crucial, since
aneurysms in a vascular data need to be identified and assuming that all the structures are cylindrical in such
dataset limits the identification of such structures.

The input image (syntvessel.vt), output image (syntvessel vesselness.vt), and Tcl script
(vesselness.tcl) used to run the algorithm are provided in the submission. The command used to execute
the algorithm in this case was vtk vesselness.tcl syntvessel.vt. vesselness.tcl takes optional
inputs of:

• β - the emphasizing factor (default value 800.0)

• r - the radius of the neighborhood constructed (default value 8)

• usenewsphere - the command line switch specifying whether to use spherical or icosahedral neigh-
borhoods (default value 0, i.e. spherical)

• usenewwedges - the command line switch specifying whether to use “short” or “long” wedges (as
specified in the Implementation section, default value 0, i.e. “short” wedges)

• forceCPU - the command line switch specifying whether to use CUDA and execute code on the GPU
(if it recognizes CUDA) or execute fully on the CPU (default value 0, i.e. use GPU)

• outstem - the stem of the output (default value of the stem of the input file)

• debug - the command line switch specifying whether or not to print debug statements (default value
0, i.e. do not print).

5 Conclusion

We present an implementation of the non-parametric vessel detection method [6] in the framework of the
Visualization Toolkit’s filter pipeline, with significant acceleration-based optimizations using CUDA. The
implementation was found to achieve a speedup of approximately 18 times for a 100 x 256 x 100 image
(about 470 times faster than the original implementation) and gives strong results for synthetic vessel data.
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Figure 6: Three dimensional visualization of the synthetic test image and the vesselness output. Branch
points, spherical and cylindrical structures can be identified using our algorithm.

Figure 7: Image Set (A) shows a closer look at the branch point detection ability of our algorithm. As shown
by the red circle, our algorithm is able to detect branch points. Similarly, Image Set (B) shows the ability of
our algorithm to identify cylindrical and spherical structures which is crucial for the vascular datasets where
there may be an aneurysm.
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