
AGAMI: Scalable Visual Analytics
over Multidimensional Data Streams

Mingxin Lu, Edmund Wong, Daniel Barajas, Xiaochen Li, Mosopefoluwa Ogundipe,
Nate Wilson, Pragya Garg, Alark Joshi, and Matthew Malensek

Department of Computer Science
University of San Francisco

San Francisco, CA, USA

{mlu18,ewwong2,djbarajas,xli149,mogundipe,nmwilson,pgarg,apjoshi,mmalensek}@usfca.edu

Abstract—As worldwide capability to collect, store, and man-
age information continues to grow, the resulting datasets be-
come increasingly difficult to understand and extract insights
from. Interactive data visualizations offers a promising avenue
to efficiently navigate and gain insights from highly complex
datasets, but the velocity of modern data streams often means
that precomputed representations or summarizations of the data
will quickly become obsolete. Our system, AGAMI, provides
live-updating, interactive visualizations over streaming data. We
leverage in-memory data sketches to summarize and aggregate
information to be visualized, and also allow users to query future
feature values by leveraging online machine learning models.
Our approach facilitates low-latency, iterative exploration of data
streams and can scale out incrementally to handle increasing
stream velocities and query loads. We provide a thorough
evaluation of our data structures and system performance using
a real-world meteorological dataset.

Index Terms—Streaming visualization, big data visualization,
in-memory data sketches, online machine learning

I. INTRODUCTION

Advancements in computing and storage capabilities have

enabled organizations to accumulate voluminous datasets with

higher resolutions and broader scopes. These datasets are

comprised of multidimensional observations with several fea-
tures of interest and span a variety of domains including

atmospheric science, epidemiology, finance, marketing, au-

tonomous vehicles, and so on. While extensive research has

been carried out on how to manage these datasets at scale [1],

[2], [3], [4], extracting insights in a timely manner remains

a challenge; data exploration is often an iterative process

and practitioners may not be aware of underlying patterns,

trends, or properties of the dataset in advance. Consequently,

visualization techniques can accelerate the analytics process

by striking a balance between information density, interaction,

machine learning, and human-in-the-loop.

Our system, AGAMI, was designed specifically for multidi-

mensional streaming data. The system can scale out incremen-

tally as needed based on stream velocity and computational

demands, and targets low-latency visualizations to facilitate

iterative analytics. We maintain a compact, distributed sketch
of the data in main memory to avoid latencies associated with

secondary storage media such as hard disk drives (HDDs).

Additionally, the system monitors incoming multidimensional

records to train and create predictive machine learning mod-

els to provide visualizations of potential future outcomes.

Visualization parameters are specified through an interactive

web user interface or via our custom, domain-specific query

language. Queries may span both the past and future, in which

case results are fused into a single visualization that includes

uncertainty measures for predicted events. Given our focus on

streaming data, the client user interface is dynamically updated

— live and in real time — as new information becomes

available.

A. Research Challenges

Resolving visualization queries efficiently at scale can be

challenging due to unique data access patterns as well as

visualization-specific concerns such as image resolution and

perceptual scalability limits [5]. Other challenges include:

1) Streams are multidimensional, unbounded, and each

incoming record is comprised of several dimensions.

2) Data exploration is an iterative process and requires low-

latency query responses [6].

3) Due to the ever-changing nature of data streams, the

system must have the ability to dynamically reconfigure

its indexes and re-train predictive models at run time.

4) Given the size of the datasets at hand, the system must

be capable of scaling out incrementally.

B. Research Questions

To guide our implementation of AGAMI, we developed the

following research questions:

RQ1 How can we support memory-resident, visualization-
driven indexing and storage structures?

RQ2 How can we optimize for live, interactive visualiza-
tion use cases without requiring significant client-
side processing?

RQ3 How can we train and leverage machine learning
models over streaming data, and fuse the past and
future into a single, coherent visualization?

RQ4 How can we facilitate live, timely updates to the
client UI as new data points are received?

57

2020 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)

978-0-7381-2396-7/20/$31.00 ©2020 IEEE
DOI 10.1109/BDCAT50828.2020.00020

C. Overview of Approach

AGAMI is modular and based on a microservice archi-

tecture. The system consists of several distributed compo-

nents that can be provisioned based on the use case(s) of

the particular deployment (dataset size, ideal response time,

hardware capabilities, etc.). Each component can be scaled up

or down depending on stream velocity and/or query load. Two

distributed, in-memory data sketches are deployed in a clus-

tered setting to provide retrieval functionality: the SpaceTime
Sketch and the Predictive Sketch, providing past and forecasted

feature values for visualizations. The client-side user interface

is interactive, web-based with live updates, and enables both

targeted and iterative exploration over the data.

D. Contributions

AGAMI is designed to scale out to handle large datasets and

hundreds of concurrent users while providing live-updating,

interactive visualizations for analysis. Our SpaceTime Sketch

was designed specifically for aggregating and indexing data

for visualization purposes. Instead of building an index based

on one or more primary keys with records encoded as tabular

rows, unique SpaceTime Sketches are maintained for each

feature that can be efficiently joined in parallel. This is well-

aligned with real-world visualization use cases; instead of

retrieving and filtering rows that contain every feature (which

could number in the tens or hundreds), only the features

of interest are retrieved directly and joined to produce a

visualization. Our Predictive Sketch automates the creation of

online machine learning models that seamlessly integrate with

query results; we allow queries that span from the past into

the future to produce a single, integrated visualization with

uncertainty measures. Queries are defined either with our user-

friendly web UI or with our domain-specific query language.

