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ABSTRACT

Title of Thesis: Art-inspired techniques for visualizing time-varying dat
Alark Prakash Joshi, Doctor of Philosophy, 2007

Thesis directed by: Dr. Penny Rheingans, Associate Professor
Department of Computer Science and
Electrical Engineering

Time-varying data is huge and contains specific featureatefest to an application
expert. Visualizing time-varying data using standard algation techniques such as snap-
shots or animations is limited in its ability to convey charand draw the users attention
to a region of interest.

We present novel visualization techniques for visualiZzinge-varying data that con-
veys change over time in a single image. The aim is to prowdgbral context to the do-
main expert using art-inspired techniques. lllustrators painters have conveyed concepts
through their work using illustrative cues. Time-varyingtd in which three-dimensional
features are moving over time, can be effectively visualiasing illustrative techniques
such as speedlines, flow ribbons, strobe silhouettes andtgymsed techniques. We ap-
plied these techniques to computational fluid dynamics aadeevaluated the effectiveness
of our techniques with the help of a formal user study. Ouwsiifation-inspired techniques
were also applied to the field of atmospheric physics, wherg®nerated novel hurricane
visualizations that allowed our collaborators to obtairttfar insight into the evolution and
intensification of a hurricane.

For effectively visualizing time-varying data such as mtfenortality over eight years
or global rainfall over an entire century, we developed ashpointillism-based technique.
This technique was inspired by paintings by Seurat who ukedvisual color blending
theory by placing brush strokes close to each other. Weegbpdichniques from pointillistic
paintings to convey variability in time-varying data as lhad convey trends over time in

a single image. The formal user evaluation conducted taiet@ithese techniques gave us



insight into the strengths of our techniques and led us todbelt that users though correct

were less confident of their answers.
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the coefficient of variation measure to identify stableeresting features

(llustration features). . . . . . . . . . . . . . 33

This illustration shows the use of speedlines to depation of the pitcher
in a single frame. lllustration provided courtesy of Kuniorlo (Kawag-

ishietal.2003). . . . . . . . . . e 34



3.6

3.7

3.8

3.9

3.10

This illustration uses speedlines to depict the runmiagion of the man.
The lines get thinner and lighter as they approach the rghman. lllus-

tration provided courtesy of HarperCollins publishers &ubtt McCloud

(McCloud 1994). . . . . . . . . . e

The image shows the use of speedlines to depict motidmeofetature in
the experimental dataset through twelve timesteps. Tinslatory motion
of the feature from left to right is depicted using speedinEhe speedlines

get thinner just and translucent as they get closer to tlesti&imestep, just

asFigure 3.6. . . . . . ..

The image depicts change over time in a feature for CFB. ddte down-

ward, rightward motion of the flow feature is conveyed usipgedlines.

This set of images highlights the difference betweetigiartraces and the
speedlines technique. The leftmost image depicts a patiiate of the
feature, the middle and rightmost image depict its motiangispeedlines.
In the middle image, we used alternate points from the paitett by the

feature and in the rightmostimage we use one out of four poingenerate

speedlines. . . . . . . . e

The illustration depicts the motion of the monsteradasing a flow rib-
bon. The region near his thighs is occluded and is abstracied) small
lines within the flow ribbon. The small lines convey to thewes the pres-
ence of structure under the flow ribbon. lllustration praddcourtesy of

HarperCollins publishers and Scott McCloud (McCloud 1994) . . . . .
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3.11 This set of images highlights the difference betweeioua types of flow
ribbons. In their simplest form, flow ribbons are merely paif speedlines
that convey the change to the viewer. In the middle figure,other ex-
treme in which the region under the flow ribbon is occludedhsyibbon
to draw the viewer’s attention to the moving feature and easpe its mo-
tion. In the rightmost figure, techniques similar to Figur@®were used

to generate the ribbons. Small line segments were used taebieatures

occluded by the flow ribbons. . . . . . ... ... 0oL

3.12 The image shows the helical motion of the experimeratt tkature using
flow ribbons. Just as in Figure 3.10, the occluded featuresabstracted

using small line segments. The flow ribbon gets thinner ag get closer

tothe newesttimestep. . . . . . .. .. ... .. ... .. ..

3.13 The image depicts random motion of a flow feature usingfilobons. The
feature moves from bottom right to upper left corner. Theudess occluded

by the flow ribbon are abstracted using thin, small lines fwesented the

underlyingfeatures. . . . . . . . . .. ... ..

3.14 This illustration conveys the direction of motion okthand over time.
They use low detalil, thin lines for the older instants of tiamel high detail,
darker lines for the latest positions of the hand to conveyntiotion. lllus-

tration provided courtesy of HarperCollins publishers &ubtt McCloud

(McCloud 1994). . . . . . . . . . e

3.15 The image conveys change over time using a combinatitrempacity-

based technique with the speedlines based technique. aratory mo-

tion of the feature from upper left to bottom right is convdysy the image.
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3.16 The image shows strobe silhouettes depicting motientowe. The down-
ward motion of the axe is conveyed using strobe silhouetiigsstration

provided courtesy of Kunio Kondo (Kawagigtial. 2003). . . . . . . . .. 42

3.17 The strobe silhouettes technique applied to the exeatial data set. The
horizontal motion of the feature from left to right is dem@dtusing the

strobe silhouettes technique. . . . . . .. .. ... ... ... ... 42

3.18 The strobe silhouettes technique applied to flow datee skrobe silhou-
ettes convey the upward motion of the two features. The timeof-

motion vector enables the generation of trailing silhcesett . . . . . . . . 43

3.19 The image shows multiple feature tracking using speesifor a synthetic
dataset with six moving features. In this case, the six featare moving
independently of each other and the addition of illusteatues provides

context regarding the direction of motion of each feature.... . . . . .. 44

3.20 Multiple feature tracking using flow ribbons for the hég priority flow
feature and speedlines for the lower priority flow featurdhe central
feature’s leftward motion is represented using a flow rihbtme rightward
motion of the topmost feature and the leftward motion of tb#dmmost

feature is represented using speedlines. . . . . . .. ... ... .. .. 45

3.21 The rotational motion of the feature in the experimifaigaset is conveyed
using a combination of opacity-based techniques and flobonbk. This
figure conveys the actual motion of the feature whose snapsine shown
in Figure 3.3. This motion is not at all obvious by looking la¢ snapshots

INFigure 3.3. . . . . L 46
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4.1

4.2

4.3

4.4

4.5

The image above displays increasing simplification efabastline of Sar-
dinia from left to right. The rightmost image could be usec¢tmvey the
overall structure of Sardinia whereas for the purpose okt@ashipping

the leftmost detailed map would be more appropriate (Ravired Sale

1969). .« v

The original path is depicted in blue and its simplifiegresentation, ob-
tained by using a simple one-out-of-n simplification altfon, is shown in
red. The bottom image depicts a feature-preserving reptasen of the

same path using cognitive simplification. . . . . . . . .. ... . ....

