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ABSTRACT

Remote sensing involves the acquisition of data in terms of im-
ages, point clouds and so on. One of the major challenges with
remote sensing datasets is managing and understanding the mas-
sive amounts of data that is collected. In many instances, scientists
acquire data for the same region using varied sensing devices. Sci-
entists would like to fuse and examine this data acquired from dif-
ferent sensing devices to further explore the region under investiga-
tion. Immersive visualization has emerged as an ideal solution for
three-dimensional exploration of multimodal remote sensing data.
The ability to manipulate data interactively in true 3D (using stereo)
with interfaces designed specifically for the immersive environment
can significantly speed up the exploration process. We have devel-
oped a visualization platform that facilitates the fusion of multiple
modalities of remote sensing data and allows a scientist to learn
more about the data obtained from different sensing devices. It is
currently being used in research labs at Idaho State University and
at the Idaho National Labs.

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Remote sensing, as defined by Jensen [10], is the “art and science of
obtaining information about an object without being in direct con-
tact with the object.” It can be further refined to the gathering of
data from a distance, frequently in the form of images or discrete
points to learn more about the world. Remote sensing has multi-
ple applications in fields such as biology, defense, environmental
measurements such as change in vegetation over time, aerial traffic
control and so on. Sensors are classified as active sensors or passive
sensors. Active sensors rely on emitting energy (electromagnetic
energy in most applications) followed by measuring and analyzing
the reflected response of the signal. Passive sensors on the other
hand detect energy emitted or reflected by a nearby object or a sur-
rounding area. In most situations, the amount of data collected by
these sensors is massive and obtaining a reasonable understanding
of the data can be incredibly hard. Some of the problems that geo-
scientists face are around examination and exploration of such large
datasets. Ideally, scientists would like to explore specific trends and
obtain insight through the refinement of their mental model by in-
teracting with their data.

Research has shown that exploring and eventually obtaining in-
sight can be facilitated and, in some cases, accelerated using scien-
tific visualization techniques [11]. Research in the field of scientific
visualization has dealt with challenges of large data visualization as
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Figure 1: Overview of the fused LiDAR and hyperspectral visualiza-
tion. The LiDAR point cloud is on top of the hyperspectral imagery
that can be seen at the bottom. The LiDAR points are colored using
height as a means for classification. The hyperspectral data is being
rendered as a volume.

well as interactive exploration of data for an improved understand-
ing [13]. Desktop-based visualization solutions may be sufficient
for regions where the data is localized and trends/features can be
easily seen (for e.g., medical visualization, information visualiza-
tion). In situations, where the amount of data collected or gen-
erated as a result of a simulation is huge and spread over a large
geographical region, desktop-based solutions can quickly become
unwieldy. Research has shown that users have a hard time navi-
gating 3D scenes using standard interfaces developed for a desktop
[12]. Particularly, tasks surrounding selection, according to the tax-
onomy by Amar et al. [1], such as retrieve value and correlate
can be extremely challenging and may lead to frustration as well
as a drop in user performance. Immersive visualization allows sci-
entists to visualize their data in stereoscopic 3D with the ability
to fly over their data and examine regions of interest. The ability
to interactively explore data in an immersive environment can pro-
vide users with a faster, better understanding of data with potential
improvements in performance over desktop applications depending
on the task being performed [9]. Immersive visualization though is
not sufficient [19] since scientists need to be able to interact with
their data in an easy, intuitive manner that includes being able to
transform the data, measure distances and automatically detect and
highlight user specified features.

We have developed an immersive visualization platform that al-
lows the fusion of remote sensing data acquired from two different
modalities. Our platform, Remote Sensing Visualization Platform
(RSVP) allows users to load hyperspectral imagery as well as Li-
DAR data acquired for the same geographical region. Hyperspec-
tral imagery is a form of remote sensing containing many bands
(images) each at a slightly different wavelength over a continuous



interval of the electromagnetic spectrum. LiDAR (Light Detection
and Ranging) is a form of active remote sensing using laser pulses
to map an area, creating a 3D point cloud. Scientists are interested
in examining these modalities in conjunction to learn more about a
region and, in our case, the characteristics of the local vegetation
[2, 23].