Instead of producing a server-side raster image, a visualization
specification provides instructions and metadata that the client

uses to produce an interactive representation of the data.

II. RELATED WORK

A. Progressive Analytics for Big Data

In the field of data visualization of massive datasets, there

have been various research developments that facilitate real-

time querying of big data [7], [8], cubes for data processing

and interactive visualization [9], [10], and progressive analyt-

ics [11]. There have been recent contributions [12] that address

challenges related to exploring high-dimensional data using

progressive analytics. Turkay et al. [12] also provide a set of

design recommendations for high-dimensional online analysis

using PCA or clustering.

Interaction and Latency in Progressive Systems: Recently,

there has been further exploration of the impact of latency [6]

on an analyst’s ability to use such progressive analytics-

based systems. Zgraggen et al. [13] found that analysts were

able to use progressive systems effectively when results were

presented either “instantaneously” or “progressive.” They mea-

sured the impact by exploring the “insight discovery rates and

dataset coverage.”

Incremental Visualization: Fisher et al. [14] presented the

“sampleAction” system that facilitates exploration of petabyte

sized data through the results of approximate visualizations

based on increasingly larger sample queries for fast analysis.

Rahman [15] use “online sampling-based schemes” to allow

fast exploration of data as it updates visualizations. They

find and highlight “salient” features in the data earlier in the

process and fill in more details incrementally.

On-the-fly optimizations for interactive exploration: Satya-

narayan et al. [16] introduced Reactive Vega that uses the

declarative visualization paradigm to create dataflow graphs.

These dataflow graphs are created and updated at runtime

to optimize performance for interactive data analysis on

streaming data. Battle et al. [17] demonstrate pre-fetching

data “tiles” to facilitate seamless exploration for users with

a lightweight client. Their system performs caching based

on user exploration traits and data characteristics. Bikakis et

al. [18] present a aggregation-based framework that facilitates

hierarchical navigation / exploration of large streaming data.

They introduce a “lightweight tree-based structured which can

be efficiently constructed on-the-fly for a given set of data.”

B. Systems and Algorithms

Synopsis [19] distributes hierarchical, tree-based summary

sketches as a “forest of trees” across processing resources

to enable scalable query-based analysis of streaming data.

While the partitioning scheme in Synopsis is well-suited for

analyzing arbitrary spatiotemporal bounds, querying individual

features in aggregate for visualization requires broadcasting to

the entire cluster and traversing each tree to locate relevant

data.

Wasay et al. [20] explore the possibility of caching “basic

aggregates” to facilitate rapid exploratory statistical analysis.

Basic aggregates are stored in an in-memory data structure

and are reused for common statistical measures.

Most systems designed for storing large datasets, such as

HDFS [1] and Apache Cassandra [2] persist data to secondary

storage, i.e., hard disk drives. In-memory, distributed storage

platforms including Redis [21] or MongoDB [22] generally

represent records using predefined data structures with full

resolution; in contrast, AGAMI is an in-memory, distributed

store of visualization-specific aggregates. This avoids the high

latencies associated with hard disk I/O while conserving

memory.

Many distributed batch processing systems are well-suited

for producing offline visualizations over petascale datasets,

such as Hadoop [23], Spark [3], or Flink [4]. Both Spark and

Flink also provide streaming capabilities, allowing visualiza-

tions to be produced over collections of records (windows) or

when certain conditions are met. Combined with a computa-

tional notebook and declarative DataFrame API (e.g., Jupyter

Notebooks and Spark SQL), users can query and visualize

their data interactively. However, a limited amount of full-

resolution records can be stored in memory by these systems,

and the client hosting the interactive notebook often must per-

form significant processing to produce the final visualization.

58

Live
Updates

(WebSockets)

Stream Routers

SpaceTime Cluster

Client UI

API Gateway

Complex Queries
(REST)

Visualization
Specification

(REST)

Simplified Queries (gRPC)

Aggregated Responses (gRPC)

Sensors, Radars,
IoT Devices

Multidimensional
Observations

Existing In Situ
Datasets

Predictor Cluster

Stream Emitters

Historical Queries &
Responses (gRPC)

Future Queries
& Responses (gRPC)

• Maintains multi-resolution ML models
• Trains and evaluates model accuracy
• Resolves future queries

• Compact, multi-resolution, in-memory
 distributed sketch
• Resolves historical queries

• Non-blocking
 HTTP server
• Simplifies complex
 queries from clients
• Caches frequently-
 accessed queries

Direct Routing

Direct Routing

Fig. 1. AGAMI architecture. Emitters represent stream sources, which are consumed by Stream Routers. Stream routers partition incoming records based on
the features they contain, and forward the feature values to their respective aggregators. After configuring the stream, emitters can optionally route directly to
their destination aggregators to improve performance. Aggregators include the SpaceTime and Predictor clusters, which resolve historical and future queries,
respectively. Clients generate complex queries that are simplified and forwarded to relevant aggregators for resolution, combined into a single response at the
stream routers, and returned as a visualization specification to the client.

III. METHODOLOGY

AGAMI is composed of several distributed components,

shown in Figure 1 along with their data and query flows.