The top image depicts the simplified representationdrore without aver-
aging the eliminated points. The bottom image performs Gansveight-
ing on the eliminated points to take those into considenatiioaffect the
overall appearance of the curve. As can be seen in the bott@ge, the

second bump is a little more tapered and the subsequent bioope

. 48

49

weighted due to the eliminated points. . . . . . .. .. ... ... ... . 51

The image depicts the original curve in blue and the sfreglrepresen-
tation in red. The ramp simplification function implies ierasingly sim-

plification as we traverse the curve. The graph depicts tmplgication

function as the simplification factor increases towardsethe of the curve. .

The image depicts the unsimplified curve in blue withhisdow being cast
on the surface below. The simplified representation of thheecis depicted
in red. The shadow of the simplified curve clearly depictd fh@nts on
the curve farther away from the future are simplified and fsoofoser to

the viewer are retained almost faithfully. . . . . . ... ... ... ...
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4.6

4.7

4.8

4.9

4.10

4.11

4.12 The center-of-interest simplification function theggerves detail around a

4.13

4.14

The top image depicts the unsimplified curve in blue ardsimplified
representation in red. The center of interest is markederfahm of a big
green point at the center of the image. A graph depicting #raer-of-

interest based simplification function explains the sitrabetter. . . . . .

The original curve is depicted in blue and the simplifiedresentation is

in red. High curvature points are preserved in the simplifegztesentation.

The original curve is depicted in blue and the simplifiedresentation is
depicted in red. The simplified representation is based emtanually
specified simplification function that is shown below in thenh of a graph.
The simplified curve is more simplified near the peaks of thepsification

function and faithful to the original near the troughs of thaction.

The figure depicts a screenshot of the visualizationehtirricane Katrina
simulation dataset. The cylinder structure towards thieidehe eye of the
hurricane surrounded by the eyewall. Some rainbands caedretewards
the right side of the image. The image is a volume renderedénad the

cloud water component in the 70th timestep of the hurricaataset.
The original path traversed by the eye of Hurricaneiatr. . . . . . . . .

A ramp simplification function with more detail towartlee eye of the

currenttimestep . . . . . . .. L e

regionofinterest. . . . . . . . ... L

Curvature based simplification that preserves regadhgyh curvature.

The top image depicts simplification based on a maskfgakeby the user.

The graph shows the manually specified simplification fuorctvith two

peaks. . . . ... e e
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4.15 The top image shows the original path in blue and theldiegppaths in

5.1

5.2

5.3

5.4

red. The naively simplified representation is shown in theosd visual-
ization from the top. Much detail near the source and detstinas lost in
this representation. The third visualization shows a seimamoplification
where detail near the destination is preserved whereagth&ining path is
simplified. Such a visualization is useful since one is fanilith getting
to the nearest freeway from Inez house. The last visuatizatnage shows
a path where detail is preserved near gas stations (showreas gircles
near the path). These visualizations are generated fronaladtiving di-

rections obtained from GoogleMaps. . . .. ... ... ... .....

These are a set of snapshots from successive time stap®hime. As is
evident from looking at the snapshots, it is very hard toelate and track

a particular feature over differenttime steps. . . . . . . . ... ...

An example of an illustration-inspired technique apglio the vortex data.
The strobe silhouettes technique has been applied in thés Gtrobe sil-

houettes convey the upward motion of the two features. . . . . . . ..

A screenshot of the welcome screen that was shown to thectés. The
subjects were explained the user study and any other questiere an-

swered before obtaining theirconsent. . . . . . . ... .. ... ...

A screenshot of a sample screen that is shown to the $sibjdee subjects
were shown images and were asked to indicate the directiorotbn of a
particular feature moving over time. They were also reqeebsd give their
confidence level in their answer. This helps us identify honfident the
subjects were with their answers using standard as well el astration-

inspired techniques. . . . . . . ... ...
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5.5

5.6

5.7

5.8

Another screenshot of a sample screen that is shown suttjects. Here
the subjects were shown an animation and were asked to tadiva di-
rection of motion of a particular feature moving over timé€ey were also

requested to indicate their level of confidence level inthaswer. . . . . .

This graph shows accuracy results for all the questiskedevaluating
the illustration-inspired techniques. The results wereuged according
to the categories of questions asked. The categories friinoleight as
Snapshots, Augmented Snapshots, Animations and Augmémtinla-
tions respectively. The user accuracy for Augmented Srapsh better
than Snapshots and similarly the accuracy is better for Aerged Anima-

tions as compared to Animations. . . . . . .. ... ... ...

This graph shows the amount of time required by the stdjeccomplete
the task using all the four techniques. Users took more toneotnplete
a task using snapshots as compared to all the other teclsnigisers also
took more time to answer questions using animations as c@dpa ani-

mations augmented with illustration-inspired techniquespite of the fact
that the users had to wait for the animation to load, they \&bte to answer
questions faster for animations and augmented animat®osrapared to

plainsnapshots. . . . . . . .. ... .. ... .. ..

The users were asked to specify their confidence in tmswars. This
graph shows a representation of the overall confidencehiratders had in
their answers. As can be seen, users were more confident digouan-

swers for the augmented snhapshots and animated animati@usrgared

to plain snapshots or animations. . . . . ... .. ... ... ......
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5.9

6.1

6.2

6.3

6.4

6.5

In this graph, the accuracy of the users for synthetia detsus real world
data is compared. As can be seen, the accuracy for syntratdsihigh

for both with and without illustration-inspired technicuéel he accuracy for
real world data without illustration-inspired techniqugsery low whereas
the use of illustration-inspired techniques when appleedetl world data

has boosted the accuracy oftheusers. . . . ... ... ... ...... 84

The Saffir-Simpson Scale for category assignment toichne. . . . . . . 87

This figure shows a two-dimensional visualization of ity in a single

level in hurricane Katrina being visualized using isocamgo . . . . . . . 93

The left image depicts a standard volume rendered imagemidity for

timestep 71. The central image depicts the boundary endaression of
the same image with the eye, eyewall and the rainbands beay sThe
right image depicts the silhouette enhanced version wehrer depiction

of the features. . . . . . . . . .

This image depicts the silhouette of the wind speeds amdss sectional
view of the same time step. The top row shows a completelyddroircu-
lar silhouette that indicates no vertical wind shear as candyified from
the right cross sectional view. The bottom row shows a ligatgly visible
silhouette that indicates high vertical wind shear. Thessrgectional view
confirms the presence of high vertical wind shear in the bame at that

timestep. . . . . . . .

