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ABSTRACT
Certain biological factors such as genetics, physical fitness,
and lifestyle have been shown to influence an individual’s
risk of acquiring disease. But are there are other socioe-
conomic factors that influence disease incidence as well?
In this paper, we introduce a visualization tool called Dis-
easeTrends that explores the associations and possible cor-
relations between specific economic (personal income per
capita), educational (percentage of adult population with a
four year college degree), and environmental (air pollution
level) factors with diabetes prevalence and cancer incidence
rates across counties throughout the United States. It is struc-
tured as an interactive geographical visualization that dis-
plays disease incidence data as an interactive choropleth map
and connects it with coordinated views of the socioeconomic
variables for each county as the user scrolls over it. Addi-
tionally, the ability to compare and contrast counties as well
as to interactively specify a region for comparison allows
further examination of the data. This results in an informa-
tive overview of disease incidence trends that allows users
to spot areas of interest and potentially pursue these areas
further with more scientific research.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces graphical user interfaces, interaction styles, user-centered
design.

Author Keywords
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ation/Methodology

INTRODUCTION
It is widely known that for any given individual, biological
and personal health factors such as genetics, physical fitness,
and lifestyle play a role in the possible onset of a disease. For
example, the risk of Type 2 diabetes exhibits strong hered-
itary links and further increases with a person’s age, obe-
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sity, and alcohol intake [13, 21]. An interesting question
however, is if there are socioeconomic factors that forecast
disease incidence as well. Is being economically well-off
related to a person’s risk of acquiring diabetes? What about
receiving a four-year college education or being exposed to
high levels of air pollution? While we recognize it is dif-
ficult to give definite answers to these questions, let alone
determine any causal relationships between these socioeco-
nomic factors and disease incidence, we attempt to provide
hints at connections among the variables to motivate further
research in the form of an interactive visualization tool.

We present DiseaseTrends, an interactive geographic visu-
alization tool that allows the examination of these variables
with respect to disease incidence. Our visualization tool dis-
plays and helps users explore any possible trends as well as
correlation among these. We identified a number of socioe-
conomic factors that we thought were potentially linked to
disease incidence. On the economic side, we have personal
income per capita; on the educational side, the percentage of
the population holding a four-year college degree; and lastly,
on the environmental side, the estimated levels of air pollu-
tion. All the variables are observed at the county level. As
for the disease variable, we decided to concentrate on the
incidence rates for two well-known diseases: diabetes and
cancer. The reason for selecting these two came down to
the fact that there is much scientific and medical literature
hypothesizing links between these diseases and some of the
socioeconomic factors that we have chosen. DiseaseTrends
allows a user to filter the data, brushing the data to highlight
specific counties, pick specific counties for compare-and-
contrast type tasks, or examine user defined regions to in-
clude a cluster of counties. Once a user selects a county, we
compute a similarity metric based on our socioeconomic fac-
tors and show counties that are mostly similar but may have
varying disease incidence rates. This may spur researchers
to further examine those counties for other factors causing
varying disease incidences.

We believe our visualization will be most beneficial for (1)
those in the public health research community who would
like to use our visualization as a launch pad for ideas or
areas for deeper, more thorough investigation, and (2) lay
people who are interested in seeing how their county’s dis-
ease incidence rates compare to those of others, and whether
their relative economic, educational, and environmental fac-
tors might be related to the incidence rates. It is important



Figure 1. The National Cancer Institute’s presentation of their
statistically-modeled county-level cancer prevalence estimations. This
static choropleth map incorrectly uses a diverging scale, typically used
to show values diverging away from a mean or median of the data. The
map is, however, readily understandable, but it is static and does not
invite user participation with the data.

to note that our visualization does not provide any concrete
statistics or direct answers to questions about the correlation
of socioeconomic factors with disease incidence; rather, we
believe it will function as a potential foundation for further
research.

Our approach in building DiseaseTrends was to base the tool
on a geographical model and build on top of this platform to
introduce new visualization techniques to improve data ex-
ploration. Geographic visualization, often presented in car-
tographic form, is a proven technique employed by many
fields to easily visualize geocoded data. Presentation in this
form is common to many users, from domain experts to the
lay individual. Further discussion on the merits and chal-
lenges of geographic visualization is presented in the sec-
tions that follow.