Streams are produced by emitters that drive data collection

from sources such as sensing equipment, click stream data,

stock prices, IoT (Internet of Things) devices, etc. These

records are received by a cluster of one or more stream
routers, which are responsible for passing the data to appro-

priate downstream aggregators via a configurable partitioning

algorithm. Multidimensional data points are split and sent to

a subset of the aggregator nodes; for example, all temperature

values may be managed by a particular subset of machines.

Our current implementation includes two aggregators: the

SpaceTime Sketch and Predictive Sketch. The SpaceTime

Sketch is responsible for indexing feature values, their spatial

location, and time of collection. These values are stored in a

compact, memory-resident structure that can quickly resolve

summarization queries at multiple resolutions. The predictive

sketch, on the other hand, builds machine learning models to

allow the system to resolve queries that span into the future.

Consequently, raw data is not stored on predictive nodes once

it has been incorporated into relevant models. Both sketches

are deployed in a clustered configuration that can be scaled to

meet storage and query demands.

On the client side, our interactive UI sends queries to the

REST API Gateway, which coordinates backend query oper-

Fig. 2. Mean air temperature from Jan 5th to 9th, 2018 with predictions 3
days into the future, shown with reduced opacity to reflect uncertainty.

ations, with WebSockets used to trigger live updates. Queries

are sent to the stream routers and redirected to appropriate

aggregator nodes via the same partitioning algorithm used for

storage. Queries submitted through the client UI are initially

represented as complex queries, which are decomposed into

multiple simplified queries before being processed in parallel

by relevant aggregator nodes. The UI displays both historical

and future query results on the same chart, shown in Figure 2

with future queries (the bottom three) displayed in varying

opacity depending on the uncertainty of the predictions.

The AGAMI network operates over TCP sockets and can

be configured to use either JSON or Protocol Buffers [24]

for its data interchange format. Both the stream router and

the SpaceTime Sketch cluster support partial deserialization

functionality backed by Protocol Buffers. When serialized

messages arrive, only the features used for data partitioning

and routing are deserialized. While this enforces a strict

structure to the messages sent over the wire, it speeds up

deserialization, especially with datasets that have a large

number of individual features. Queries managed by the API

Gateway are handled by the gRPC framework. The system is

implemented in Python 3, and each component uses a pool of

processes to allow for concurrent processing of requests.

A. Stream Emitter

Stream emitters ingest data into the system concurrently

from multiple sources. Emitters can be any form of data

sources: sensing equipment, IoT, or even Apache Kafka

[25] topics. AGAMI standardizes input streams by requir-

ing two metadata: The UTC timestamp when the ob-

servation was recorded, and its location expressed as <
longitude, latitude > tuples. Any number of features can be

included in the data source, but only those that are configured

to be consumed by the stream router will be captured and

forwarded to downstream aggregators. Note that AGAMI does

not capture the time when the system receives the record;

only the UTC timestamp will be used as the event recording

time. This property is particularly important when dealing

59

with a variety of geographically-distributed data sources that

may include a range of different devices, and implies that

stream sources do not have to emit records chronologically;

an in situ dataset stored on disk could be emitted in reverse

chronological order and the end result would be the same as

if it was emitted chronologically.

After initial stream configuration has taken place with a

stream router, emitters can optionally employ direct routing
to transmit records to aggregator nodes. This requires more

state information to be maintained by the client, but improves

performance by avoiding bottlenecks at the stream routers.

Changes to the routing table tend to be infrequent, and

aggregator nodes will only accept direct transmissions from

clients that are operating on the same version of the routing

table. Clients with outdated routing tables or hardware that

is unable to maintain network state efficiently (such as IoT

devices) can fall back on using the stream routers.

B. Stream Router

The stream router handles distribution of incoming data

points and client queries. Upon receiving a new record, the

stream router deserializes it, extracts its individual features,

and forwards the feature values to their destination aggrega-

tor(s). The stream router must deserialize and interpret the

features in the input stream because we allow sparse records

with only some of the features present, and we also support

adding new features and aggregator nodes at run time. Multiple

stream routers can be deployed at larger scales, in which case

the routing table is synchronized across the cluster.

Data Partitioning: the stream router maintains a routing

table that maps features in the input stream and their ranges

of values to a cluster of aggregator nodes. When a new

aggregator starts and registers itself with the stream router, it

is assigned a feature with the smallest cluster size to maintain

load balancing. Partitioning is based on numeric values or

spatial coordinates.

Multi-Process Stream Handlers: input streams are handled

by a pool of processes, with incoming features mapped to an

outgoing queue associated with each destination aggregator.

Mappings are updated and transmitted to the stream handlers

each time a new aggregator registers with the stream router.

Query Processing: queries are forwarded to their appro-

priate clusters based on the routing table. Complex queries

generated by clients often translate to large amount of simple

queries, so the stream router pre-computes a list of queries

for each aggregator node and submits them in batches. This

improves performance because only a single trip is required to

collect query results, making the query latency less sensitive

to network overhead.

C. SpaceTime Sketch

A cluster of SpaceTime Sketch instances provides indexing

functionality in AGAMI. The SpaceTime Sketch maintains

aggregated statistics of incoming records at multiple resolu-

tions. The sketch is structured as a directed acyclic graph

(DAG) where each vertex in the DAG holds spatiotemporal

metadata and an online running statistics object calculated

via Welford’s method [26]. The spatiotemporal metadata is

encoded from the UTC Timestamp, Longitude, and Latitude

in each input record, and it is structured hierarchically as

year, month, day, hour, minutes, and Geohash [27]. Geo-

hash is hierarchical Base-32 encoding scheme that represents

two-dimensional < longitude, latitude > pairs as one-

dimensional strings. Longer strings refer to higher-precision

spatial bounding boxes, and hashes that share similar prefixes

are spatially proximate.

