
Leveraging Models of Human Reasoning
to Identify EEG Electrodes in Images

with Neural Networks

Dr. Alark Joshi
University of San Francisco, USA
Dr. Phan Luu
Philips Neurodiagnostics, USA
Dr. Don Tucker
Philips Neurodiagnostics, USA
Steven Shofner
Philips Neurodiagnostics, USA
ABSTRACT
Humans have very little trouble recognizing discrete objects within a scene while performing the same tasks
using classical computer vision techniques can be counterintuitive. Humans, equipped with a visual cortex,
perform much of this work below the level of consciousness and, by the time a human is conscious of a
visual stimulus, the signal has already been processed by lower order brain regions and segmented into
semantic regions.

Convolutional neural networks are modeled loosely on the structure of the human visual cortex and when
trained with data produced by human actors are capable of emulating its performance. By black-boxing the
low-level image analysis tasks in this way, we can model our solutions to problems in terms of the
workflows of expert human operators, leveraging both the work performed pre-consciously and the higher-
order algorithmic solutions employed to solve problems.

Keywords: Geodesic Photogrammetry System (GPS), Photogrammetry,
Electroencephalogram, Segmentation, Python, TensorFlow, TFLearn, Keras, Deep
Learning, Convolutional Neural Networks

INTRODUCTION

Describe the general perspective of the chapter. End by specifically stating the objectives of the chapter.
Until very recently, approaches to computer version have been dominated by the application of
what the authors refer to as classical computer vision techniques. These include morphological
operations, thresholding, feature extractors, Hough transforms, and edge detectors among many
others. As researchers and practitioners have gained experience and insights into the problem,
slow and steady progress has been realized, but with the advent of the era of deep learning the
rate of advancement has been astonishing.

In “The Unreasonable Effectiveness of Data”, the authors argue that “we should stop acting as if
our goal is to author extremely elegant theories, and instead embrace complexity and make use

of the best ally we have: the unreasonable effectiveness of data.” (Halevy, A. Norvig, P., Pereira,
F. 2015). Image processing is to shape analysis and feature extraction what natural languages are
to context free grammars, and defining a theory or formula to capture either represents an
intractable problem. At the same time, humans are capable of performing these tasks to a
reasonable degree of accuracy with little effort. What Halevy, Norvig, and Pereira suggest is that
within certain domains no elegant theories can reasonably model the complexity of the problem
space, and that data along with machine learning has proven to be an effective means of doing
this.

Training a deep convolutional neural network with human labeled data is essentially designing
an algorithm capable of emulating the performance of the human labeler(s). In this manuscript,
we outline an approach that combines this emulation derived from the labelled data with the
algorithmic approach the same users apply in performing a localization and identification task
over a set of images.

BACKGROUND

Philips Neurodiagnostics manufactures a complete hardware / software dense array electroencephalography
(EEG) systems. EEG, as a technology, has existed since 1875 (Swartz, 1998) and is much older than many
other technologies used for non-invasive neural imaging, such as magnetic resonance imaging (MRI) or
functional magnetic resonance imaging (fMRI), but offers some unique advantages such as high temporal
resolution and movement tolerance.

Epileptic seizures result from excessive synchronization in the firing of neurons in the brain (often starting
in a small highly localized region). High temporal resolution makes EEG ideal for the diagnosis of epilepsy,
as the associated spikes are most easily characterized by the sub second resolution enabled by EEG. In
some cases, epileptic seizures are not controlled by pharmacological means and a determination is made
that a brain resection should be performed to remove the tissue that serves as the source of the problem.
When resectioning is deemed appropriate source localization of the recovered electrical signals can assist
in identifying the region of the brain responsible. In order to perform source localization using the recovered
electrical signals, the sensor locations must be registered to the surface of a model of the head.

There are a number of other situations where the ability to localize recovered signals is highly desirable.
There is some evidence that neuronal activation can be depressed by low frequency pulsed direct current
stimulation [cite]. This may offer a non-invasive means for the treatment of neurological disorders like
Epilepsy or Parkinson’s. For these disorders, it may be possible to use source localization of signals in EEG
to identify the region of origin of the unwanted activity and then, given the reciprocity principle (Fernández-
Corazza, Turovets, Luu, Anderson, & Tucker, 2016) (which holds that electrical current will follow the
same pathways when injected at the scalp as it follows to reach the scalp from a specific brain region),
target the same region with transcranial injected current to modulate the activation or plasticity of the
region.

In both cases, an accurate registration of the sensors to the scalp surface is needed. Several means of
achieving this exist with their own advantages and disadvantages.

RF systems can derive 3D position by measuring an RF signal emission at a number of receivers. These
systems require a technician measure the placement of sensors while the subject remains completely still
and is sensitive to the effects caused by other materials in the vicinity of the receivers. Laser scanners can
derive very precise models quickly, but pose a risk to eyes and produce a dense mesh that would need to
be further analyzed to derive sensor positions. Photogrammetry is a technique that allows the subject to be

imaged quickly, poses no risk to the eyes, and produces a permanent record of net application, but requires
advanced image analysis to identify and localize the sensors.