RELATED WORK
Geographical visualization has been in existence for cen-
turies, starting with the earliest cartographic maps [27, 16].
Geographic visualization has evolved over time, as MacEachren
[29] describes the initial focus of cartographic visualization
as being for “personalized, highly interactive tools that facil-
itate a search for the unknown”. But now geographic visual-
ization can be used for exploration [26, 9], where hypotheses
emerge from observed visual trends, rather than using geo-
graphic visualization to answer a hypothesis. In order for
techniques to be successful in facilitating data exploration,
Tomaszewski et al. [37] suggests that the implementation
of highly interactive tools is critical. Further defining the
role of geographic visualization, in How Maps Work [27],
MacEachren says that the “goal of a map is to stimulate a
hypothesis rather than communicate a message.” We believe
that our interactive visualization tool stimulates a hypothesis
regarding the prevalence of a disease and its possible corre-
lations to other socioeconomic factors, which could further
be studied using research in public policy and other related
fields.

Let us now examine a couple of visualizations that are closely
related to our work. Several years ago, the National Can-

cer Institute’s (NCI) Statistical Research and Applications
Branch used geographical visualization to display U.S. can-
cer incidence rates for the year 1999, predicted by a statisti-
cal model (see Figure 1) [17]. We believe their use of geo-
graphical visualization was largely a success, but note how
their visualization merely provided a static overview of the
data. The emphasis of their work was on the accuracy of
the statistical predicting model. In our work, we opted for
a more interactive, engaging visualization that would com-
mence a line of thought rather than end it.

A more recent, closely-related predecessor we would like to
draw attention to is the set of visualizations by Bill Daven-
hall from his TEDMED talk, “Your health depends on where
you live” [15]. In this talk, Davenhall argued that the places
you have lived have a significant influence on your health.
He proposed an interactive application for portraying this
data to patients and doctors and exhibited two geographical
visualizations: one with the distribution of heart attack rates
across the country, and another with the location of toxic
waste facilities monitored by the EPA. Both illustrated how
easily we can see and link geographical factors to our health
risks with the use of visualization. Davenhall’s visualiza-
tions were more of the interactive, engaging type. It called
upon users to spot trends, form hypotheses, and test conclu-
sions. The visualizations, however, focuses significantly on
the presentation aspect, and not on user interaction as a real-
istic data exploration tool.

Below we will discuss some work from the data visualiza-
tion community that has formed our approach. Frederik-
son et al. [19] provided focus and context in cartography
through facilitated drill-down coordination and aggregation
for geographic visualization of events. They maintained a
Main View that contains markers, each representing an ag-
gregation of values at a more local zoomed in level. Markers
were coded by size and color and positioned on map by lo-
cation. Other approaches to display bivariate data include
work by Nelson et al. [31], which identified three different
types of user interaction with bivariate symbol design: sep-
arable symbols, integral symbols and configural symbols.

Most research for public health data visualization has con-
centrated on extending capabilities of choropleth maps by
dynamic linking in a dashboard setup [34], interactive filter-
ing/dynamic queries [33], or integration of statistical meth-
ods, computational clustering and pattern recognition. Carr
et al. [11] developed “linked micromaps” similar to those
shown on the NCI website. Their approach provides a method
for a user to filter a choropleth map (“conditioned choro-
pleth map”) but does not allow interactive examination of
individual counties. Wessel et al. [39] discuss the preva-
lence of linked views for simultaneous comparison of data,
and then propose an interesting method of conveying con-
text to focus with an altitude-based focus region. A more
statistics oriented approach was taken by Chen et al. [12],
who investigated the application of clustering / smoothing
algorithms of large datasets and visualizing results on choro-
pleth maps. They used the Kulldorf spatial scan statistic to
cluster their data. They combined the computed “reliability”



index with cluster data and provided visual representations
in the form of choropleth maps. We agree with them regard-
ing the inherent problems with static choropleth maps which
are (i) data classification (ii) choosing an appropriate color
map is extremely crucial (See Mersey [30] for details) (iii)
small numbers problem (small changes in absolute number
can have large effects on rate and thus strongly influence ap-
pearance on map) and (iv) visual bias problem (high-risk,
small, densely populated regions that are not easy to see but
represent real problems).

Of the tools described above, only some supported high lev-
els of user interactivity, a feature described by many to be of
strong value in geographic visualization. MacEachern et al.
[28] share some of their experience with designing a linked-
dashboard style web-based interface for exploring cancer in-
cidence. They encourage developers to “keep features to a
minimum for non-expert users especially since there is very
limited training time.”