Structuring temporal metadata as year, month, day, hour,

minutes provides a natural way to organize multiple levels

of temporal resolution. Similarly, encoding longitude and

latitude with the Geohash algorithm provides multiple spatial

resolution by using different Geohash lengths. The topological

ordering of the DAG requires that a vertex can only be

pointed to by its parent vertex if and only if it inherits the

parent’s coordinate and expands its resolution either spatially

or temporally by one level. Figure 3 shows a DAG built

from two records (left side, white vertices were inserted first,

followed by the right side, green vertices). Here, the two

records share temporal nodes to conserve memory.

During insertion, our algorithm extracts spatial and temporal

data from the input record and traverses the DAG to update

statistics of the relevant vertices. Specifically, the algorithm

starts from the spatial and temporal root of the DAG, updates

child vertices that are within the spatial temporal scope of the

new records, and creates new vertices and edges if they do

not exist. The DAG is implemented using an adjacency list

to store all vertices in the form of spatiotemporal coordinates.

See Algorithm 1 for the recursive insertion algorithm.

Algorithm 1: Recursive Insertion

Input: Insertion value val, Insertion Geohash gh,

Insertion time t (year, month, day, hour),

and current vertex v (gh, t, and s for statistics)

let undert(t1, t2) = a function that return whether t1
equals and extends resolution of t2

let undergh(gh1, gh2) = a function that return

whether gh1 equals and extends resolution of gh2

v.s← update(v.s, val)
if t �= v.t and undert(t, v.t) then

tnew ← v.t with 1 more level of resolution from t
if (gh, tnew) /∈ DAG then

add vertex (gh, tnew) to DAG

vnew ← (gh, tnew)
Insert(val, gh, t, vnew)

if gh �= v.gh and undergh(gh, v.gh) then
ghnew ← v.gh with 1 more level of resolution

from gh
if (ghnew, t) /∈ DAG then

add vertex (ghnew, t) to DAG

vnew ← (ghnew, t)
Insert(val, gh, t, vnew)

This approach was selected due to several beneficial prop-

60

Fig. 3. DAG constructed from two records on Jun 15th 2019, one with a value of 5 (left side, white vertices) and a second record with a value of 10 (right
side, green vertices) at two different Geohash locations: “abc” and “xyz.” Notice the shared temporal nodes are updated with both statistics.

erties. Expanding a single record into multiple pre-aggregated

spatiotemporal nodes avoids the need to perform aggregations

on queries, which reduces latency. The edges between parent

vertices and child vertices specify all spatiotemporal coordi-

nates with one level of resolution higher than the parent vertex.

This information is attached to each query result to provide

insight on the distribution of higher resolution vertices that

aggregate into the queried vertex, and it also enables the data-

exploration feature “step into/out of time” and “step into/out

of space” (discussed in detail in Section III-E). The edges

also make aggregation possible with queries that skipped one

or many intermediate resolutions. For example, a query for

air temperature in 2018 on the 1st day of the month at 11pm

will apply to all months in 2018 because a particular month

was not specified. This is done by recursively traversing all

vertices from 2018 with a wild card month that matches all

months, but is still constrained to the 1st day of each at 11pm.

The size and the density of the data structure is dependent

on the maximum level of resolution and the spatial and

temporal complexity of the input stream, rather than the

volume of the input stream. The maximum depth of the DAG,

which determines the worst case traversal time, is the sum of

maximum spatial resolution and temporal resolution. As an

example, the DAG in Figure 3 has a depth of 6, temporal

resolution of 3 (year, month, day), and spatial resolution of 3

(three Geohash characters).

Pruning: Tracking statistics at multiple resolutions allows

the higher resolution vertices — which are often the majority

of the DAG — to be pruned over time to preserve memory.

Once pruned, the aggregated statistics can still be accessed

from low resolution vertices, but fine-grained statistics will not

be available. The amount of time that each level of resolution

persists in memory is configurable (e.g., keep the last 10 days

of hourly data, a year of monthly data, a year of 4-character

Geohashes, etc.). The pruning algorithm routinely traverses the

DAG to remove vertices that exceed these limits. If a particular

vertex is selected for removal, its children can also be safely

eliminated. The pruning algorithm runs in O(|V |+ |E|).
D. Predictive Sketch

Similar to the SpaceTime Sketch, our Predictive Sketch

operates on data that has been partitioned by the stream router.

This produces clusters of records that share similarity based

on numeric, 1-dimensional feature values or two-dimensional

spatial locations backed by the Geohash algorithm. Each

predictor node maintains online machine learning models that

are trained on the node’s particular subset of the data. Predictor

nodes are organized in a hierarchy to allow specialization and

create an ensemble of models that can be leveraged either indi-

vidually or as a group to combine predictions with a Mixture of

Experts (ME) approach [28]. This is often advantageous when

data is partitioned geographically; for instance, a top-level

model could train on data for the US state of California, while

finer-grained models specialize on data from San Francisco

and Los Angeles.

Indexing: One or more features can be used to index records

for predictions. When indexing spatial data, each predictor

node maintains one or more trie data structures of Geohash

strings to describe the spatial locations under their purview.