The features of RSVP include automatic registration of the hy-
perspectral imagery and LiDAR data, volume rendering of the hy-
perspectral image stack along with the LiDAR data, orthogonal
views of the hyperspectral image stack to allow exploration of pro-
files in a certain region, map three user-defined hyperspectral levels
to RGB values (as is the standard practice in remote sensing) as
well as user interface capabilities to vary the elevation of the hyper-
spectral slice for correlation with the LiDAR data.

2 RELATED WORK

Immersive environments have made interactive exploration in
stereoscopic 3D feasible. The CAVETM, 3D TV’s as well as re-
search solutions such as the IQ-station [27] have given the end user
the ability to experience content and data in 3D. A CAVETMcan be
particularly expensive and may not be accessible to small or even
medium sized research groups, whereas an IQ-station can provide
a similar immersive experience at a smaller scale. Sherman et al.
[27] developed the low-cost immersive solution (IQ-station) that
enables small research teams of 3 to 4 individuals to explore their
data in an immersive virtual reality environment. RSVP is built on
the VRUI VR toolkit [21, 18] and leverages the ability of the virtual
reality toolkit to make use of the native user interfaces for a range
of environments from the desktop to the IQ-station to the CAVETM.

Immersive visualization has made it possible for geoscientists to
examine and interpret large amounts of data captured from various
devices. A desktop environment can provide interactive visualiza-
tion, but the interaction paradigm is mostly in terms of a keyboard
and mouse. Navigating in a 3D environment with a interface ele-
ments defined for a 2D environment is particularly challenging and
can pose problems with user selection, specification and manipu-
lation of data [25]. On the other hand, interacting directly with
data in a stereo environment with 3D input devices can provide a
greater handle on interaction in terms of “isolation and extraction
of features [20] .” Gruchalla [9] explored the use of immersive en-
vironments for path tracking and found that users were faster and
more accurate when using an immersive system rather than a desk-
top version of their system. Di Carlo [4] developed a VR toolkit that
produced various 3D representations of the same data and allowed
users to interact with them in an immersive environment.

LiDAR (Light Detection And Ranging) is one of the most widely
used data formats in the remote sensing domain. The amount of
data acquired can easily range from a few million to sometimes
even billions of points in a single dataset. The data is mostly vi-
sualized using triangulated surface representations in software such
as ArcGIS [6]. It is widely used for segmenting large regions [22],
building reconstruction based on point set acquisition [7, 26] and
many other applications.

Visualizing such large amounts of data at interactive frame rates
can be particularly challenging. Gardner et al. [8] developed a non-
immersive system for analysis of LiDAR data. Even though their
system was non-immersive, they found that 3D visualization of the
data was extremely useful for examining features in the data and an-
alyzing structures within. They mention the need to develop more
tools for annotating and investigating details in such huge datasets.
To address problems surrounding such massive datasets, Kreylos
et al. [20] developed a out-of-core multiresolution rendering tech-
nique that decomposes the data using an octree data structure to
provide view-dependent interactive rendering of large point cloud
data. The data is preprocessed to create a multiresolution octree that
can then be used as input to the interactive immersive application.

Recently, Kovac and Zalik [17] developed a two-pass point based
rendering technique that uses elliptical weighted average filtering
[29] to address problems associated with aliasing.

3 APPROACH

In order to facilitate interactive exploration of data in an immersive
environment, we decided to develop a system that could allow sci-
entists to load both the hyperspectral imagery and the LiDAR point
cloud data. We primarily worked on an IQ-station [27], but our
software has also been extensively tested and used in the 4-sided
CAVETMat the Idaho National Labs.

To facilitate exploration and correlation, we developed the re-
mote sensing visualization platform (RSVP) that loads in the Li-
DAR data and allows users a variety of different options for ex-
amining the hyperspectral imagery. As of now, the hyperspectral
image stack can be visualized (i) as a single greyscale slice with
a single hyperspectral image mapped to the quad or (ii) as a sin-
gle slice with three user-specified hyperspectral levels mapped to
the Red, Green and Blue component of an image or (iii) as three
orthogonal slices to examine the profile of the hyperspectral stack
in x-, y-, and z-directions and (iv) volume visualization techniques
with the ability to classify various regions using a transfer func-
tion. Figure 1 shows an overview of the current version of RSVP
with the LiDAR data on top and the hyperspectral imagery at the
bottom. The LiDAR data has been colored based on its height to
perform some basic classification of the point cloud.