Current GIS Tools
Current GIS tools allow users to explore geographic data.
ArcGIS [32] facilitates exploration of maps in correlation
with geographic information. It is robust in its ability to
handle a large variety and formats of datasets, but it lacks
the flexibility of interactively defining regions of interest and
comparing them across a geographical region. TIBCO Spot-
Fire [36] and Tableau Software [35] can both handle geo-
graphic data, but they employ basic visualization capabili-
ties such as coloring a region based on a quantity or placing
a scaled bubble on the region to communicate that quantity.
Basic “filter” type tasks as defined by Amar et al. [7] are
possible, but “correlation” and the ability to “characterize
distribution” and so on are not possible with these generic
business intelligence tools.

The U.S. Census Bureau’s Small Area Income and Poverty
Estimates (SAIPE) [6] tool provides basic geographic visu-
alization (choropleth map) that communicate “annual esti-
mates of income and poverty statistics for all school districts,
counties, and states.” It allows interactive exploration of the
value for a state, county or school district which is useful
for basic “retrieve value” type tasks [7]. Unfortunately, ba-
sic tasks such as “filter, find extremum, determine range”
too are not available. “Correlation” tasks are particularly
hard to conduct using their interface. The Geovisual Analyt-
ics Visualization (GAV) Flash Tools [23] as created by the
Swedish National Center for Visual Analytics (NCVA) is a
web-enabled tool [22] that brings the power of visual analyt-
ics [8] to geographic visualization. It facilitates data explo-
ration through the use of map layers, choropleth maps, infor-
mation visualization techniques such as line graphs, parallel
axes charts, scatter plots, treemaps and many others [24].
Among the kinds of tasks it seems to facilitate “filter, retrieve
value, determine range, find anomalies” type tasks [7]. In-
teraction capabilities for comparison “correlate, characterize
distribution” type tasks does not seem possible and could not
be verified since the tool does not seem to be live any more.

METHODOLOGY

The methodology we followed in our project can be broken
down into four major stages: (i) data collection, (ii) design-
ing and building the visualization (iii) obtaining feedback
via expert evaluation.

Data Collection
Our first step was the data collection process. We relied on
online search engines and reliable websites, such as those of
government agencies, to gather any economic, educational,
or environmental data that seemed relevant and promising.
The disease data was easy to locate because it is recorded by
many organizations within the government and medical re-
search community. We gathered data on the age-adjusted
estimates of the prevalence of adults with diagnosed dia-
betes, compiled in 2007, from the website for the Centers
for Disease Control and Prevention (CDC) [1], and the 2006
annual cancer incidence rates (which is an aggregate of all
types of cancer) from the website for the National Cancer
Institute [2]. Both variables were reported on the county
level. For data on our economic factors, we looked to the
Bureau of Economic Analysis. We decided to use the com-
parable statistics of personal income per capita, which was
provided on the county level [4]. Our education data came
from the Economic Research Service (ERS), which sourced
data from the 2000 U.S. Census [3]. Although the data may
be a bit dated, we chose to use it because, first, the Census
is highly reliable, and second, with our visualization being
geared towards highlighting long-term trends (the influences
of air pollution may not be seen in disease incidence rates
for years), the data is still appropriate. In the data set, there
were a number of different variables shown: the number of
people who have less than a high school education, only
a high school education, some college education, a four-
year college education, and the corresponding percentages
with respect to the county populations. Lastly, we collected
our environmental data from the Environmental Protection
Agency (EPA). In 2002, the EPA created computer models
to describe the estimated total concentration of toxic air pol-
lutants by county [5], which we used for our analysis. It
should be noted that the EPA warns of its data that “results
are most meaningful when viewed at the state or national
level, and should not be used to draw conclusions about lo-
cal exposures or risks”. However, because our visualization
is meant to suggest areas for further investigation, rather than
draw definite conclusions, we continued to proceed with the
dataset.