The Geohash precision of the root of each tree is configurable

and set to four characters by default to roughly represent the

size of an average administrative boundary around a small

state/province or large city. In the case of general feature

values, records are placed in feature buckets that represent

ranges of values with subsequent levels in the trie hierarchy

increasing the bucket precision by decreasing the ranges of

values maintained by each vertex.

Training: The predictive sketch allows several online ma-

chine learning models to be trained at each vertex in the trie

for forecasting feature values. To ensure broad applicability,

AGAMI can train most models available in the Scikit-Learn

[29] and XGBoost [30] libraries (including Random Forests,

Gradient Boosting, Linear Regression, Neural Networks, etc.).

Model parameters and the dependent and independent vari-

ables for each model are defined in a configuration file to

reflect use case and dataset characteristics. In the case of

XGBoost models, the system will selectively employ GPU

acceleration based on observed training times; more complex

models are better suited to GPU acceleration but simpler

models are trained on the CPU to avoid overheads associated

with transferring data between main memory and the GPU.

Instead of updating the models immediately as each new

record arrives, AGAMI collects small batches of new data

61

Fig. 4. The dashboard includes a live feature monitor on the left and pinned
queries on the right.

points to amortize the CPU/GPU costs associated with train-

ing. In situations where the incoming stream velocity is low,

prediction nodes use a training time interval to flush partial

batches of data for training. This interval is set to 15 seconds

by default, meaning that if a complete batch is not received

over a span of 15 seconds the partial batch will be used

to update relevant model(s). To ensure predictions remain

relevant as the input data changes, old training data can be

aged out based on a configurable threshold (e.g., removing

training data that is over one year old).

In many datasets, records that are numerically or geospa-

tially similar often influence one another. For instance, the

weather in a particular location tends to influence other nearby

weather patterns. We provide a configurable neighborhood
threshold to incorporate these circumstances into our machine

learning models to improve accuracy; models associated with

a particular Geohash or feature bucket will also include data

from surrounding Geohashes at the same resolution.

Making Predictions and Measuring Uncertainty: Once the

models are trained, using them to make predictions is straight-

forward. When a query arrives, the predictor node determines

the set of vertices with relevant models by extracting features

from the query and traversing the trie. The models are then

used to predict each of the future data points and the results are

sent back to the stream router. Results are accompanied by an

uncertainty list that reflects the confidence in the predictions;

depending on the model, these values can be provided directly

or calculated from a test set of raw data that evaluates how well

the model can predict known values that were not included

during training.

E. User Interface

Our backend infrastructure allows for interactive data visu-

alizations with predictive data points to be generated in the

web browser. The main considerations with displaying these

visualizations was to support interactivity as well as streaming

data. This resulted in two main pages: a dashboard and a

builder page. The dashboard displays live data for each feature

as well as pinned queries from the builder. The builder has

an emphasis on data exploration and allows for quick query

building as well as chart interactions that support exploring

the data by “stepping into/out of” time and space with respect

to the selected data point.

Dashboard: The dashboard in Figure 4 includes live updat-

ing feature charts. The right side of the interface includes all

pinned queries from the builder. These pinned queries serve

as a way to make specific comparisons or as a quick way to

save queries. Pinned queries can also include future predictions

that are displayed with reduced opacity proportionate to the

confidence in the prediction.

Targeted Exploration: In terms of interactivity, the builder

page supports targeted data exploration using complex queries.

Complex queries are a way to condense potentially long lists

of queries into shorter, more readable queries. With ranges

and multiple selections, specific questions can be built into

queries that are then displayed as charts. These queries also

have support for wildcards meaning that the queries do not

need to include every feature; e.g., spatial location can be

excluded to get data from all areas. As an example, the query

2016.[feb:may].[1st:10th].@9q.Temperature retrieves temper-

ature values from a particular year (2016), a range of months

(February through May), specific days (the 1st through the

10th only) located at Geohash 9q.

Iterative Exploration: The charts that are generated in the

builder page include a context menu that can be accessed

with a double click. This allows for more options including

downloading the source specification for the given chart. To

promote data exploration, four options are included: stepping

into time, stepping out of time, stepping into location, and

stepping out of location. This allows for ways to explore data

beyond the original query. If the original data point selected is

2018.jan.1st.@9ygq, stepping into time would display a chart

with all times on 2018.jan.1st. This would effectively be the

same as the 2018.jan.1st.[12am:11pm].9ygq complex query.

Stepping out of time from the original data point would give

a query such as 2018.jan.@9yq. Note that the day has been

removed from this query. Stepping into a location selects all

sub-locations within the current Geohash range and increases

the prefix string by one character, while stepping out removes

one character. This allows users to be able to easily explore

(step around) the data spatially and temporally. The supported

chart interactions can be seen in Figure 7.

Chart Generation: The charts from these two pages are

created using Altair [31], a declarative statistical visualiza-

tion library. First, the API Gateway is passed a complex

query and a chart type. This complex query serves as an

abstraction of a list of base queries; the flow can be seen

in Figure 6. A complex query may look something like

2018.[jan:dec].[1st:31st].@9ygq.Precipitation. This query is

tokenized and parsed and then broken up into simple queries.