The left image was generated using the boundary enhamtéechnique
on the cloud liquid water attribute of the 53rd timestep. Tight image

shows a closer look at the hook in an illustrative style. . ...... . . ... 97
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6.6

6.7

6.8

6.9

The top image is a volume rendered image of the vorticggdered in
green, and vertical velocity, rendered in red, of the finsteiof hurricane
Bonnie. Dark red regions are regions of strong positiveivartvelocity

and the bright green regions are high positive vorticityiseg. The bot-
tom image depicts an illustration-style rendered imagdefame positive
vorticity. It provides a three-dimensional representatibat clarifies that
the double green rings visible in the left image are actuabgerved at

differentlevelsinthedata. . . . . . . . . . . . . ... .. ... ..... 98

Time sequence showing various stages of vortex rollupe [€ft column
shows a series of volume rendered snapshots of the 13th, 2@t and
33rd timestep. The right column shows a illustration-styieualization
of the corresponding timesteps. The illustrative imagesty help in an

increased understanding of the three-dimensional nafutewortex rollup. 99

These images show snapshots from three different tapgssif vorticity in

hurricane Bonnie. They show the vortex rollup phenomenearty. . . . . 100

This image shows the positive vorticity rendered in graed vertical ve-
locity rendered in green for the 33rd time step correspopdnthe last
row in Figure 6.7. The image shows that the mesovorticesddrnear the
bottom of the hurricane are not correlated with strong eattvelocity as
there is almost no vertical velocity in the strong positieticity regions

showningreen. . . . . . . . . . .. 101

6.10 This image depicts a pen-and-ink style rendered vimatain of timestep

44 of the hurricane. The annotation of the image with speedlprovides
temporal context and conveys information regarding thearg curving

motion of the hurricane. . . . . . . . . . . . . . . . 310
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6.11 This image depicts the use of opacity-based techniquesivey the trans-
formation of a semi-organized cluster of storms into a catg§ hurricane.
The transformation from the topmost faded rendition of theribane at
timestep 10 to the bottommost rendition is at timestep 71urap the tem-

poral nature of the evolution. . . . . . .. ... ... .......... 104

6.12 Thisimage depicts the use of opacity-based techniqueEsvey the inten-
sification of the hurricane. The visualization contains etfwoint for every
category change it undergoes. The first footprint, on théoboteft of the
image, is the change to category 2. The hurricane intensiigsquickly
after that, as per the subsequent two footprints and thefagfiéootprint

signifies the intensification to category 5.. . . . . ... ... ......105

6.13 The image depicts the combination of opacity-basdthiqoes and speed-
lines to convey the motion of the hurricane. The hurricane/esalown-
wards and starts turning rightwards. The thickness of treedlines re-
duces as it approaches the current timestep. The imagetsiépecvisu-
alization of time steps 10, 35, 53 and 71 of the cloud watentjtya The
growth in size of the hurricane along with the internal stawe of the hur-

ricaneisvisible. . . . . . .. 106

6.14 This image depicts the strobe silhouettes techniqueyapplied to the
hurricane dataset. The cloud water quantity for timestepsAdsualized
in an illustrative style with trailing silhouettes for tirsep 10, 35 and 53

being depicted intheimage. . . ... ... .. ... ... .. ... ... 710

6.15 A screenshot of the first page of the online expert etiaim@onducted to

conduct an expert evaluation of our techniques. . . .. ... ... ..109

6.16 This image shows a volume rendering of the cloud watentiy in hurri-

cane Katrina. . . . . . . .. 110



6.17 This image shows four snapshots of cloud water beinderea in hurri-
cane Katrina at four different timesteps. The direction aftion is not

easily apparent by just looking at this set ofimages. . . . ...... . ... 111

6.18 This image depicts a 2D visualization showing isocorgdor cloud water

in hurricane Katrina ata singlelevel. . . . . . . .. .. .. ... .... 113

6.19 This image depicts a 2D visualization showing hedgsliogvisualizing

wind vectors in hurricane Katrina ata singlelevel. . . . . .. .. .. .. 114

7.1 *“La Parade de Cirque”, Georges Seurat, 1888. Note tleapémting is

made of multiple small closely placed brush strokes. . . . ...... . .. 117

7.2 Detalil of “La Parade de Cirque”, Georges Seurat, 188&Igl@epicts the
detail and arrangement of strokes. For example, in the vadkgl as well
as on his suit there are brush strokes that almost seem ratodbeviewer
at this level of detail, but on looking at Figure 7.1, it vilyeblends to

produce a visually appealing painting. . . . .. .. ... ........118

7.3 This image depicts a simple synthetic dataset wherewbénfiages repre-
sent values of an attribute that change over time. The isgrgdrend is

apparent by visualizing the data in conjunction with theocgcale. . . . . 119
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7.4

7.5

7.6

7.7

This schematic describes our brush selection, colacgeh and brush
placement approach. The brush size decreases as the téniptaace of

the selected timestep from the current timestep incre@sesan be seenin
the figure, the red brush stroke is the smallest in size stad¢enestep (time
= 1) is farthest from the current timestep (time = 5). The colahe brush

stroke is selected based on a clamped rainbow color scakesdturation
of the stroke color is decreased depending on the tempatardie of the
selected timestep from the current timestep. Since thetiiingstep (time

= 1) is farthest from the current timestep (time=5) beingiaiized, the red
brush stroke color is much more desaturated/faded. Thkesplacement
algorithm identifies a location on the canvas that is not pamiand then

places a stroke there and marks that location as occupied. ..... . . .

This image shows a pointillistic visualization of thenyetic example de-
scribed in Figure 7.3 and Figure 7.4. The brush strokes septeng the
current timestep are biggest and brightest as compareduth lstrokes
representing older timesteps. The clamped rainbow coklesshown here
helps the viewer understand the increasing trend in the-tianging data.
We later introduce a better color legend that allows the eiel more eas-

ily visualize patternsinthedata. . . . ... ... ... .........

The painted brush strokes used as textures for the gemeod a realistic

painterly visualization. . . . . .. ... ... ... ... ... .. ...