Despite the challenges, the advantages of photogrammetry for this purpose lead to the development of the
Geodesic Photogrammetry System (GPS): 11 cameras arranged in a geodesic dome structure are triggered
simultaneously and the captured images are analyzed offline to derive the 3D positions of the sensors placed
on the head of the patient. Though classical computer vision techniques have been applied to identifying
these sensors, significant user intervention is still required to adjust placement and identification of the
sensors.

Because of the permanence of this record it is also possible the extract a significant amount of data that can
be used to train a neural network to perform the tasks and achieve a higher level of automation.

Neural Networks
Deep neural networks (DNNs) are subset of artificial neural networks (ANNs) with many hidden layers
between the input and output. ANNs are modeled on biological neurological systems where neurons form
networks such that the neurons have a many to many relationship (the outputs of many neurons connect to
the input of a neuron and its outputs connect to the inputs of many more neurons). The neuron possesses an
activation function that takes sum of its inputs and produces an output. The inputs are weighted such that
some inputs are strongly correlated to the output and others are weakly correlated or not correlated at all.

Artificial neural networks generally organize the neurons into layers where the output of the neurons on
one layer feed into the inputs of the neurons on the next layer. Training an ANN is the process of adjusting
the weights and biases of the neuronal inputs by providing the network with training data and comparing
the output to ground truth until the desired output is achieved.

A well-known result found training even a simple 2 layer, 3 node network to be NP-Complete (Blum &
Rivest, 1989). This being so, how is it that the training of deep neural networks can be performed so
efficiently? In the paper “On the Computational Efficiency of Training Neural Networks” the authors asked
and attempted to answer this exact question finding a few factors that contribute to the efficiency of training
modern neural networks: using an activation function that facilitates optimization using one of the gradient
descent optimization techniques, over-specification of the networks, and regularization (Livni, Shalev-
Shwartz, & Shamir, 2014).

Layers
In an ANN a layer is a collection of neurons that all receive input from the previous layer and all provide
output to the next layer. Many kinds of layers exist, some particularly well-suited to specific tasks, like
convolutional layers with regards to image processing.

A layer can be configured with an activation function, allowing it to learn to operate on the data flowing
through the network by a process of training, or may implement a normalization or regularization function.
There are a number of different activation functions, with different characteristics including threshold,
sigmoid, tanh, and linear activation functions, the rectified linear unit (ReLU), and many more. The
threshold activation function does not produce results that are conducive to optimization by means of
stochastic gradient descent (Livni, Shalev-Shwartz, and Shamir, 2014) and is rarely if ever used, while
sigmoid and ReLU activation functions are very common in modern architectures.

A convolutional layer, for example, is a layer modeled on the visual cortex and features local receptive
fields that take as input submatrices of the previous layers output in order to maintain spatial relationships.
Additionally, all of the receptive fields share weights and biases so that the learned image feature is location
invariant. As the name suggests, a convolutional layer essentially learns a convolutional kernel that can be
applied to an image to recognize a particular type of feature.

Some layers, while still operating on the incoming data, do not possess an activation function or weights
that can be adjusted and do not learn from the information that passes through them. An example of this is
a max-pooling layer. A max-pooling layer implements something similar to a local receptive field (a
component of convolutional layers) that takes inputs from the previous layer and produces an output equal
to the maximum value its local receptive field sees. These are commonly used along with convolutional
layers and reduce the dimensionality of the output.

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a kind of ANN composed of convolutional and, commonly,
pooling and fully connected layers. In general, the architecture of a CNN follows some variation of the
following: an input layer feeds into some number of convolutional layers that are paired with pooling layers
and which feed into a fully connected layer with a number of outputs equal to the number of classes the
network is to be trained to identify. Much of the advancement in the state of the art in image analysis in
recent years has been built on the back of deep CNNs and many variations on the basic architecture have
been tested.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a competition where research teams
develop applications that classify objects and scenes in the ImageNet visual database. The first couple years
of this competition the winning teams utilized a traditional approach and achieved ~25% error rate in image
classification. In 2012, the winning team utilized a deep convolutional neural network (CNN) and reduced
the top 5 classification error to ~16%. Since then, the competition has been dominated by CNNs and the
error rates have dropped to a few percentage points – even exceeding human performance.

Currently, Google’s Inception v4 network has achieved a 3.07% error rate on the ILSVRC dataset by
integrating a number of recent advancements that allow very deep networks to be effectively trained. By
some accounts this result is better than human classification which has been reported to be approximately
5.1% (Russakovsky et al., 2015).

BOOTSTRAPPING AN AUTOMATED IMAGE PROCESSING PIPELINE
The advancements in the techniques used to build and train deep neural networks have made it clear that,
given sufficient training data, many tasks that seemed impractical only a few years ago are now clearly
within the realm of possibility. Furthermore, there are a number of open source libraries and tools that have
turned the development and training of deep neural networks into an approachable field, and make
experimentation easy.