In this example, the complex query would expand into 372

(12*31) simple queries with months spanning from January to

December and days spanning from the 1st to the 31st. The API

62

Fig. 5. The builder allows for targeted exploration using complex queries. The left column stores a history of queries. The right column shows the charts
corresponding to the query. The charts in the right column also have support for ”step into/out of” context options, the option to download the Vega-lite spec,
and the ability to pin queries to the dashboard.

Fig. 6. This figure illustrates the flow from a complex query to the final chart. The user first inputs a complex query. This is parsed into different token types.
Then a Cartesian product is used to generate base queries that are used to query the system. This results in statistics that are then used to generate the charts
in the browser. Note that the query is dot separated.

Fig. 7. Builder charts support multiple forms of exploration: stepping in/out of Geohash and stepping in/out of time. The query
2018.jan.1st.@9ygq.Air Temperature expands to 2018.jan.1st.[12am:11pm].@9ygq and 2018.jan.1st.[@9ygq6, @9ygq8, ...].Air Temperature. The same query
gives 2018.jan.1st.@9yg.Air Temperature and 2018.jan.@9ygq.Air Temperature when stepping out. These four charts give more context to the current query
temporally and spatially.

63

Gateway then fetches all the results from the Stream Router.

Note that these expanded simple queries include “impossible”

dates like February 31st. The Stream Router will return empty

results for such dates. With these results, the chart can now

start to be rendered on the client side. Instead of generating the

graphics at this point, Altair allows for a JSON specification

to be built instead. This JSON specification is built using

Vega-Lite [32], a high-level grammar for interactive data

visualization.

Due to the nature of the query language, there is no

guarantee that a specific part of the query can be used for

the x- and y-axes. One option is to use the queried feature

as the x-axis and its corresponding value(s) for the y-axis.

However, this is not always easy to read so is used as a

fallback. With the complex query abstraction, we can have

one, multiple, or none of a given token: year, month, day,

hour, feature, or Geohash. If we have a single range such as

2018.[jan:dec].@9ygq.Precipitation, it is likely that the user

wants to inspect data from January to December. In this case,

months would be much easier to read as an axis label. Other

cases follow with a very similar logic: two ranges of values

leads easily to a heat map based on each of the ranges. In this

heat map, the color of the cells are encoded by the value. If no

ranges are given, but there is an element related to a date, it

will be used for the x-axis. In other cases such as three ranges,

a bar chart is used with the query as the axis label. In all of

these charts a sequential color scale is used.

When the Vega-lite chart specification has been created,

the JSON is sent to the client browser using web sockets.

The client then renders the chart with Vega-Embed [32] and

displays the information with the Vue.js, a lightweight MVVM

framework.

Query Caching: To optimize query latency and perfor-

mances, simple query results from both the SpaceTime and

Predictive sketches are cached on the API Gateway in a Time

Aware Least Recent Used (TLRU) cache [33] with a 60-second

timeout. The API Gateway only fetches results and predictions

from the Stream Router if the input Complex Query translates

to simple queries or prediction requests that result in cache

misses. Caching simple query results and prediction results can

drastically improve the query latency of subsequent queries by

avoiding requests to the entire cluster.

IV. EXPERIMENTAL EVALUATION

We evaluated AGAMI with the U.S. Surface Climate Ob-

serving Reference Networks (USCRN) dataset [34] from the

National Climatic Data Center (NCDC). The dataset consists

of climate measurements taken every 5 minutes from several

locations within the United States. To aid in demonstrating

the scalability and processing throughput of our system, the

stream emitters in the following benchmarks were configured

to produce data as fast as the network could support, i.e.,

faster than real time. Features in the dataset include UTC date,

UTC time, precipitation, solar radiation, longitude, latitude,

humidity, air temperature, and surface temperature. Our test

0 40,000 80,000 120,000 160,000
Records Inserted

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

M
em

or
y

Us
ag

e
(K

B)

No Pruning
Pruning Enabled

Pruning

Fig. 8. SpaceTime sketch memory consumption. While the memory consumed
by sketch remains low even with unbounded growth, enabling pruning of the
DAG provides a predictable memory consumption profile.

environment consisted of 12 machines with 4-core Xeon E3-

1230 v6 CPUs running at 3.5GHz, with 32GB of memory and

1 Gbps network. Benchmarks were carried out using CPython

3 on CentOS 7, Linux kernel 3.10.

A. Data Structure Microbenchmarks

Our methodology consists of several distributed compo-

nents, so our first set of evaluations tested each data structure

in isolation to minimize interference.

SpaceTime Sketch Memory Usage and Pruning: A key

aspect of our approach is the compactness of the statistics

maintained by the SpaceTime sketch. We evaluated memory

consumption of one of the sketches in the cluster as records

were streamed into to the system, along with a second iteration

of the test with DAG pruning enabled. The results of this

experiment are shown in Figure 8. Without pruning, memory

usage is low (approximately 2.7 MB for 100,000 records on a

single node) but grows as more vertices and edges are added

to the DAG. Enabling pruning functionality allows for more

predictable memory consumption over time, but also means

that older records will be collapsed into higher-level vertices

that are less accurate. This makes it possible to tune the

SpaceTime sketch based on hardware capabilities as well as

the accuracy requirements of the particular deployment.