Designing the Interactive Data Visualization
Based on our design goals, we wanted to develop a geo-
graphic visualization with the ability to maintain interac-
tivity, allow users to examine specific data points, facilitate
easy comparison between counties, allow for filtering and
highlighting data to form hypotheses. Figure 2 shows an
overview of our interactive geographic visualization with a
choropleth map showing incidence rates of diabetes. A user
can switch between the diabetes data and the cancer data by
clicking on the leftmost button in the bottom panel. As a user
mouses over a county, we show a tooltip with the data for
each county along with a linked bullet graph on the top right
showing the other variables such as population, income, ed-



Figure 2. This figure shows an overview of DiseaseTrends. An interactive choropleth map is used to indicate incidence rates of a particular disease
(diabetes or cancer) for the counties. We use the Blues color scheme obtained from Color Brewer for the choropleth map (shown on the right side of
the figure). A user can mouse over any county to see the values for prevalence of the disease, the population of the county, the income per capita of
the county, the education levels and the toxic risk in the form of air pollution for that county (shown on the right in the form of a bullet graph per
variable). Other buttons in that row allow a user to filter, select specific counties for compare-and-contrast type tasks and also to select a cluster of
counties.

Figure 3. Bullet Graph visualization of the disease prevalence and so-
cioeconomic factors for a county. For each variable, the value is shown
as a bar and the two vertical lines perpendicular to the bar indicate the
national average (dark vertical line) and the state average (light vertical
line). The background represents quartile data distribution.

ucation and toxic risk. The Color Legend used for the map is
shown below the bullet graphs. The colors for the color leg-
end were obtained from ColorBrewer [20]. The structure of
our large dataset with five unique variables and no hierarchi-
cal relationship gave us pause in our initial considerations for
our visualization. We decided that it would be futile to over-
lay all variables on the same geographic map/frame, since it
would cause visual clutter and make it particularly difficult
for users to explore the data. We concluded that two sepa-
rate visualizations would be more suitable to show diabetes
and cancer incidence rates, as the two diseases were unlikely
to show any correlation and would only serve to occlude the
viewing of the other data.

Developing a visual blueprint
Our goal in designing the data visualization has been to en-
able user interaction with disease incidence data as well as
all three factor variables simultaneously. This design called
for displaying a choropleth color map showing the disease
incidence data and implementing a new linked visualiza-
tion with the other factors. Since we needed to show the
value of a variable in conjunction with the state and the na-
tional averages for that variable, we chose Bullet Graphs,
as introduced by Stephen Few [18]. Bullet graphs show a
quantitative scale with the current value displayed as a bar,
while vertical markers perpendicular to it serve as a compar-
ative measure for quantities such as averages, median etc. In



Figure 4. Filtering is enabled for all the variables: prevalence, pop-
ulation, income, education and toxic risk. The figure shows the user
filtering out high income counties to only display counties with high
prevalence, low population and low income. The tab representing fil-
tering at the bottom is highlighted in blue and shows the filters being
currently applied.

our case, we use two such vertical markers - one indicating
the state average (light vertical marker) for that variable and
one indicating the national average (dark vertical marker).
This allows a viewer to compare the value of that variable
with the state and national averages. The background of the
bullet graph encodes the data distribution in four shades of
gray, each shade representing a quartile of the distribution of
the variable being visualized. For example, in Figure 3 the
distribution of prevalence for the entire country is towards
the lower quartile. Therefore, Figure 3 shows that Pulaski
County, MO has an average prevalence with a population
that is below the state and national average for a county, an
income that is higher than the state and national average in-
come for a county, higher education levels than state and
national levels and lower toxic risk as compared to the state
and national averages.

The bullet graphs are linked live to the mouse-over actions
of the user interacting with the map. Hovering over a par-
ticular county causes the bullet graph to be updated with the
particular county and state data. Additional information is
provided to the user in the form of a tool tip (see Figure
2). The tool tip reveals the county name, population, dis-
ease incidence/prevalence rate, and state rank based on that
rate (where rank 1 is equal to the highest rate in that state).
The top colored strip of the tool tip box encodes the same
color as the county in the map, reinforcing the user’s color
association with the value of the county’s disease incidence
and overcoming the chance that, at the lowest zoom level,
the selected county (and its color) is completely obscured by
the mouse cursor. At any time, the user has the ability to
perform other functions to interact with the map including
zooming in and out, moving the map within the display win-
dow, and switching the active disease dataset. The user can
interactively select counties for compare-and-contrast type
operations, draw clusters of counties around the cursor, filter
the data to eliminate the display of counties that fall outside

the chosen filter values and brushing the data to highlight
specific counties.