3.1 Data and Tasks

Based on conversations with scientists in our research team, we re-
alized that one of the most frequent tasks that geoscientists perform
is the correlation of data obtained from various modalities and to
be able to make deductions based on that. In addition, we identified
that there are scenarios where they would like to explore the entire
hyperspectral stack and identify patterns in the stack. We provide
volume visualization and orthogonal slice views to facilitate that
task.

The data was collected for two specific sites:

1. China Hat Site: This is an area in Idaho (near Soda Springs)
which has several interesting features. There are fault scarps
in the region which look like deep grooves in the area. An-
other feature is China Hat itself which is a rhyolite dome cov-
ered in trees. The dataset was tested at various resolutions
of each slice (Small - 256*106*123, Medium - 512*202, 123
and Original - 1024*424*123). Data was provided by Lucas
Spaete from the Boise Center Aerospace Laboratory.

2. INL Runway: This is a runway owned by the Idaho National
Labs (INL). The hyperspectral data was taken using an un-
manned aerial vehicle. Jessica Mitchell at INL is the point of
contact for this data set. It is a very flat region, but a small
LiDAR dataset that was used for testing and prototyping pur-
poses.

3.2 Greyscale slice

A user can chose to visualize a single layer of the hyperspectral
image stack with the LiDAR data. We perform texture mapping to
read in a single image and display it with the LiDAR data. Figure
2 shows an example image with the LiDAR data on top of the hy-
perspectral slice. This can help a user get an overview of the data
and examine the registration of the two datasets. This can also be
further augmented with colored LiDAR points based on the corre-
sponding hyperspectral data for those points.



Figure 3: This figure shows a slice-based RGB visualization of the hyperspectral image stack with the LiDAR data below the hyperspectral data.
The right image shows a closeup of the hyperspectral data for a particular configuration of the RGB values mapped to levels.

Figure 2: This figure shows a simple slice-based greyscale visualiza-
tion of a single slice of the hyperspectral stack and the LiDAR data on
top of it. A user can user a simple slider bar to change the elevation
of the hyperspectral slice.

3.3 Colored Slice

Scientists in our group expressed an interest in being able to use the
Red, Green and Blue (RGB) channels of an image to encode vari-
ous levels of hyperspectral data. Based on their training, they are
able to visually understand the data better if they are given control
over which color in the image slice (R, G, B) maps to which layer
in the hyperspectral image stack. Figure 3 shows an example of the
slice-based RGB visualization of the hyperspectral imagery with
the LiDAR data. In this case, the hyperspectral data is on top of the
LiDAR data. We provide the user the ability to specify the band el-
evation offset which translates the hyperspectral data either over or
under the LiDAR data. We provide three sliders (one each for Red,
Green and Blue) to allow the user control over which hyperspectral
layer/slice is assigned to which color.

3.4 Orthogonal Slices

In addition to being able to visualize a single slice, the ability to
examine the entire hyperspectral image stack can provide further
insight into the entire hyperspectral data. We provide an orthogo-
nal slice view that displays three orthogonal slices that are texture
mapped with the hyperspectral data. A user can interactively se-
lect the position of the xy-,xz- and yz-planes using three sliders as
shown in Figure 4. Here we show that we can link the colormaps
of the hyperspectral and LiDAR data to facilitate correlation. Any
change to the color map of the hyperspectral data will be simul-
taneously reflected in the orthogonal slices as well as the LiDAR
data.

3.5 Volume Rendering

Volume rendering can provide insight into the data by providing
a composite view of the hyperspectral image stack. The volume

Figure 4: Orthogonal slices display the hyperspectral data. The slice
positions can be changed using the slider for each slice. The color
map for the LiDAR data and hyperspectral slices can be linked, which
helps with correlating locations in the data.

rendering integral is evaluated along the ray as it traverses the hy-
perspectral stack. The process of assigning colors is based on a
user-defined function called the transfer function. This function
maps the intensity values of the raw data to a color and opacity.
Figure 5 shows an example transfer function where the histogram
of the hyperspectral stack is shown in the middle window of the 1D
Transfer function editor widget. A user can use the control points
(shown in blue) to modify the transfer function. Defining an op-
timal transfer function automatically is extremely hard [3, 5] and
finding an optimal transfer function requires tedious manipulation.