Sketch Insertion Speed: While stream emitters and routers

play a large role in overall system performance during in-

gestion, aggregator clusters must be able to process incoming

records quickly to prevent placing backpressure on upstream

components. We tested the SpaceTime and Predictive nodes

in isolation to measure their ingestion speed. In the case of

the SpaceTime sketch, this involves creating DAG nodes and

edges along with running statistics instances, while Predictive

nodes must collect batches of records and incrementally train

machine learning models. The SpaceTime sketch was able to

insert 988.8 records/s, and the Predictive sketch could ingest

490.9 records/s. Training machine learning models tends to be

more CPU-intensive, but AGAMI can be configured to train

less often to ease computational load. The scalability of our

64

design also means that in this case deploying two predictive

nodes for each aggregator node would result in near-uniform

insertion speeds.

Message Serialization Overhead: AGAMI can employ both

JSON and Protocol Buffers [24] for serializing the messages

transmitted between components. Our initial implementation

used JSON, but migrating to Protocol Buffers provided a

substantial decrease in message sizes while maintaining sim-

ilar serialization/deserialization speed. To evaluate the perfor-

mance differences between these two serialization formats,

we monitored message sizes and serialization/deserialization

times while streaming 300,000 records into the system. Table I

summarizes the results of this experiment.

TABLE I
JSON AND PROTOCOL BUFFER SERIALIZATION OVERHEAD.

Performance JSON Protocol Buffers
Metric Mean SD Mean SD

Message Size (bytes) 671.39 11.67 83.86 7.94

Serialization Time (μs) 395.88 6.30 389.76 23.18

Deserialization Time (μs) 7.82 0.53 25.40 3.91

In general, JSON-based communication tends to be easier

to debug, so we allow both serialization formats to be selected

in the AGAMI configuration. Note that while Protocol Buffers

are used internally for communication between components in

the system, visualization specifications are always represented

in JSON format.

Prediction Accuracy: To evaluate our predictive sketch, we

selected an XGBoost regressor trained to predict air tem-

perature in Manhattan, Kansas. Features used were latitude,

longitude, year, month, day hour, and sine/cosine of the day

of the year (cyclic encoding to reflect that days near the end

of the year are temporally close to days near the beginning

of the next year). Parameters used for the model included a

maximum tree depth of 8, minimum child weight of 0.001,

shrinkage factor (η) of 0.5, and the default objective function

(regression with squared loss). After parameter tuning, the

MAE resulted in 17.59. Figure 9 shows 10,000 randomly-

selected predictions made by the model; while other models

produced by our system may be more or less accurate than

this example, our visualizations always include uncertainty

information (varied opacity) so users can judge how reliable

the predictions are.

B. End-to-End System Benchmarks

Our second set of evaluations involved the two main entry

points and data processing paths of AGAMI: (1) ingesting,

processing, and aggregating data streams, and (2) parsing,

resolving, and producing results for user queries.

Stream Ingestion Scalability: To ensure AGAMI scales as

more resources are added to the system, we used 12 stream

emitters to ingest our dataset and increased the number of

aggregator nodes to scale out, for a maximum of 40 aggregator

nodes on our test cluster (4 aggregators per machine distributed

across 10 machines, with 3 machines hosting emitters). As

25 20 15 10 5 0 5 10 15 20 25 30 35 40
actual

20

10

0

10

20

30

40

pr
ed
ic
tio
n

Fig. 9. Accuracy of an XGBoost regressor model predicting air temperature
in Manhattan, Kansas. Features used were latitude, longitude, year, month,
day hour, and day of the year.

0 5 10 15 20 25 30 35 40
Number of Aggregator Nodes

0

1,000

2,000

3,000

4,000

5,000

6,000

Re
co

rd
s/

se
c

Fig. 10. Aggregation throughput (records ingested per second) as AGAMI

scales out with more aggregator nodes.

shown in Figure 10, AGAMI scales out in an approximately

linear manner, with minor overhead from distributed commu-

nications. Note that unlike our insertion microbenchmark, this

experiment includes the full serialization, communication, and

network overheads seen in a real-world deployment.

Query Latency: To test query performance, we compared

our initial design (complex queries broken into many single

queries) with batch querying. Queries were randomized and

submitted to the API Gateway using 200 concurrent client

threads. Combining queries and their results into batches

reduces the amount of messages sent between components

in the system, thereby reducing socket connection and seri-

alization overhead, which led to a substantial improvement in

response times. Figure 11 demonstrates these response times;

the complete query operation took roughly 500 ms for all batch

operations, but the latency of single queries increases linearly.

We continued to test up to a 500-query batch — representing

an approximate upper bound for query complexity generated

by our UI — which completed in 625 ms on average.

V. CONCLUSIONS AND FUTURE WORK

AGAMI addresses a particular niche in the world of big

data: streaming, in-memory aggregation for live visualizations

65

0 20 40 60 80 100 120 140 160 180 200
Concurrent Clients

0

5

10

15

20

25

30

35

40

45

50

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)
Batch Queries
Single Queries

Query Type

Fig. 11. Query response times tested with 200 concurrent clients for (1)
complex queries broken up into single queries and submitted individually,
and (2) batch queries. Combining queries and results into batches reduces
communication, leading to faster response times and better throughput.

with integrated feature forecasting. Our SpaceTime Sketch is

compact and allows us to store historical data in memory

specifically for visualization (RQ1). As data is streamed into

the system, we also train multiple machine learning models

at a variety of resolutions to provide forecasting functionality

through our Predictive Sketch. Queries can span across the past

and future to produce a single, integrated visualization (RQ3).