Filtering
While much can be learned about the data based on the tools
described above, we believe it is important to allow users of
DiseaseTrends to filter the entire dataset by any combination
of the variables (the active disease data, the population and
the three factor variables). The filtering feature is accessed
through a button in the toolbar, which displays a drop-down
box featuring sliding scales for each of the factors (Figure
4). Users can click and drag the end points of the sliders to
adjust the filtering range. Once the user clicks on the Ap-
ply Filters button, the map is updated to only color counties
whose data meets the filters set by the user. All counties that
do not meet the filtering criteria are shown in white. Figure
4 shows an example of filtering. In the figure, the data is fil-
tered to only preserve low-income counties with high preva-
lence and low population. This results in a set of counties
and seems to highlight a large set of counties in the south-
eastern part of the United States.

Brushing
In addition to the filtering options provided, a user can high-
light certain counties on top of the entire map of the United
States by using brushing. brushing allows a user to draw a
viewer’s attention to a specific region or set of counties that
meet the brushing criteria. As compared to filtering, where
we only show counties that match the user’s selection, in
brushing we show the counties matching the brushing cri-
teria in red with the unaltered map of the country (shown
with the blue color scale). Figure 8 shows an example where
counties with a high prevalence of diabetes are highlighted.

County Selection
In addition to getting a sense of the overall distribution of a
disease, we provide the ability to compare-and-contrast var-
ious counties. A user can select specific counties, which
then show up on the bottom panel, as shown in Figure 5.
As subsequent counties are selected, we display their de-
tails in the bottom panel and place a number in their place
for easy reference of the selected counties for comparison.
Since these counties are selected for comparison purposes,
we compute a running maximum and minimum incidence
value among the selected counties. On closer examination
of the panels in Figure 5 showing the selected counties, one
can notice that the lowest prevalence amongst the five coun-
ties is highlighted in green (Big Horn County, Montana) and
the highest prevalence is highlighted in red (Buffalo County,
South Dakota). This provides a quick snapshot of the se-
lected counties and allows for easy comparison.

County Correlation
Since our goal has been to “stimulate a hypothesis”, we use
the County Selection process described above as a cue re-
garding the interest a user has in further examining a county.
Once a user selects a county, we compute a similarity metric
using a combination of the population, income, education
levels and the toxic risk of the county. Based on the met-
ric, we identify up to a maximum of five “similar” counties



Figure 5. County selection: A user can select counties for comparison by holding down the Shift key and clicking the county. This results in the
county information being displayed at the bottom with a number. A user can select multiple counties to compare counties. Since Big Horn County,
MT (1) has the least prevalence its value is shown in green, whereas Buffalo County, SD (5) has the highest prevalence among the selection and is
shown in red.

and display them in the bottom panel with their correlation
scores. We use the following formula to compute the simi-
larity metric:

S =

√
(

p1 − p2

1000
)2 +(

i1 − i2
1000

)2 +(e1 − e2)2 +(t1 − t2)2 (1)

where S is the computed similarity metric and for the two
counties under consideration, p1 and p2 are the population
values, i1 and i2 are the average income values, e1 and e2 are
the education levels, t1 and t2 are the toxic risk levels. Based
on experimental evaluation, we identified a value of S < 5.0
to identify meaningfully similar counties. Since population
values as well as the income values were in the thousands as
compared to the education levels and the toxic levels, we di-
vided the population component and income component by
1000. This ensures similar weighting for the calculating of
the similarity score when comparing two counties. Note that
a smaller similarity score (S) denotes a more similar county.
Additionally, we display only the top five counties in de-
creasing order of their similarity. For example in Figure 6,
a user has selected Val Verde County, TX and based on the
selection we have identified similar counties in Colorado,
Oklahoma, Idaho and a couple of counties in Pennsylvania.
An expert could then examine the incidence rates for these
counties and further investigate reasons for differences in in-
cidence rates despite similarities in population, income, ed-
ucation and toxic risk.

Selecting a Cluster of Counties

A disease cluster is defined as a cluster that has an unusually
high concentration of disease incidence in a region that is un-
likely to have occurred by chance [14]. It is often referred
to as a hot-spot cluster [12]. In situations where a user may
want to explore such a region or a cluster of counties, we
provide the ability to interactively select a cluster of coun-
ties. Based on the user’s selection, we draw a translucent
circle representing the counties selected by the user. All the
counties that lie completely within as well as those touch-
ing the drawn circle are considered as part of the cluster.
For each cluster, we compute and display the average preva-
lence, population, income, education and toxic risk for that
cluster in the form of bullet graphs, as shown in Figure 7.
Additionally, for each cluster of counties we display the av-
erage, minimum and maximum prevalence. We also main-
tain a running minimum and maximum for the three values
displayed in the bottom panel. For example, in Figure 7,
the second cluster of counties has the highest average, mini-
mum and maximum prevalence shown in red. At this point,
we allow the user to only select a circular region but we are
working on allowing a user to specify a region by drawing
an arbitrary shape.