Possibly the most challenging part of the process is the acquisition of labeled data suitable for training these
networks. Tasks that stand to benefit most from the promise of the automation promised by deep learning
are often tedious or challenging to perform (this is the very reason the promise of automation is so
attractive), thus acquiring sufficient data to use for training presents difficulties.

Once data is collected, a number of further steps and considerations must be taken: How should the training
data be presented to the learning algorithm? What kind of network is suitable for the task? How deep does

the network need to be? How many image features should be recognized at each level of abstraction
(activation layer)?

Often questions about the number of image features to be identified in each layer, which will affect the
design of the network, can be difficult to answer without empirical data, so network design can be an
iterative process. Because of the need to train, iterate, and retrain it is important to have access to capable
hardware. What might take days on a CPU (as training frequently does), can be performed in minutes or
hours on a modern GPU with sufficient memory.

Deriving an Algorithm
Merriam-Webster defines an algorithm as “a step-by-step procedure for solving a problem or accomplishing
some end especially by a computer”. By abstracting the underlying complexities related to low-level
computer vision it is possible to focus on modeling high-level conscious problem solving, and to derive an
algorithm by modeling it.

Collecting and Structuring the Training Data
Because significant training data can be required to train a competent neural network, it is often impossible
or difficult to automate a task using supervised learning until significant work has been performed to
generate a corpus of labeled data. Early wins with deep learning owe their success to a large collection of
data produced by hand, such as machine translation where U.N. documents which were produced in many
languages were among the sources of training data (Halevy, Norvig, & Pereira, 2009). The core takeaway
is that it is possible to begin with a manual task, and if the inputs to that task and the outputs of the task are
preserved and can be correlated, it should be possible to extract the necessary information to train a suitably
architected network to emulate, to some degree, the work performed by the humans, thus bootstrapping a
deep learning approach to the problem.

Designing the Network
In general, deeper networks are more powerful than shallower networks, but costlier in terms of memory
and computation. If a network can be executed on a GPU rather than a CPU, the run time can be made
orders of magnitude shorter, but will then be constrained by the, usually, smaller pool of memory.

When designing a deep neural network, it is important to consider the problem of exploding or vanishing
gradients which can result in difficulties with training. Further, though the performance of any n layer
network can theoretically be shown to be at least equal to the performance of an n-1 layer network by
configuring the additional layer to simply behave as a pass-through of the preceding layer, in practice
performance tends to increase to a certain network depth after which adding more layers degrades it. This
is not due to overfitting, but the inability of multiple non-linear layers to learn an identity (pass-through)
mapping (He, Zhang, Ren, & Sun, 2015). Residual networks are a recent advancement that have been shown
to improve the trainability of deep networks by making it easier to optimize each few stacked layers to the
identity mapping.

Determining general aspects of an appropriate network architecture for each task can be accomplished by
consideration of the inputs and the outputs. As a rule, convolutional layers work well for image analysis or
other tasks with data encoding spatial relationships. Recurrent layers work well for sequential data, so while
a convolutional network would be a good choice to perform analysis on the individual frames of a video, a
recurrent network would be a good choice for performing analysis on the change over time occurring in the
entire sequence. For low dimensional data without spatial or sequential relationships, a fully connected
network might be a good choice. However, because of the density of connections (the output of every

neuron in layer n-1 connects to the input of every neuron on layer n), the size of the input data should be
minimized to avoid networks that require more compute resources than are available. Furthermore, a simple
dense network has no effective means of representing or preserving spatial or sequential information in the
input data, and so is not the ideal choice for these tasks.

Many networks will be a combination of these different types of layers along with other layers which may
or may not implement an activation function (meaning that they simply perform some arithmetical
operation and are not capable of learning). The output layer, for instance, of many convolutional neural
networks is a fully connected layer.

Training the Network
Once the data has been organized and the network has been designed, there are a number of variables to
consider when deciding how to train the network.

On a macro scale, training consists of two stages: training and validation. During training, the optimizer
updates the weights and biases of the neurons in order to minimize the error between the prediction and the
ground truth (as described by the labels). During validation, this error is calculated for the validation data
but the weights and biases are not updated. The validation step is intended to minimize the degree to which
the data is being overfit. Because validation data is never presented to the network while it is being trained,
it cannot anticipate what form it will take and if overfitting occurs with the training data, the error computed
for the validation data should move inversely to the error during training.

For this reason, the stability of the selection of training versus validation data is essential. So, whatever
means is used to segment the training data from the validation data it must perform the segmentation the
same way each time. This should be balanced by the need to ensure that biases inherent in the ordering of
the data are minimized (For instance, in the case of the application described in this chapter, the order of
the extraction of the patches was driven by the numerical identity of the sensors ensuring that these
relationships were encoded in the extracted images). A simple solution is to select the inputs for each
category using a random function, but specifying an unchanging seed for the function.