We provide the user with the ability to specify a 1D transfer func-
tion (as shown in Figure 5) as well as a 2.5D transfer function (Fig-
ure 6). 2.5D transfer functions provide an interface to the transfer
function space and facilitate the identification of surface boundaries
within a volume [14, 15]. Figure 6 shows one such transfer func-
tion with the resulting image shown below. In this case, the user
is shown a two dimensional histogram in the right window with the
gradient on the y-axis and the intensity of the hyperspectral imagery
on the x-axis. Identifying regions of high gradient and a known in-
tensity can lead to clean boundaries between surfaces as can be seen
in Figure 6.



Figure 5: One-dimensional transfer functions map intensity values in
the hyperspectral data to color and opacity as specified by the user.
The 1D Transfer function editor widget shows the interface that can
be used to change the mapping. The blue triangles are the control
points that can be changed to vary the transfer function.

4 IMPLEMENTATION DETAILS

RSVP was built on top of the VRUI VR software[21, 18] that is a
visualization package designed to create a 3D immersive solution
across multiple display types including desktops, IQ Stations, and
the CAVETM. The package is written in C++ and has several ex-
isting applications built on top of it including LiDAR Viewer, 3D
Visualizer, and Toirt-Samhlaigh (Volume Visualizer). These appli-
cations perform specific tasks, for example LiDAR Viewer can vi-
sualize large amounts of LiDAR data and Toirt-Samhlaigh can per-
form volume visualization, but none of them contain a mechanism
to display both point and raster data in the same scene. In order
to provide volume visualization functionality, we adapted the code
from Toirt-Samhlaigh to use the built-in widgets for 1D and 2.5D
transfer functions.

4.1 Performance evaluation

In order to evaluate the ability of RSVP to load reasonable large
datasets, we conducted a performance evaluation on the Chinahat
dataset. The runway dataset has been collected by INL due to which
some of its details cannot be made public. In any case, the Chinahat
dataset is much larger and provides some interesting insights into
the performance of RSVP. The numbers reported in the table are the
frames per second for visualizing the points and the hyperspectral
data in the volume visualization mode, since that mode is the most
demanding on the system.

As can be seen in the accompanying table, the system performed
fairly well with frames per second around 20 with 10x decimation
of the data. For no decimation of the LiDAR point cloud (1x), the
system struggled considerably and the frame rates dropped below 4
fps, since we load all the data into memory. This affects the loading
time too as can be seen in the last column. The numbers for no
decimation (1x) with the hyperspectral image stack visualized as a
volume in full resolution (1024) have not been reported since the
performance was not interactive. One of the optimizations that we
are working on right now is to implement an efficient data structure
(similar to Kreylos et al. [18]) to load point data on demand rather

Figure 6: This figure shows a 2.5D transfer function being used along
with the corresponding visualization. The 2.5D transfer function has
been shown to highlight boundary surfaces in volumetric data [14, 15]
and accordingly highlights boundary surfaces in the hyperspectral
data. These boundaries offer insights into the properties of the re-
gion.

than keeping it all in memory at once. That will allow a user to
visualize both the datasets at the highest resolution.

Points Volume FPS Load Time
Size num points Dec. Res. (in secs)

47MB 772,249 100x 256 70 2.27
470MB 7,722,411 10x 256 26 16.29
4.5GB 77,224,118 1x 256 2.5 137.55
47MB 772,249 100x 512 60 3.1

470MB 7,722,411 10x 512 27 16.55
4.5GB 77,224,118 1x 512 3.6 145.96
47MB 772,249 100x 1024 30 5.72

470MB 7,722,411 10x 1024 19 19.1

5 DISCUSSION AND FUTURE WORK

RSVP is currently being used in the Boise Center for Aerospace
Laboratory as well as the Center for Advanced Modeling and Sim-
ulation at the Idaho National Labs. Scientists are finding the RGB
slice view and the orthogonal slices to be extremely useful for ex-
ploration. The volume rendering views generate visually appealing
images, but the transfer function specification seems non intuitive to
our users. Researchers in the volume visualization field have iden-
tified this problem for almost a decade and it is a well researched
topic [24, 5, 3].