The left image depicts a visualization in the pointiitistyle with circu-
lar brush strokes. The right image shows a painterly vizaéibn using
scanned brush strokes from Figure 7.6. The organic, haaadtook is

clearly obtained intherightimage. . . . . . ... ... ... ......
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7.8 Theimage depicts a synthetic time-varying datasetlized using pointil-
listic techniques with information from five timesteps. Tthetic data
was created to highlight the possible variations in time/vey data. The
values in the alphabet “V” are monotonically decreasing;lirare con-
stant, in “S” decrease and then increase back to the same aalin the
first timestep, in “0” the values increase and then decreask to the value
in the first timestep and those in “7” are monotonically iragi®g. These
variations can be followed by using the colormap providexhglwith the

visualization. . . . . . . 124

7.9 The image shows the effect of using a large brush stroker fallowed
by placing brush strokes in gaps that remain after the figgrlaln such a
process, the first layer covers a large part of the paintirjaamery small
fraction of the painting is then painted by brush strokesesenting subse-
quent timesteps. The current timestep is represented B/ 2Q3h strokes,
while the subsequent four timesteps are represented us@g234, 207

and 175 brush strokes respectively. . . . . . . ... ... ... .. ... 125

7.10 Stroke size/saturation legend depicting the deargasroke size and sat-
uration as we traverse downwards and stroke hue valuesasiogas we

moverightwards. . . . . . . . . ... 126

7.11 This set of images shows some possible trends that cdedrty visualized
using the scale shown below. The top left image shows anasarg trend
as can be seen by the small, faded red brush strokes and baige, blue
and green strokes in the center. The top right image shows@agng
trend where older values are represented by small, lighg biush strokes

and new values are represented by big, bright red brushestrok. . . . . . 127
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7.12 This set of images shows some more possible trends dhabe clearly
visualized using the scale shown below. The left image steowiscrease
followed by a decrease as can be seen by small yellow strokedium
sized violet brush strokes and big green brush stroke. Thelmimage in
the second row shows another increase followed by decré&asehird im-
age in the second row shows various shades and sizes of bisie $irokes

which implies that the value stays constant overtime. . . ...... . . . . 128

7.13 These set of image depict the infant mortality in thererdountry over
a period of five years from 1998-2002. The color scale pravidan be
used to understand the data. Identification of clear, istarg patterns and
unusual behavior in the data cannot be clearly seen by Igokirthese
shapshotsData credits: US Centers for Disease Control and Prevention

National Center for Health Statistics.. . . . . . . . . . . . .. .. .... 129

7.14 This image shows a pointillistic visualization of thetiee nation show-
ing infant mortality over the time interval from 1998-200Phe visualiza-
tion can clearly shows that states such as California, Utahnaost of the
Northeast have a very low infant mortality rate. On the ottend, states
like Mississippi jump out as consistently having the highefant mortal-
ity rate in the nation. Figure 7.15 shows a closer look at M&ppi. Other

interesting patterns can be observed by zooming into amegio. . . . . . 130

7.15 This image depicts a visualization of southeasterioned he state of Mis-
sissippi’s consistently high infant mortality rate oveetfive year period

from 1998-2002 is apparent from this visualization. . . . . ... .. .. 131
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7.16 This image depicts a visualization of Alaska in the plistic style. The
values are generally low as can be seen by small orange wyéltosh
strokes but a spike can be clearly seen in the form of bluiglergibrush
strokes. The values are again back to a lower value followekt brush

StroKesS. . . . . e 131

7.17 Thisimage depicts a visualization of southeasterioned he state of Mis-
sissippi’s consistently high infant mortality rate oveetfive year period

from 1998-2002 is apparent from this visualization. . . . .. .. .. .. 132
7.18 This image shows a visual representation of US \Votisglte per county. . 133

7.19 This image shows a visual representation of US Votisglte per county.
The top two rows show county results from 1988, 1992 and 129060 and
2004. The pointillistic visualization clearly shows ingsting patterns such

asthefactthat . . . . . . . . . . . . . 134

7.20 This image shows a visual representation of US Votisglte per county.
The top row shows snapshots of election results from 19684 4&d 1968.
The pointillistic visualization clearly shows variation the southeastern

FEOION. . . . . o 135

7.21 Visualization of a 2D slice of the humidity attributedurricane. The im-
ages from left to right show the humidity attribute at tinggs29, timestep
35, timestep 41 and the computed difference in humidity betwtimestep

29 andtimestep4l. . . . . . ... 136
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7.22

7.23

7.24

8.1

Three different visualizations with different timdenvals. The left image
depicts humidity over a single timestep which explains thiestant brush
size used in the image. The second image depicts humidity thvee
timesteps where smaller, desaturated brush strokes came&®een inter-
spersed with bigger brush strokes. The third image from ¢fiedepicts
humidity over five timesteps and shows more variation in trenfof older,
desaturated brush strokes. The rightmost image showsadélgat depicts

brush size and saturation values for viewers to correlatastbcolors with

valueandtimesteps. . . . . . . . . ...

Painterly visualization of wind speeds at differentls of zooming. The
top row shows the humidity attribute and a correspondingreg The im-
age depicts large wind speeds and change around the eye. cdomrzp
in further, the second row depicts further diversity arotinel eye and the
corresponding legend helps identify values and variatiar the interval.
Further zooming into the eye conveys to the user the facthiga¢ye con-

tains the highest speed winds in the dataset as is depictéek lwolet and

dark blue brush strokes. . . . . . . . . . . . ...

The image depicts a closeup of humidity when the minirbaumsh size is
2. The smallest brush strokes can barely be seen due toétasizdesat-
uration especially around the center and towards the bottbere there
are faded blue brush strokes of size 2. For a meaningful kz=u@n, the

minimum brush size must be clearly visible and allow a vietearorrelate

values with the legend. The brush sizes in the legend forrmim brush

size=4arealreadysmall. . ... ... ... ... ... ...,

Five snapshots showing the global temperature for eachad® from 1950

to 2000. Greyscale intensity conveys the magnitude of teatpee in regions.142
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8.2 A pointillism-inspired visualization of the global t@@rature data for the

time interval of 50 years from 1950t0 2000. . ... .. ... ... .. 143

8.3 This set of diagrams represent the kinds of temporatiz¢hat we tested
our technigues. The images from left to right, show an insireg a de-
creasing, a constant, a decrease followed by an increasecmaase fol-
lowed by a decrease. The subjects were asked to identifmd tr&ing such

diagrams. . . . . .. 148

8.4 A screenshot of the welcome screen that was shown to thiects. The
subjects were explained the user study and any other quedtiey may

have were answered before obtaining their consent. . . . . . ... .. 150

8.5 A screenshot of a sample screen that is shown to the $sibjdee subjects
were shown images and they were asked to indicate the ocbaaige that
they can visually identify in the data. They were also retgeo give their

confidence level intheiranswer. . . . . . . . . . . .. ... ...... 151

8.6 This graph shows that the overall accuracy of the subj@as higher for

pointillism-based visualization as compared to snapstioésimations. . . 153

8.7 This graph shows the mean time required by subjects tplstethe tasks
using snapshots (A), animations (B) and pointillism-basetiniques (C).
The errors bars show the 95% confidence interval around trexméhe
pointillism-based techniques takes almost 35 secondsclesgared to

shapshots and 25 seconds less as compared to animation. . . . . . . 155

8.8 This graph shows the confidence the subjects had in thewexrs. As
per the graph, the users seem more confident of their answess using
pointillism. They seem to be more confident of their answetfé case of

snapshots as compared to animations. . . . .. .. ... ... .. .. 157
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8.9 This graph shows the accuracy of the subjects when coimgpliasks re-
quiring them to find temporal trends in the data. Subjectexseebe more

accurate when using pointillism-based techniques as cadpa snap-

shots and animations. . . . . . . . . . . . ...