Objective Function
The objective functions used during training determines the nature of the error calculation. A
categorical cross-entropy objective function, for instance, measures the error in classification for
outputs with mutually exclusive classes, whereas a binary cross-entropy objective function
measures the classification error of non-mutually exclusive classes. If the task were to identify
objects in an image that were members of a single class (either cats or dogs, for example),
categorical cross-entropy would produce the desired results, whereas attempting to identify an
object that might belong to several classes would suggest binary cross-entropy (cats, dogs,
snakes, reptiles, or mammals, where cats and dogs are distinct classes, but also belong in the
mammal class).

Optimization Function
The optimization function determines how the training will proceed. Most optimization functions
implement some form of gradient descent where the gradient of the objective function’s domain is estimated
in order to compute the update values that are then backpropagated through the network. Backpropagation
is the process by which the contribution to the total error from each neuron is estimated and then used to
update those neurons (Hecht-Nielsen, 1988). Plain gradient descent has a number of problems as applied

to the training of deep neural networks, so a number of variants such as Stochastic Gradient Descent (SGD),
Momentum, and Adaptive Moment Estimation (Adam) have been proposed and tested.

Stochastic Gradient Descent performs a parameter update for each training sample, foregoing the need to
compute the parameters for the entire training set as plain gradient descent, resulting in significant
performance improvements and reduced memory requirements. Momentum is a variant of SGD where the
concept of momentum is used to constrain the size of the update, addressing the tendency of SGD to
oscillate around optima with steep gradients because the optimum value is overshot. Adam, similarly
attempts to adapt the learning rate to the local gradient by computing both the momentum and an
exponentially decaying average of all past gradients.

Convergence
Convergence is the goal of training, where the loss is minimized and further training does not improve
performance. Depending on the architecture and complexity of the network and the nature of the data it
may take many epochs (or iterations through the training data) to converge or just a few. At the completion
of an epoch, a loss/accuracy vs. validation data is typically performed. The average of the change trajectory
of these metrics will asymptotically approach zero as the network approaches convergence.

Non-optimal convergence can be symptomatic of one of a few problems: The training data may be too
noisy, represented by a form inappropriate for training, or insufficient. The network can be too shallow to
represent the desired mappings. There might be issues with class imbalance, or with class definition.

Memory Consumption/Mini Batch Training
With the advent of deeper networks and large training sets it is commonly impossible to maintain the
network and training data in memory and becomes essential to train the network using an approach
commonly referred to as mini batch training, where a small subset of the training data is provided to the
network at once.

MODELING THE HUMAN APPROACH
Human experts frequently perform image analysis tasks that we don’t currently have automated solutions
to. Normally these experts have developed an internal algorithm used to solve the problem, but which is
not directly transferrable to computer automation because this algorithm relies on a number of non-linear
and pre-conscious steps that the operator has no intuition about. If this approach to the problem can be
specified such that the non-linearities are partitioned to discrete steps that function in the context of a
deterministic algorithm, the inputs to and outputs from the non-linear functions can be defined. If the inputs
and outputs are known, it should be possible to collect labeled examples of such, design a network
appropriate to problem, train it, and drop it into the algorithm as long as the complexity of the task is not
too great to be modelled by the network.

Deriving an Algorithm
In the case of identifying and locating EEG sensors in the images, users have to overcome a number of
challenges that have frustrated current approaches to automating the task.

The first stage in the location and identification of sensors is segmenting the image into foreground (sensors)
and background (everything else). Once the images have been segmented into foreground elements and
background elements, the sensors in the foreground are examined individually in order to determine the
unique identity. There are, then, usually sensors that cannot be identified by examining the label as it might
be overexposed or obscured by hair, wires, or ears. For these situations users are provided with a map of

the positions of sensors they use to determine the identity of an unidentifiable sensor through an
examination of nearby sensors.

From these stages, a high-level algorithm was derived. Figure 1 is an expression of this algorithm specified
in Python.

Figure 1. The derived algorithm specified in Python
Algorithm 1: Identify Sensors
def identify_sensors (image):
 segmented_image = segment(image)
 sensor_locations = find_centroids(segmented_image)
 results = []
 unidentified_sensors = []
 For sensor_location in segmented_image:
 sensor_identity = identify_sensor(sensor_location)
 If sensor_identity != unknown:
 results.append((sensor_identity, sensor_location))
 else:
 unidentified_sensors.append(sensor_location)
 For sensor_location in unidentified_sensors:
 predictions = {}
 for known_sensor in Results.nearest_sensors(sensor_location, 6):
 prediction, response = identity_given_displacement(camera, known_sensor, sensor_location)
 If response > response_threshold:
 try:
 predicted_identity[prediction] += response
 except KeyError:
 predicted_id[identity] = response
 predicted_identity = sorted(predicted_id, key=predicted_id.get, reverse=True)[0]
 if predicted_id > identification_threshold:
 results.append(predicted_identity, sensor_location)
 return results

The bolded function calls represent steps that are complex operations and well suited to the application of
deep learning, while the rest of the algorithm consists of fairly simple applications of Boolean logic or
geometry. The segment(image) function performs image segmentation, the function
identify_sensor(sensor_location) performs visual sensor identification, and the
identity_given_displacement(camera, known_sensor, sensor_location) function performs geometric
sensor identification.