Some of the next steps include facilitating fine grained explo-
ration where a user can examine the profile of a single pixel in the
hyperspectral image. This would be displayed as a profile of the
pixel over all the levels/slices in the hyperspectral data. This would
facilitate comparison of various regions by examining their respec-
tive profiles. Automatic classification of the LiDAR data based
on the hyperspectral data is another feature that we are currently
working on. We have also been requested to add a feature fusing
other modalities including photos and videos and correlating Li-
DAR points with structure obtained from motion [16, 28].



6 CONCLUSION

We have presented a visualization platform (RSVP) that facilitates
the fusion of data obtained from varied sensors. Both the datasets
are automatically registered based on the coordinates in the Li-
DAR file. Scientists can explore the fused data using a variety of
visualization techniques such as a single greyscale slice, colored
RGB slice with control over which hyperspectral slice is mapped
to which of the three colors (R, G or B), three orthogonal slices
that provide a profile view around a specific x, y, z-location as well
as a volume rendering of the hyperspectral data. Expert feedback
indicates that the ability to explore fused datasets makes it easier
to examine regions of interest in an immersive environment. We
also found that scientists would like to load larger datasets than can
be handled by our system right now and are currently working on
optimizing the same.
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[17] B. Kovač and B. Zalik. Visualization of lidar datasets using point-
based rendering technique. Comput. Geosci., 36:1443–1450, Novem-
ber 2010.

[18] O. Kreylos. Environment-independent vr development. In G. Bebis,
R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters,
J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, edi-
tors, Advances in Visual Computing, volume 5358 of Lecture Notes
in Computer Science, pages 901–912. Springer Berlin / Heidelberg,
2008.

[19] O. Kreylos, G. Bawden, T. Bernardin, M. I. Billen, E. S. Cowgill,
R. D. Gold, B. Hamann, M. Jadamec, L. H. Kellogg, O. G. Staadt,
and D. Y. Sumner. Enabling scientific workflows in virtual reality.
In Proceedings of the 2006 ACM international conference on Virtual
reality continuum and its applications, VRCIA ’06, pages 155–162,
New York, NY, USA, 2006. ACM.

[20] O. Kreylos, G. Bawden, and L. Kellogg. Immersive visualization
and analysis of lidar data. In Advances in Visual Computing, volume
5358 of Lecture Notes in Computer Science, pages 846–855. Springer
Berlin / Heidelberg, 2008.

[21] O. Kreylos, W. Bethel, T. J. Ligocki, and B. Hamann. Virtual-reality-
based interactive exploration of multiresolution data. Springer-
Verlag, Heidelberg, Germany, 2002.

[22] B. Matei, H. Sawhney, S. Samarasekera, J. Kim, and R. Kumar. Build-
ing segmentation for densely built urban regions using aerial lidar
data. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1 –8, june 2008.

[23] J. Mitchell, N. Glenn, T. Sankey, D. Derryberry, M. Anderson, and
R. Hruska. Small-footprint lidar estimations of sagebrush canopy
characteristics. Photogrammetric Engineering & Remote Sensing,
submitted for publication, 2011.

[24] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder,
L. Avila, K. Raghu, R. Machiraju, and J. Lee. The transfer function
bake-off. Computer Graphics and Applications, IEEE, 21(3):16–22,
2001.

[25] H. Rheingold. Virtual reality. Simon & Schuster, Inc., New York, NY,
USA, 1991.

[26] F. Rottensteiner and C. Briese. A new method for building extraction
in urban areas from high-resolution lidar data. International Archives
of Photogrammetry Remote Sensing and Spatial Information Sciences,
34(3/A):295–301, 2002.

[27] W. R. Sherman, P. O’Leary, E. T. Whiting, S. Grover, and E. A. Wern-
ert. Iq-station: a low cost portable immersive environment. In Pro-
ceedings of the 6th international conference on Advances in visual
computing - Volume Part II, ISVC’10, pages 361–372, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[28] P. Sturm and B. Triggs. A factorization based algorithm for multi-
image projective structure and motion. Computer Vision?ECCV’96,
pages 709–720, 1996.

[29] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa splatting. Vi-
sualization and Computer Graphics, IEEE Transactions on, 8(3):223
– 238, jul-sep 2002.