8.10 This graph shows the confidence the subjects had in dheivers. As
per the graph, the users seem more confident of their answes using
pointillism. They seem to be more confident of their answetfé case of

shapshots as compared to animations. . . . . ... ... .......

8.11 This graph shows the confidence the subjects had in dheivers. As
per the graph, the users seem more confident of their answess using
animations and snhapshots than when using pointillism. @bisdd be at-
tributed to the fact that the users were unfamiliar with tbapllism-based

technique as compared to animations and snapshots. . . . ........ .
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5.1

5.2

5.3

5.4

5.5

5.6

LIST OF TABLES

Ordering for evaluation of our techniques in comparispatandard visu-
alization techniques. Hesestands for speedlines andtands for opacity-

based techniques as discussed in the previous chapter. ........ . . . .

In each of the four categories mentioned in table 5.1stiigect is shown
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Chapter 1

INTRODUCTION

Visualizationis the process of converting data into a visual represemtafi he aim
of visualization is to provide application-domain expestigh insightinto their data. Vi-
sualizing medical data obtained usiG@mputed Tomograph§CT) andMagnetic Reso-
nance ImagindMRI) scans has become an integral part of the way doctogndise and
plan treatments. Using two- and three-dimensional vigatibns, radiologists can visually
identify anomalies and provide advice to specialists fathier medical treatment. Sim-
ilarly, scientists performing large-scale time-depertdexperiments use visualization as
an aid to understand their experiments. This can help relseesr to preempt or restart
experiments with a different set of input parameters, ifesichble results are observed.
In climatology, researchers study climate and large scaatlner patterns to get an im-
proved understanding of the science behind the same. Forg&aan atmospheric physi-
cist would prefer to visualize and track a hurricane or a tyghas it develops over time
instead of just looking at snapshots taken at regular iatervlhe transformation of fea-
tures within the phenomenon, as well as the overall diraadfomotion, can be invaluable
to an expert.

The data generated from these experiments, scans and sonslaan be better un-
derstood by visualizing it to get some insight for explavator diagnosis purpose$ime-
varying dataare three dimensional snapshots of a process/phenometaethpt regular
time intervals. Domains such as computational fluid dynamigeather forecasting and

medical imaging (ultrasound/fMRI) generate time-varytaia.
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Time-varying data can be loosely divided into the followirajegories based on the

guestions that domain experts try to answer using visu#iza

e Fields such as computational fluid dynamics have datasatsdmtain three dimen-
sional features that move and morph over time. The pathrsadeby these three
dimensional features in time-varying datasets are of damable interest to scien-
tists. Visually or computationally tracking these feagliga typical task undertaken
by domain scientists. Scientists correlate the featurdgtagir motion to understand
the path taken by one or more features of interest. The tasksaglly tracking
features is further complicated by occluding features &edr thange in shape over

time. We call this type of datpositionally variantdata.

¢ In some cases, the data is time-varying only in the form oétirébute that is varying
over time (e.g. global rainfall readings for a decade). is tase, the more common
tasks include identifying anomalies as well as observiegds (incremental or decre-
mental) that need further investigation. Weather and dimnesearchers investigate
such trends and anomalies on a regular basis to understamdéehnall change in the
values over the interval. One such example could be visaglihe variance in tem-
perature values over the North American region over thedastury. These kinds of
datasets with varying values of a quantity such as temperatuainfall are referred

to asvalue variantdata.

Visualization of time-varying data has been a challengimdplem due to the complex
task of assimilating the undergoing changes. A researclagrime interested in multiple
regions or features of interest that are all changing/mgueier time. Visually tracking and
understanding the changes in data can be impossible inrcegses and could potentially
overload the cognitive abilities. It may even lead to ineatrinferences being drawn from
the knowledge gleaned.

The naive approach to visualizing time-varying data isdnagate a snapshot for each

individual time step using standard visualization. Thisgass of generating and observing
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FiG. 1.1. These are a set of snapshots from successive timex$tepslume. As is evident
from looking at the snapshots, it is very hard to correlate mack a particular feature over
different time steps.

snapshots relies heavily on the user’s ability to identifg @arack regions of interest over
time. At the same time, the number of snapshots generatedecgnite high (100-5000),
requiring considerable effort for the user to visually tdeatures. Figure 1.1 shows one
such example with only five snapshots of timesteps showiagtbtion of three features in
a time-varying dataset. As can be seen, the direction ofanaf the three features is not
easily understood by just looking at the snapshots.

Additionally, some practitioners inspect animations tewalize and get insight into
their time-varying data. But, with animations too there lanewn limitations such as inat-

tentional blindness which may affect the visual trackingatalities of a practitioner.

1.1 [lllustrations

The human visual system is a complex and intricate systdustiations have been
used extensively to convey information not easily conveyeghotographs (Hodges 1989).
lllustrators are well aware of our visual and cognitive digs. They purposefully produce
illustrations that convey important information to thewas by adding cues that will attract

attention of the viewer.

1.1.1 Conveying motion through illustration

Snapshots are of limited use as they produce a pictoriabsemtation of the current

timestep without any context regarding the previous or sgbent timestep. The user is
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required to mentally complete the motion by looking at npléisnapshots. In the case
of viewing an animation, research in psychology has provan human beings can only
remember information from five to ten frames before the mirfeame. An animation
of time-varying data snapshots containing over 100 framilsbe of limited use and its
effectiveness will heavily depend on the skills of the expgamining the animation.

Due to the fact that an application domain expert is primdocused on being able
to visually track features as they move over time, neithahete techniques particularly
help in that task. Occlusions by other features or limitednogy in the case of visualizing
more than a few timesteps of a huge dataset, can severetyhieniser’s capability to track

a feature of interest over time.

FIG. 1.2. This illustration shows a ball that has bounced in @& .pThe path traversed by
the ball is conveyed using simple lines in a style similar teawillustrators would do to
convey the motion of a cartoon character.

lllustrations communicate concepts to a reader in an easgderstand manner. Par-
ticularly, many children’s book illustrators convey coptgusing very few lines and sim-
ple, meaningful shapes. Figure 1.2 for example shows astidition similar to ones we
may see in a children’s book. It shows an image of a ball augedeoy a line tracing an
approximate path that the ball has traversed to get to itentfocation. It conveys past

positions of the ball, where it originated from and most imtpotly gives a dynamic quality
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to the static image of the ball. Many such examples imply ilhegtrations and comics in
particular are very effective at conveying motion or chaimggosition over time in a subtle

yet effective manner.
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FiG. 1.3. This figure contains four illustrations depicting thetion of water as it is flows
around an obstruction. Da Vinci draws similarities to thepmrties of hair as he discusses
the flow of water around and over obstacles in its path (MadZ#854).