IMPLEMENTATION DETAILS
We decided to use a framework for ActionScript 3 called
ClearMaps [25], produced by Sunlight Labs. ClearMaps
provides the base foundation for rendering Shapefile (shp)
data in Adobe Flash. We found it to be a good solution due to
the lightweight nature of the framework, its rendering speed
and its built-in mouse-over functionality.



Figure 6. Similar Counties displayed once a county is selected. A similarity metric based on population, income, education and the toxic risk is
computed and up to a maximum of five counties are displayed with their similarity metric shown in brackets. Here we see that a user has selected Val
Verde County, TX and five other similar counties are shown below with their similarity scores.

Figure 7. Selecting a cluster of counties: A user can interactively specify a region to create a cluster of counties. For each cluster, we compute and
display the average, minimum and the maximum prevalence. Here we have selected four clusters of counties. In this case, cluster 2 has the highest
values for the average, minimum and maximum prevalence (shown in red) and cluster 1 has lowest average and maximum prevalence (shown in
green). For the current cluster (cluster 2 in this case), the bullet graphs on the right show the variables averaged for those counties. Here we only
show the national average (dark line), since clusters can cross state boundaries.

The team at Sunlight Labs mentions that the tool was de-
signed to combat two issues of geographical visualizations
produced for the browser: rendering of vector data in-browser
and reducing vector data size for timely loading [38]. Both
of these issues are addressed by ClearMaps through the use
of binary Shapefile data, in which the map features are con-
verted into a compressed binary vector representation of orig-
inal ShapeFile, significantly reducing the size of the file and
making it much easier for the rendering engine to quickly
rendering all 3140 counties in the U.S. Since the Action-
Script 3 code is run by the Adobe Flash browser plug-in, a
component installed on a wide majority of computers world-
wide, our visualization can be viewed and used by anyone
regardless of the computer platform (Windows, Mac, Linux)
they use. The ClearMaps framework was fairly flexible and
allowed us to build upon it, which we did extensively in or-
der to create DiseaseTrends.

RESULTS
We think the best way to highlight the hypothesis generat-
ing ability in DiseaseTrends is to examine the system with
the aim of exploring the data. Let us consider our diabetes
data. We note that there is a very high diabetes incidence rate
in the southeast, indicated by the high frequency of counties
with dark red color (result of brushing high prevalence coun-
ties as shown in Figure 8). This region has recently been
dubbed as part of the Diabetes Belt [10] and further research
into the reasons for the high prevalence are being investi-
gated. This Diabetes Belt, as identified, consists of parts of
Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana,
North Carolina, Ohio, Pennsylvania, South Carolina, Ten-
nessee, Texas ,Virginia, West Virginia and the entire state
of Mississippi. We can clearly see these regions in Figure
8, which not only helps confirm current findings in the field
of preventative medicine, but also gives us confidence re-



Figure 8. Visualizing the Diabetes Belt – brushing counties with high
prevalence leads to a visual representation that highlights a large re-
gion in the southeastern United States. Parts of these states have been
identified lately as the Diabetes Belt .

garding other unseen findings that we might unearth using
DiseaseTrends.

We also notice that there are spurts of high incidence towards
the top of Maine, center of South Dakota, and a couple of re-
gions in Arizona. Upon mousing over Arizona, we see that
the two counties with noticeably higher diabetes incidence
rates than the rest are the Navajo and Apache Counties. With
prevalence rates of 12.2% and 12.1%, respectively, they rank
first and second in the state, and fall in the second highest
break class of prevalence rates. We decide to focus in on
Navajo County. From the coordinated views of socioeco-
nomic factors shown on the right (Figure 9 - top), we see
that Navajo County has a lower income, education, and air
pollution level than the national average. It seems that there
may be an association between low income, low education,
and high incidence rates of diabetes, but we should take a
look at a few other cases before forming these hypotheses.
We further examine high prevalence counties in the western
part of the United States, and select a few counties, as shown
in bottom image in Figure 9. The selected counties seem
to have a significantly high rate of incidence as compared
to the national average. As it turns out, a Native American
Reservation is situated in each of these counties. Based on
conversations with our expert evaluator in the Public Policy
department, it confirms the findings in their line of work re-
garding the high prevalence of diabetes in Native American
reservations.