COLLECTING AND STRUCTURING THE TRAINING DATA
The derived algorithm defines a solution to the problem of labeling the sensors in an image, but relies on
three undefined functions. These functions could be fulfilled by human effort, classical computer vision, or
deep learning approaches, but framing the problem in this fashion exposes the nature of the problem in a
way that exposes the aspects of the problem that can benefit from recent advancements in machine learning.

In the case of the GPS, the output of the work of users is a set of files containing the 2D coordinates of the
sensors within the individual camera images as verified by the users, the 3D coordinates derived using the
techniques of photogrammetry, and the images captured by the cameras. Using these three pieces of
information, it was possible to extract a set of data that was used to train the neural networks to recognize
sensors in the images with a high degree of accuracy.

For the problem of labeling sensor positions in images, a software application has been in use for some
time. While the operation of the application is imperfect and requires a not insignificant amount of user
effort, its outputs can be used to train a neural network to perform the undefined functions.

An examination of the inputs to and outputs from the undefined functions reveals what information is
required for each.

Image Segmentation
The input to the segmentation function is a grayscale image produced by one of the cameras, while the
expected output of the function is a binary image with sensor positions highlighted. This suggests that a
neural network be trained to classify each pixel in the image into one of two classes: foreground (sensor)
and background (everything else).

From each of the images a set of patches centered around the sensor locations and a second set of patches
centered at random points not containing sensors were extracted. The network was trained with these two
classes to discriminate between sensors and background texture. Once the network was trained, a sliding
window would be moved over the image, classifying each pixel as belonging to a sensor or to the
background and yielding the segmented image as required.

One important consideration when collecting the data is class balance. If there is an imbalance in the size
of a class, the network will learn to favor the larger class, especially in indistinct cases. This can be
desirable, but should be considered. In the case of the images the image segmentation network is to operate
on, there is significantly more background information than foreground, so the size of the non-sensor class
was expanded to approximately 4 times the size of the sensor class.

Visual Sensor Identification
The input to the visual sensor identification function is the location of a of a sensor in the image. This
information comes from the segmented image (determine the centroid of each region marked as containing
a sensor by the segmentation step). The output of this function is the identity of the sensor as determined
by an examination of the label.

The nets used for this research work contained 258 unique electrodes (256 EEG sensors, one common, and
one reference), suggesting that the network should be trained to classify the input data into one of 258
classes. To allow this network to eliminate false positives from the segmentation a 259th class was added
to again represent background noise.

For each of the images in the training data, patches were again extracted, but this time they were separated
into the 259 classes described. The network trained on this information was then presented with image
patches extracted from an image at the points determined by the output of the segmentation function.

Geometric Sensor Identification
The input to the geometric sensor identification function is the camera number, the 2D location of an
unidentified sensor and the 2D location of a known sensor. A displacement vector between these sensors is
computed, and based on the known geometric relationships between sensors, an identity is predicted for the
unknown sensor, modelling the strategy applied by users to the identification of sensors with unreadable
labels.

The solved files were, again the source for this information. For each recorded user verified 2D sensor
location, it and the nearest 6 sensor locations were extracted. For each of the nearby sensors, the
displacement vector to the sensor in question was provided as input, and the identity of the unknown sensor
was provided as the label.

DESIGNING THE NETWORK(S)
In the algorithm described, three functions were laid out that were appropriate for the application of deep
learning solutions. An understanding of the input data, the operations being emulated, and the output data
suggested the appropriate network architecture for each. As some networks preserve spatial relationships
while others preserve sequential relationships, understanding the nature of the problem and the operation
of the network is essential to attaining good results.

Image Segmentation
As formulated, performance of this task is ideally suited to an emerging variation on the standard CNN: a
fully convolutional network (FCN). Current results suggest that these offer a high performance means of
performing semantic segmentation of arbitrarily sized images (Shelhamer, Long, & Darrell, 2016).

Instead, the authors implemented this step using a normal convolutional network and reformulated
segmentation as a classification task. The entire image is covered by a sliding window that computes, for
every pixel it examines, a class: either the pixel is part of a sensor or not.

This is a computationally expensive task, requiring about 6 hours per image on a CPU or about 5 minutes
using a NVidia GTX 1080ti GPU. Improvements to the computational run time could be obtained by down
sampling the input image, but selecting an ideal network architecture (in this case, an FCN) could
potentially achieve similar results to the current implementation at full resolution with a sub-second
runtime.

Visual Sensor Identification
The input to the visual sensor identification function is an image patch extracted from the original image at
the location determined by an examination of the segmented image. The output of this function is a
classification of the patch into one of 259 categories. Current results with image classification demonstrate
the suitability of CNNs to this class of problems.

The traditional architecture of CNNs consists of an input layer followed by a number of convolutional
layers paired with max pooling layers, feeding into one or more fully connected layers with output
dimensionality equivalent to the number of classes the network is to be trained for (Krizhevsky, Sutskever,
& Hinton, 2012).