Our web-based client UI reacts to changes in the underlying

dataset as new records arrive (RQ4) and our distributed data

sketches enable us to produce visualization specifications for

clients without sending them raw data or requiring excessive

post-processing operations to occur (RQ2).

In our future work, we plan to incorporate more visualiza-

tions and add support for additional query types, such as “top-

k” queries that find the k most frequently-occurring feature

values. We plan on investigating additional ways to convey

uncertainty associated with predictions or classifications, and

add support for users to interact directly with partial visual-

ization results to improve responsiveness.

REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[2] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[3] M. Zaharia et al., “Apache spark: a unified engine for big data process-
ing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[4] P. Carbone et al., “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[5] B. Yost and C. North, “The perceptual scalability of visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 5,
pp. 837–844, 2006.

[6] Z. Liu and J. Heer, “The effects of interactive latency on exploratory
visual analysis,” IEEE transactions on visualization and computer
graphics, vol. 20, no. 12, pp. 2122–2131, 2014.

[7] Z. Liu et al., “immens: Real-time visual querying of big data,” in
Computer Graphics Forum, vol. 32, no. 3pt4. Wiley Online Library,
2013, pp. 421–430.

[8] J. Koontz, M. Malensek, and S. L. Pallickara, “Geolens: Enabling
interactive visual analytics over large-scale, multidimensional geospatial
datasets,” in Proceedings of the 2014 IEEE/ACM International Sympo-
sium on Big Data Computing (BDC), Dec 2014, pp. 35–44.

[9] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba,
“Hashedcubes: Simple, low memory, real-time visual exploration of
big data,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 1, pp. 671–680, 2016.

[10] N. Kamat and A. Nandi, “A session-based approach to fast-but-
approximate interactive data cube exploration,” ACM Trans. on Knowl-
edge Discovery from Data (TKDD), vol. 12, no. 1, pp. 1–26, 2018.

[11] N. Pezzotti et al., “Deepeyes: Progressive visual analytics for designing
deep neural networks,” IEEE transactions on visualization and computer
graphics, vol. 24, no. 1, pp. 98–108, 2017.

[12] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser, “Designing progressive
and interactive analytics processes for high-dimensional data analysis,”
IEEE transactions on visualization and computer graphics, vol. 23,
no. 1, pp. 131–140, 2016.

[13] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska, “How
progressive visualizations affect exploratory analysis,” IEEE transac-
tions on visualization and computer graphics, vol. 23, no. 8, pp. 1977–
1987, 2016.

[14] D. Fisher et al., “Trust me, i’m partially right: incremental visualization
lets analysts explore large datasets faster,” in Proceedings of SIGCHI,
2012, pp. 1673–1682.

[15] S. Rahman et al., “I’ve seen” enough” incrementally improving visu-
alizations to support rapid decision making,” Proceedings of the VLDB
Endowment, vol. 10, no. 11, pp. 1262–1273, 2017.

[16] A. Satyanarayan et al., “Reactive vega: A streaming dataflow archi-
tecture for declarative interactive visualization,” IEEE transactions on
visualization and computer graphics, vol. 22, no. 1, pp. 659–668, 2015.

[17] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching of
data tiles for interactive visualization,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 1363–1375.

[18] N. Bikakis, G. Papastefanatos, M. Skourla, and T. Sellis, “A hierarchical
aggregation framework for efficient multilevel visual exploration and
analysis,” Semantic Web, vol. 8, no. 1, pp. 139–179, 2017.

[19] T. Buddhika, M. Malensek, S. L. Pallickara, and S. Pallickara, “Synop-
sis: A distributed sketch over voluminous spatiotemporal observational
streams,” IEEE TKDE, vol. 29, no. 11, pp. 2552–2566, Nov 2017.

[20] A. Wasay, X. Wei, N. Dayan, and S. Idreos, “Data canopy: Accelerat-
ing exploratory statistical analysis,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 557–572.

[21] R. Developers, “Redis,” https://redis.io, 2020.
[22] mongoDB Developers, “Mongodb,” http://www.mongodb.org/, 2020.
[23] The Apache Software Foundation. (2020) Apache Hadoop.
[24] Google, Inc., “Protocol buffers: Google’s data interchange format,” 2020.
[25] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging

system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[26] B. Welford, “Note on a method for calculating corrected sums of squares
and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[27] G. Niemeyer. (2008) Geohash. [Online]. Available:
http://en.wikipedia.org/wiki/Geohash

[28] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1177–1193, 2012.

[29] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” the
Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[30] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost:
extreme gradient boosting,” Standalone Library 1.3.0, pp. 1–4, 2015.

[31] J. VanderPlas et al., “Altair: Interactive statistical visualizations for
python,” Journal of open source software, vol. 3, no. 32, p. 1057, 2018.

[32] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
lite: A grammar of interactive graphics,” IEEE transactions on visual-
ization and computer graphics, vol. 23, no. 1, pp. 341–350, 2016.

[33] G. Neglia et al., “Access-time-aware cache algorithms,” ACM Trans. on
Modeling and Perf. Eval. of Comp. Systems (TOMPECS), vol. 2, no. 4,
pp. 1–29, 2017.

[34] H. J. Diamond et al., “U.s. climate reference network after one
decade of operations: Status and assessment,” Bulletin of the American
Meteorological Society, vol. 94, no. 4, pp. 485–498, Apr. 2013.
[Online]. Available: https://doi.org/10.1175/bams-d-12-00170.1

66