Leonardo Da Vinci used such techniques to convey motion wver. He used such
techniques frequently in his scientific illustrations tongey change over time. He de-

scribes Figure 1.3 as follows:

“Observe the motion of the surface of the water, how it redesthat of hair, which
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has two motions - one depends on the weight of the hair, ther atth the direction of the
curls; thus the water forms whirling eddies, one part follogvthe impetus of the chief
current, and the other following the incidental motion aetlirn flow.” He used illustration
principles to effectively convey concepts such as eddiesraation of water around an
obstacle.

lllustrators have used numerous techniques to depict éhawnegr time in a single im-
age (McCloud 1994). We are all familiar with comics where ithestrator uses techniques
such as motion blur, faded representations of older postisilhouettes of older positions
and so on to convey motion and action in scenes. Figure 1wsstioe such example where

the downward motion of the axe is conveyed using trailingaikettes.

FIG. 1.4. The downward motion of the axe is conveyed using tr@isilhouettes.
lllustration provided courtesy of Kunio Kondo (Kawagigtial. 2003).

[llustrators such as Scott McCloud have discussed tecksifpr conveying motion
from the perspective of an artist (McCloud 1994). Techngysiech as speedlines and mo-
tion blur were discussed in detail with excellent exampleshsas in Figure 1.5 and Figure
1.6. In Figure 1.5, the illustrator conveys the flying motafrihe man by adding lines that
convey the direction of motion of the man. The image, thoughc successfully conveys
motion and provides information regarding the originaldbon of the man.

In Figure 1.6, one can observe four different ways of convgyhe rightward motion
of a man using various techniques. The techniques are vauedre still able to convey
the motion. The top-left image conveys motion without angtpaformation, whereas the

top-right and bottom-left show some information regardagt positions of the man in the



FiG. 1.5. This illustration depicts the flying motion of a man.€lotion lines convey the
direction of motion of the man and provide context to the eatdocation of the man with
respect to older locations in a single image. Image creMtsCloud (1994)

form of silhouettes or faded representations of the man. Bdteom-right image depicts
a technique inspired by Japanese art, where they convey dhiemby implying that the

scene around the person is moving more than the person liinegsklf. This can be seen
in many Japanese anime cartoons, where a character is tmgiotorbike but the scene

around him is what is shown to be moving past more than thappemnoving in the scene.

1.1.2 Effective visualization of positionally variant daga

In this work, we adapt such illustration principles to viseatime-varying data. For

positionally variantdata, we adapt techniques from the field of comics and apply-te



FIG. 1.6. This figure depicts four different techniques disedsby Scott McCloud to
convey motion. The top-left image does not show any inforomestbout past positions, the
top-right and bottom-left images clearly show some infaioraregarding past positions
and the bottom-right image depicts a style where the scemedrthe subject is shown to
be moving to convey motion to the viewer. Image credits: Me@l (1994)

niques to convey positional change in a single image to tbavet. We identified four
specific techniques; namely speedlines, flow ribbons, tpéecised modulation and strobe
silhouettes to annotate static images with motion cuese®as our user evaluation, we
found that our illustration-inspired techniques helpedrasomplete tasks such as visual
tracking more accurately and confidently as compared tdtioadl visualization tech-
niques. Participants consistently preferred our techesgover standard snapshot-based
visualizations or animations.

The strengths and weaknesses of new visualization tecksiape more evident when
applied to an application domain. We applied our illustmatinspired techniques to vi-
sualize hurricane data. An expert evaluation was conductettain the feedback of at-
mospheric physicists. They found our techniques to be usafunvestigating hurricane

structures as well as phenomena that can lead to intensificatdissipation in a hurricane.

1.1.3 Effective visualization of value variant data

Value variantdata has change in values of an attribute over time withirdtdta. To

visualize the change in values over a time interval or idgmtends in a dataset, snapshots
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and animations are of limited use. We introduce pointillisased techniques inspired
heavily by the impressionist painter Seurat. Seurat, a lstedent of color theory, ap-
plied the color mixing theory developed by Chevreul and Rf®dod 1879) to generate
expressive paintings.

We developed techniques where the canvas was painted usimijlistic strokes to
represent the change undergone by the quantity over théfisdettime interval. A for-
mal user evaluation of the techniques clearly indicated tthe participants preferred our
pointillism-based techniques over static screenshots&-varying data. Our experiments
revealed that participants were better at visually idgimg trends in the dataset using our

techniques compared to standard visualization techniques

1.2 Contributions

Our research contributions to the field of visualizationiarthe form of novel visual-
ization techniques inspired by art to visualize time-vagydata. These techniques can be
used to provide temporal context to the viewer by conveyingom as well as change over
time more effectively.

Specifically our contributions are as follows:

e Flow llustration techniques facilitate tracking of feegs over time. Our work allows

a viewer to better visualize the path traversed by a featueesingle image.

e Our semantic simplification techniques maintain path festthat are crucial to the
process and produce simplified representations to mimidlastrator’s represen-
tation. Task-based simplified representations can be gteusing our semantic

simplification techniques.

¢ Pointillism-based visualization of change in values attdi by attributes in time-
varying data. Using our techniques, trends in time-vangata can be clearly seen
and used for understanding and conveying information abwiproperties of the

attribute as it changes over time.
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Our techniques have led to the following contributions ie #pplication domains:

¢ In the field of fluid flow visualization, our flow illustratiorethniques provide im-
proved visual tracking of features of interest over a largehber of timesteps. Our
user evaluation provided convincing results that our tegpies work better than stan-

dard snapshots or animations.

e Atmospheric physicists found our art-inspired technigueelse useful in the process
of investigating a hurricane as it evolves over time. Thenm&l structure of the
hurricane, the path of the hurricane and changes in atélmities such as humidity
and temperature in the hurricane can now be better visuhligeng our techniques.
Our expert user study provided crucial feedback that oumtepies were preferred in
most cases over visualizations that their tools were génegralhese visualizations
provided insight and helped them answer crucial questiodshalped give them an

increased understanding into the science behind the dawelot of a hurricane.

This is a significant contribution to the visualization coommity as well as the applica-
tion domain. It fulfills our goal of successfully collaborag and integrating visualization
with scientists to enable them to explore and understand da¢a based on those new

findings.

1.3 Dissertation Roadmap

The remainder of this dissertation is organized as follom<hapter 2, we describe
our work on illustration-inspired visualization of timextying data for positionally vari-
ant data. In Chapter 3, we present results of a formal usdysifithose techniques and
validate their effectiveness. In Chapter 4, we discusouarrepresentations of the paths
discussed in Chapter 3 and ident#fgnartrepresentations of those paths that preserve im-
portant features based on the context.