Geometric Sensor Identification
The input to this function is 1D vector of length 272. A one-hot encoding is used to specify the camera
number (the first 11 elements), the known sensor id (the next 259 elements), and the displacement vector
(the final 2 elements). For any unidentified sensor, the six nearest sensors are selected, and for each a
displacement vector from it to the unidentified sensor is computed. This is fed to the network, which will
make a prediction. The predictions from these tests are, then, counted and the winning identification is
assigned to the unknown sensor.

As there are no spatial relationships within the data to be preserved and as the input vectors are relatively
small, a fully connected network was deemed appropriate.

REFINING THE NETWORKS
A careful analysis of the results of training the networks suggested improvements to the network
architecture and helped to identify problems with the training data.

Image Segmentation
As the patches used for the training of the segmentation network are small grayscale images, the architecture
of the network model used to perform the operation was based on a simple convolutional network that was
capable of achieving good results on the (similarly small grayscale) MNIST database of handwritten digits.
This produced reasonable results, but because the goal of the segmentation stage was to segment
photographic images it became clear that a deeper network capable of capturing more abstract image
features was necessary. Due to the challenges with training deeper networks, this also meant changing the
type of layers. Very good results have been achieved with the training of deep Residual Networks (He et
al., 2015). so the network for segmentation was redesigned with many more layers, most of which were
residual layers.

In looking at the data, it also became clear that there were more than two classes. The non-sensor patches
could be divided into a discrete set of expected elements (wires, bird bands - used in wire management, net
structural elements, as well as features of the subject: eyes, ears, nose, etc.) and the sensors were best
described as belonging to one of two classes normal sensors and cardinal sensors. This distinction is
important because the white/black of the labels of the two classes is inverted.

No data existed capable of automatically classifying background (non-sensor) features, but it was possible
to separate normal and cardinal sensors. After extracting data with the sensors separated into these two
classes the network was adjusted to output three classes (normal sensor, cardinal sensor, non-sensor) instead
of two and retrained.

Visual Sensor Identification
Because the development of the sensor visual identification stage benefitted from the development of the
segmentation stage very few iterative changes were made to the design of the network, and is essentially
identical to the design of the segmentation stage network with the exception that the number of classes in
the output is 259 rather than three.

Refining the Training Data
The extracted patches consisted of about 21,000 images of sensors and nearly 80,000 examples of
background texture, too much data to individually verify. Interestingly, after training the network, it was
possible to use it to predict the classes of the training data patches. This result allowed the authors to search
the images and remove the misclassified patches. If an image was part of the training data for the sensor
class, but the network failed to predict this class it was highlighted. The same operation was performed over
the non-sensor patches and a user went through the ~2000 patches this operation returned to verify the
performance of the search. The accuracy of this search was about 50% in that nearly 1000 of the selected
patches were returned to their category of origin after examination. This high error was intentional and due
to the decision to relax the classification thresholds for this operation: the authors were not concerned that

some positive results might be returned, but wanted to avoid negative results (where a misclassified patch
was left in the wrong class).

With the networks trained, the algorithm was run against separate input that had not been a part of the
training or validation data. This highlighted a few deficiencies in the networks. Specifically, during
segmentation, cardinal sensors, overexposed sensors, sensors partially obscured by ears, and sensors behind
wires were regularly missed. The reason for these issues was related to class imbalance: though there were
a number of examples of these types in the training data there were few enough of them that the penalty for
ignoring them entirely was small enough that the network didn’t bother to learn them. To address this issue,
a number of examples of each of these types were duplicated, with no change made to them at all, and the
network was retrained.

During the sensor identification stage, it became clear that a number of individual sensors, though clearly
in the segmented data were identified as background noise. An examination of the training data for these
sensors made it obvious that this was again an issue of class imbalance. In some cases, there were as few
as 32 example patches for a given sensor (while most were in the range of 150 - 200). These were duplicated
to improve the balance and ensure that the network could learn to identify them.

The results obtained during the geometric identification stage illustrated the importance of understanding
the data and considering how the network will interpret it. It was initially impossible to train this network
to achieve anything approaching useful results with a validation accuracy never exceeding 50%. This was
due to the decision to represent the displacement vector as distance and angle causing vectors in the first
90 degrees and the last 90 degrees to look very different to the network despite being very similar in many
cases. After changing this vector representation to use normalized x and y displacement values the network
was quite easily trained to a validation accuracy of about 98%.

Issues, Controversies, Problems

The implementation of the technique described in this manuscript was capable of very nearly completely
automating the process of locating the sensors within the images as of writing given a short development
time and limited data. This being the case, there were still a number of deficiencies the authors identified.

The sliding window approach taken to compute the segmentation of the image is an inefficient means of
performing this operation. Newer techniques like fully convolutional networks can perform the same task
far more efficiently and are a better fit for the work that is being done.