We further examine the data by looking at the counties in the
southeast. Mousing over some of these dark blue counties,
we see that the actual diabetes incidence rates seem slightly
higher here than in Navajo County, and in terms of socioeco-
nomic factors, they tend to be similar: lower-than-national-
average income, but significantly lower education and air
pollution levels. So, now we can more confidently posit that
there is little significance of air pollution on diabetes. Navajo
County has an air pollution level that is lower than the na-
tional average, but higher than these southern counties, yet
has a higher diabetes incidence rate. Negative correlation be-
tween air pollution and diabetes seems unlikely, so we lean

Figure 9. The top image shows the DiseaseTrends visualization when
Navajo County is being explored. We can see that the county has a
lower income, education and air pollution level than the national av-
erage. It is known that there is a big Native American reservation in
the Navajo County. This is further explored by identifying counties
with high incidence rates in the western part of the United States. The
bottom image shows regions with high prevalence of diabetes and in-
terestingly enough there a Native American reservation is situated all
the counties selected here.

towards saying there is no significant relationship between
the two. On the other hand, the likelihood that income and
education levels are negatively correlated with diabetes inci-
dence rate is still there, if not stronger. It is evident that the
majority of the Southern counties have higher than average
diabetes incidence rates, and now we see they also tend to
have lower than average income and education levels.

Notice how easily we moved from one county to the next,
making comparisons, spotting patterns, and forming hypothe-
ses. At the end of the trial, we can not claim to have a clear
answer on which factors affect disease incidence and to what
extent, but we think this example makes clear how useful our
visualization tool can be as an overview for the trends and
foundation for further research.

EXPERT FEEDBACK
We obtained feedback from four experts in the fields of pub-
lic policy, economics and public health. Instead of con-
ducting a task-based evaluation, we gave each of them a
demonstration and then allowed them to interact with the



data. Based on their interactions and prior knowledge, we
identified certain trends as mentioned above regarding high
prevalence of diabetes in Native American Reservations and
regarding the Diabetes Belt.

All the experts were highly impressed with the user inter-
face and specifically the ability to filter data, select specific
counties for compare-and-contrast type tasks and the ability
to specify a cluster of counties. The economist provided us
with feedback regarding displaying similar counties based
on the current selected counties. She said that it might be
interesting to examine counties with similar population, in-
come, education and air pollution levels but varying inci-
dence rates. We incorporated her suggestion as shown in
Section . She also mentioned that it may be interesting to vi-
sualize other variables such as racial distribution since they
have seen some correlations with certain races and high in-
cidences of diabetes. Unfortunately, they did not have any
county level data for the entire country and so this could not
be incorporated. We have started conversations regarding
collaboration on the state level data that they have.

Based on conversations with the public policy expert, we
found that they would like to further examine whether caloric
intake data was available to investigate a correlation between
caloric intake and diabetes. The public health researcher
mentioned that it certainly could be a useful tool for pub-
lic health researchers as a way to identify counties/clusters
of interest for further investigation. He also felt that the tool
might suggest too much causation, rather than simply associ-
ation. We have been particularly cautious with not implying
any causation throughout the paper and have merely hinted
at possible associations with our variables. It is completely
up to a researcher in the field of public policy / public health
to further investigate the findings.

CONCLUSION AND FUTURE WORK
We have presented an interactive geographic visualization
tool that allows for exploration, examination and the gener-
ation of hypotheses for further study. Based on our expert
feedback, we believe our visualization tool serves as an in-
formative and effective overview of trends in disease inci-
dence and specific socioeconomic factors. It allows a user
to easily drill down on any trends and aspects in the data for
further examination. Our visualization can easily incorpo-
rate additional analysis, whether it is by adding other factors,
looking at other diseases, or implementing different coordi-
nated views as part of the analysis. This generalization of
the DiseaseTrends program to work with new datasets, both
disease as well as external factors can be accomplished with
minimal additional work to our existing program. In our
next version, a user will be able to select from a number of
preloaded datasets or upload their own data. Additionally,
we plan to undertake a detailed task-based expert evalua-
tion comparing of our system to evaluate the effectiveness
of our tool. We are also planning to integrate Geographi-
cally Weighted Regression (GWR) into the next version of
our tool. We are currently working on incorporating statisti-
cal cluster detection methods into the tool.
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