In Chapter 5, we discuss a case study describing the apphoaft our techniques in

the field of hurricane visualization. The field of hurricansualization has benefited from
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our techniques and our new contributions were validatedusyegpert user study in which
we obtained feedback from researchers in the fields of athegpphysics, hurricane mod-
eling and simulations.

In Chapter 6, we describe our pointillism-inspired techusig for visualizing value
variant data. We discuss our results in context of the hamecdomain as well as other
2D+t domains such as global rainfall measured over a decade, ektdpntial election
results for counties across the nation and infant mortdkitya measured over the last seven
years. In Chapter 7, we discuss the results of the formalatiain of our techniques from
Chapter 6 and validate the efficacy of our techniques.

We conclude in Chapter 8 with a discussion regarding theritutions and directions

that the dissertation could be extended in the future.



Chapter 2

RELEVANT WORK

With an ever-increasing interest in illustration- and iagpired computer graphics,
the application of abstraction principles to the field ofuakzation is a natural extension
to the field of non-photorealistic computer graphics. Ndm#realistic Rendering (NPR)
applies techniques from the field of art to generate imagastthve an illustrative or a
painterly look.

NPR techniques have been applied to visualize data obt&ioedscientific experi-
ments, medical scanned data and other applications. Thekritjues have shown great
promise in allowing users to explore medical CT scanned aatbobtain information not
readily available from traditional visualization techn&p such agolume renderingMany
researchers have used such NPR techniques for visualizxgcal and scientific datasets
(Treavett and Chen 2000), (Rheingans and Ebert 2001)g{lal. 2002), (Lum and Ma
2002), (Csebfalvet al. 2001) and (Hadwigeet al. 2003). These novel techniques have
generated considerable interest in the field of medicalmelwisualization due to their
ease of use and intuitive approach. Figure 2.1 shows a fem@es of illustration-inspired
techniques being applied to medical volumetric data. Tlpddé image depicts a visual-
ization that automatically accentuates features in tha.dete boundaries and silhouettes
in the data are emphasized in this case. The honeycombistuctthe liver can be clearly
seen in this representation. The emphasized boundariegari®helps disambiguate their
spatial location. The top right image is designed to drawviberers attention to a region

of interest focused around the right kidney. The detailfaright kidney are clearly seen

12
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as compared to the left kidney. The bottom left image showsxgmessive visualization
obtained by using the stippling style from the field of illi@tons. The stippling technique
provides an excellent representation that highlightsuiest of interest and de-emphasizes
unimportant regions. The bottom right image depicts a igm&ation where features are
highlighted by identifying and enhancing their curvatufRegions of high curvature are
thickened in addition to the illustrative shading which geates an effective illustrative
visualization.
lllustration-inspired techniques are very powerful at weying information to a

viewer in an informative yet pleasing manner.

2.1 \Visualization of positionally variant data

Most research in the field of visualizing time-varying data$as been focused around
the needs of the application domain (computational fluidadyics, medical imaging,
weather forecasting) from which the data was obtained. aligiexamining and explor-
ing the data seemed to provide scientists with enormoughhsinitial approaches dealt
with visualizing each timestep of these huge datasets bgrgéng a visualization using
volume rendering or isosurface extraction techniques poesent the time-varying data
(Weigle and Banks 1998), (Bajat al. 1999), (Chiang 2003).

Computational fluid dynamics (CFD) simulations were onehef first few applica-
tion domains that generated large amounts of time-varyatg.dThe data contains three-
dimensional features that are moving and morphing over.tbaentanet al. (1994) were
the first to identify and apply techniques from the field of guter vision to deal with the
problem of tracking these features in three-dimensiomaétvarying data. Various kinds
of feature interactions such as merging of two featuregtisyg of one feature into two fea-
tures, birth of a feature, death of a feature were charagedriFeature tracking was further
improved by Silveret al. (1996), (1997). Figure 2.2 shows one of their results fotuea
tracking in the turbulent vortex dataset (Fernandez anee6i1998) . Poset al. (1995)

discussed “icon” based techniques to visualize featuréisi@ varying data. Frameworks
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FiG. 2.1. This figure shows some innovative visualization téphes that lead to expres-
sive visualization of medical volumetric data. The top lefiage shows a boundary and
silhouette enhanced representation of an abdominal CEelatehere the internal honey-
comb structure of the liver is visible along with the highitgd boundaries of the organs.
The right image draws the viewer’s attention to a region ¢¢riest focused on the right
kidney which is enhanced (Rheingans and Ebert 2001). Therhdeft image shows a
stipple-style rendering of a foot with the bones and the skound it being emphasized.
In particular, the joints are accentuated and draw the @@ a manner similar to an
illustrator (Luet al. 2002). The bottom right image shows a representation of tael lof
the Visible Human dataset where the features on the headgirigihted using curvature-
based enhancements (Kindimaetral. 2003).
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such as ViSTA FlowLib were developed to visualize flows i@l environments (Schirski

et al. 2003).

FiG. 2.2. This figure shows features from four timesteps of thieuient vortex data that
was used for feature extraction and tracking (Silver and §\E906).

Other than feature tracking and visualization, resear¢hme-varying data visualiza-
tion focuses on using compression (Shetral. 1999), (Foutet al. 2005), (Westermann
1995) and optimized data structures and algorithms (SattahHansen 1999), (Wilhelms
and Gelder 1990), to manage data efficiently. Recent adganagaphics hardware have
also been leveraged to interactively visualize time-vagydata (Luret al. 2001). Cluster-
based visualization over a distributed network has beerldped to visualize huge time-
varying datasets and to utilize the capabilities of CPU alé ageGPU of each component
in the system (Strengeet al. 2005), (Ma and Camp 2000). Research in the field of visu-
alizing distributed datasets tackled the problem of vigiral prohibitively large datasets
(Silver and Kusurkar 2000).
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2.2 lllustrative visualization of positionally variant data

Traditional visualization techniques though are limitéd@nveying information to a
user. As the datasets get bigger, using smart techniqguestey the information contained
within the data becomes more important. lllustrative visiadion techniques generate vi-
sualizations that can provide insight to the users inta tihetia. They can highlight features
of interest and draw the viewer’s attention to those intangsfeatures. Such techniques
are invaluable for visualizing large datasets where the sizthe dataset could cause an
expert to inadvertently miss crucial features using steshgisualization techniques.