Due to the sequential nature of the solution, where the output of one step acts as the input of the next, any
errors that occur early on in the process are exaggerated by later stages. By design, sensors not properly
located during the segmentation stage could not be added by the identification stage, and these “holes” in
the sensor net could lead to the geometric sensor identification to misidentify sensors. Because this step is
performed recursively in order to build out a full solution, a single misidentification could lead to several
more.

The nets contain several items that resemble sensors when overexposed; in particular, the net is populated
with a few unlabeled pedestals similar in shape and size to the sensors. In the images these appear as nearly
pure white. Additionally, there are a number of “bird bands” used for wire management the, depending on
their angle versus the camera can appear as small white circles, similar to the central dots of the cardinal
sensors.

Another challenge resulted from class imbalances as described previously. Within the nets there are a few
“cardinal” sensors whose labels are inverted (a black donut around a white circle, rather than a white donut
around a black circle), and even when clearly visible, they were identified at a much lower rate than the
non-cardinal sensors.

SOLUTIONS AND RECOMMENDATIONS

Tools like TensorFlow and Keras (or TFLearn) have made deep learning very approachable, but there are
still a number of complexities and details that need to be taken into account.

Plan Ahead
One of the roadblocks to the adoption of deep learning systems is the lack of appropriate training data.
Oftentimes, the output of non-automated or semi-automated approaches can be used as training data, but
considering the formulation of a deep learning approach to a problem ahead of time can improve the quality
or quantity of data or reduce the pre-processing work required. In the case of the work described herein, the
semi-automated solution used to generate the training data did not initially capture the user specified 2D
sensor positions. Though the 2D positions of the sensors could be recovered by projecting the 3D
coordinates into the images, the nature of the problem meant that the 2D projection of a sensor into any
image might be slightly displaced (due to the uncertainty associated with finding the intersection of two
rays in a 3D space) and requires extra work.

Mind the Learning Rate
The learning rate is an important hyperparameter. A learning rate set too low can negatively impact the
time required to train the network, but too high, and the optimizer will overshoot the optima, preventing the
network from being trained to the accuracy it would otherwise be capable of demonstrating. If a network
converges prematurely this can be a sign that the learning rate is set too high. Before re-examining the
training data or the network architecture, lowering the learning rate can be an effective means of achieving
(usually) small increases in accuracy performance.

Overfitting
If training accuracy is very high and stable and validation stability is similarly stable, but lower, this can
indicate that the network has been trained to recognize the features of the training set, but that there is
variance in the data for which it has not been trained. The network is overfitting the training data in this
case. If this is the case, a solution would be to provide more training data better capable of capturing this
variance.

Understand the Data to Formulate an Efficient and Effective Solution
It is important to consider the characteristics of the data and the desired operation in order to determine the
appropriate network architecture. The segmentation step was formulated as a classification task for a small
image patch, outputting a class that was assigned to the pixel at the center of the image. This approach
worked, but was slow and memory intensive. Where it slid a window over the whole image with a stride of
one pixel, an FCN could examine the entire image by dividing it into just a few overlapping patches.

On the other hand, by selecting only a few points in the images, and utilizing a network well-suited to the
problem (A deep Residual CNN), the visual identification step performs its work efficiently.

Class Balance
Classes should be balanced in such a way as to produce the desired results. Underrepresented classes will
often not impose enough of a penalty during training to ensure that the network learns to identify them. In
the absence of more training data to fill out these classes, it can be effective to duplicate the data on hand
to ensure that the class will be learned. Doing this will, of course, suffer from a lack of robustness to all of
the possible variations that exist.

Consider the cost of a false positive result versus a false negative. If one is preferable to the other, class
balances could be adjusted to prefer one over the other.

Understand the Data and How the Network Interprets It
When poor results are obtained, the training data is commonly the problem and understanding the form of
the data and how it will be interpreted during training is absolutely essential. As previously described, when
training the geometric sensor identification network, the displacement vector was originally specified as an
unnormalized vector of angle and distance. By reworking the vector representation to use a simple
normalized x-displacement, y-displacement format, the results were quickly improved and the training
converged at about 95% versus the validation data set.

FUTURE RESEARCH DIRECTIONS

The authors have attempted to identify as many deficiencies as possible, and have devised approaches to
address these deficiencies.
The computational cost of the segmentation step is unnecessarily significant. Fully convolutional
networks are defined for exactly this task and have much better computational performance
characteristics (Shelhamer, Long, & Darrell, 2016). Given the 11 images and approximately five-minute
computational time (on a GPU) for the current approach, deriving a solution with would take nearly an
hour, almost all of it for computing the dense segmentation.
The current approach is, in part, a workaround for a lack of sufficient training data. If sufficient data
existed, the segmentation step could be extended to segment directly to sensor identity instead of breaking
this into two steps. When considering all sensors as being of the same class, the solved files contained at
least 21000 examples, but for each sensor, there were generally less than 200 examples. Once the
computational performance of the segmentation step has been improved, the current implementation can
be used to drastically reduce the amount of time required to compute solutions to these files; at this time
more data can be acquired allowing a segmentation step to be trained that can segment the images by
sensor identity, reducing the depth of the pipeline and the potential for an early failure to be exaggerated
by a later step. In regards to the sensor misidentification problem in the output of the geometric
identification stage in particular, utilizing the predicted sensor identities as suggestions and then testing
the suggestion by taking the RMS error of the triangulation of the sensor given the suggestion might
significantly improve these results by highlighting results that exhibit high triangulation error (which
typically indicates a sensor misidentification).
The issue with overexposed sensors being mistaken for extraneous net structures is thorny. It is almost
always possible to determine by careful examination of the image which is which, so training a network
to differentiate the two should not be impossible. Furthermore, there is a lot of geometric information and
inter-image correlations that can also be used to differentiate the two. If the segmentation step selects
these as likely sensors, a filtering step could be implemented that would utilize this information to sort
them into the appropriate class.

CONCLUSION

Many problems arising in the domain of image analysis can be formulated in terms of algorithms that rely
on neural networks trained on human effort to solve non-linearities in the input data. This is, the authors
argue, the way humans solve these problems; relying upon pre-conscious regions of the brain to perform
operations that feel effortless while devising a set of higher order strategies to operate on the outputs of
the pre-conscious work the brain has performed.

While translating directly from input to desired output is ideal, the approach described here is capable of
reducing the problem scope to the level of human intuition and facilitates designing approaches to these
problems that draw upon the insights of subject-matter experts.

The paucity of training data in some more specialized domains is the biggest gating factor to the
implementation of deep learning approaches to these problems. The authors have attempted to show, here,
how scarce training data can be used to train a neural network to simulate the human visual cortex in the
performance of a task, while using the conscious intuitive approach employed by human volunteers to
define a deterministic algorithm capable of performing tasks that were previously difficult to automate. In
so doing, the amount of available training data can be rapidly increased (as much of the work of
producing this data can then be automated) opening the door to the possibility of designing and training a
network capable of moving from input to desired output without the requirement of additional machinery.

REFERENCES
Blum, A., & Rivest, R. L. (1989). Training a 3-node neural network is NP-complete. In
Advances in neural information processing systems (pp. 494-501).

Fernández-Corazza, M., Turovets, S., Luu, P., Anderson, E., & Tucker, D. (2016). Transcranial
electrical neuromodulation based on the reciprocity principle. Frontiers in psychiatry, 7.

Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2), 8-12.

He, K., Zhang, X., Ren S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.
Retrieved from https://arxiv.org/abs/1512.03385

Hecht-Nielsen, R. (1988). Theory of the backpropagation neural network. Neural
Networks, 1(Supplement-1), 445-448.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp. 1097-
1105).

Livni, R., Shalev-Shwartz, S., & Shamir, O. (2014). On the Computational Efficiency of Training
Neural Networks. Retrieved from https://arxiv.org/abs/1410.1141

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M, Berg, A., & Fei-Fei, L. (2015) ImageNet Large Scale Visual
Recognition Challenge. Retrieved from https://arxiv.org/abs/1409.0575

Shelhamer, E., Long, J., & Darrell, T. (2016). Fully Convolutional Networks for Semantic
Segmentation. Retrieved from https://arxiv.org/abs/1605.06211

Swartz, B. E. (1998). The advantages of digital over analog recording techniques.
Electroencephalography and clinical neurophysiology, 106(2), 113-117.

ADDITIONAL READING
He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual
networks. In European Conference on Computer Vision (pp. 630-645). Springer International
Publishing.

Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning (pp. 448-
456).

Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2016). The One Hundred
Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. Retrieved from
https://arxiv.org/abs/1611.09326

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems
(pp. 91-99).

Simoyan, K & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image
Recognition. Retrieved from https://arxiv.org/abs/1409.1556

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning. In AAAI (pp. 4278-4284).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015).
Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1-9).

Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016). Aggregated Residual Transformations
for Deep Neural Networks. Retrieved from https://arxiv.org/abs/1611.05431

KEY TERMS AND DEFINITIONS

Backpropagation: Process of estimating the part of the total error attributable to each neuron
and updating the weights to minimize that error.

Convolutional Neural Network: A neural network consisting (at least partially) of
convolutional layers, which learn convolutions that can be applied to an image (or other data) to
extract features.

EEG (Electroencephalogram): Non-invasive EEG recovers electrical signals generated by the
firing of neurons using sensors at the surface of the scalp, while with intracranial EEG recovers
those signals using sensors emplaced in actual brain tissue.

GPS (Geodesic Photogrammetry System): A system consisting of 11 cameras arranged in a
geodesic dome structure mounted on a gantry which is used to derive the 3D positions of EEG
sensor nets as applied to the heads of subjects.

Photogrammetry: The technique of recovering 3D information through the process of 2D image
analysis.

ReLU: Rectified linear unit. The non-linear activation function A(x) = max(0, x) with a
range of [0, ∞).

Threshold Activation Function: The function A(x) = 1 if x > 0 else 0 with outputs
of either 1 or 0. Because of this, the derivative of the threshold activation function is zero almost
everywhere and is not a good candidate for optimization using stochastic gradient descent.