Stompelet al. (2002) have applied non-photorealistic rendering teamesqgto time
varying data visualization. They used techniques such adignmt, silhouette, and depth
enhancement to provide more spatial and temporal cuesré=&)8 shows a comparison
of a standard volume rendering of a CFD simulation on thedett an enhanced version
on the right that accentuates internal structures usindigmé silhouette as well as depth-
based enhancements. Chronovolumes (Woodring and Shen 28683 novel technique
developed to visualize time-varying data by using priregdtom art and photography. The
ability to depict change as well as the overall motion wadaea using their photography-
based techniques. Svakhieeal. (2005) have extended volume illustration techniques
(Rheingans and Ebert 2001) for time-varying data and hapbeghSchlieren photography
and shadowgraphy from the field of photography to convey gaawver time. Figure 2.4
shows an example of an illustrative visualization of thepenature variation in a convec-
tion dataset. A specific temperature isocontour is showh wiher temperature regions
shown as sketches around it.

Other than the photography-inspired work by Svakrehal. (2005) there is no work
in the field of providing temporal context to the viewer regdjag previous timesteps or pro-
viding information regarding the timesteps in a certairmal around the current timestep
being visualized. Even in the case of photography-inspiiedalizations, new visualiza-

tions are generated to provide temporal context (Svakéirad. 2005). An expert evalua-
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FiG. 2.3. This figure shows volume rendered images of a CFD stioualaThe left image
shows a standard volume rendering image and the right imag®ssa temporal domain
enhanced version (Luet al. 2001).

tion of such photography-inspired techniques will helpnidfy its true value in the scien-
tific visualization domain.

Conveying temporal context using illustration-inspiregks in a non-disruptive man-
ner can be invaluable. A visual representation of the cartenestep augmented by
illustration-inspired techniques can not only providetexregarding a particular feature’s
movement, but can also help the viewer visually track fezgtum feature-rich time-varying
data. There is a need for investigating the illustratioar&iture to identify effective, eas-
ily comprehensible techniques that can be applied to geneféective visualizations of
time-varying data. An evaluation of the strengths and weakas of such techniques can
provide insight into the effectiveness of such techniques@ovide guidelines regarding

the types of techniques to be used for various kinds of tiargiag datasets.

2.2.1 lllustrative visualization of paths

Our work deals with augmenting time-varying data visudimas with cues inspired
from illustrations and comics. One of the techniques isetidpeedlinesvhere we mimic
the depiction of the direction of motion of a three-dimemsibfeature from an illustrator’s

point of view. To mimic an illustrator’s depiction of the diction of motion, we generate
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FIG. 2.4. An illustrative visualization of the temperatureigéion in a convection dataset.
The image shows a specific temperature region rendered as batindary volume and
other temperature regions shown as sketches around itklineet al. 2005)

asimplifiedrepresentation of the actual path taken by a feature ofdsteil here has been
a significant amount of work in the field of automatically geatang simplified representa-
tions of large data. In our case, the data is in the form of Hthl fraversed by a feature. In
this subsection, we discuss relevant work in the field of gatiplification.

Simplification can be defined as the process of generating-al&iail representation
of a high-detail dataset where the salient characteristes the high-detail representation
are preserved in the low-detail representation. Early vimtke field of level-of-detail tech-
niques for computer graphics was done by Clark (1976), Fanger and Sequin (1993)
and Hoppe (1996). There has been some research in the ussuaf perception-based
knowledge to generate simplified representations of coxpledels (Luebke and Hallen
2001), (Coheret al. 1998).

Cartographers have been using simplification to generatplgied maps of regions
(Robinson and Sale 1969). They frequently vary the simpliftcy parameters of a map
based on the function of the map. Research in the field of géingreasy-to-use, task-

based representations of maps has provided guidelinebdardeds as well as benefits of
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using such simplified representations (Tversky 1992). Toedlas-Peucker algorithm was
one of the first algorithms to generate a simplified represgent of a path or loop given a
large number of points as input (Douglas and Peucker 1973).

In the field of computer graphics, there has been some semviorétl in the field of
generating simplified representations of curves, polygpaths and maps. Chan and Chin
(1996) discussed early ideas to produce a simplified reptaen of polygonal curves.
Agarwal et al. (2000) developed efficient algorithms for simplifying casvand paths.
Agrawala and Stolte (2001) were the first to propose a uniqiigtion to the problem
of generating comprehensive and easy-to-use route magareF2.5 shows one such vi-
sualization of driving directions generated by their sgstaking into account the lay-
out, design and comprehensibility constraints. Reseasdigve also developed graphics
hardware-based algorithms to efficiently perform view-elggent generalization of maps
in an interactive map visualization system (Musteffal. 2001).

The major limitation of all these techniques, though, isrtmability to generate task-
based visualizations for paths. Simplifying path data toagate a simplified representation
which contains fewer points is useful for storage and rendepurposes, but it is not as
useful for visualization purposes if the simplification da®ot take into account features
along the path. Inadvertently, a path simplification altfoni could eliminate a crucial
feature and may lead to an incorrect interpretation of data.

There is definitely a need for identifying regions of motidwat are interesting from
an application domain point of view and ensuring that theypeserved even in simplified

representations of the data.

2.3 Hurricane Visualization

We applied our novel illustration-inspired techniquestie field of hurricanes. The
field of hurricanes not only presented us with large amoufsudti-attribute time-varying
data but also with visualization challenges regardingotiffe representations to convey the

time-varying nature of the hurricane for investigative poses. The direction of motion,
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FiIG. 2.5. Thisis an image of a novel technique to visually repmnédriving directions data.
Easy-to-use driving directions with context informatioene generated and simple cogni-
tive cues were provided to the user. The user study condecteirmed the effectiveness
of their clutter-free visualization of driving directiorfdgrawala and Stolte 2001).

the rate of change of intensity of a hurricane, the presefficeain phenomena such
asmesovortice®r vertical wind shearand their effects on a hurricane were important to
domain experts. We investigated the use of illustratiapired techniques in the field of
hurricane visualization. In this section, we discuss sofite@previous work done in the
field of visualizing hurricanes.

Research in hurricane simulation and visualization has &y been conducted using
supercomputers running simulations of hurricanes for d&yse of the first such simula-
tions involved the visualization of hurricane Diana thatisk the coast of North Carolina
in 1984. The visualization was conducted over a massivelgligh IBM supercomputer
where the model used 552 processors for two days and prodi@®@B of output data
(Davis and Bosart 2001), (Davis and Bosart 2002). The rebdacused more on studying

the hurricane simulations and obtaining more informatiegarding the processes behind
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hurricane evolution.

FIG. 2.6. This image shows a standard two-dimensional visai@ia of isocontour data
for cloud water data in hurricane Katrina. The visualizatghows information only at a
particular altitude from the sea surface and is limited atvfaing structural information
for the entire hurricane.

Weather and climate researchers use a combination of twatiptoduce one- and two-
dimensional visualizations of their data. The Grids Anedysd Display System (GrADS)
(COLA 1988) developed at the Center for Ocean, Land and Aptnexe Studies (COLA)
is one such 2D visualization tool widely used by atmosphehgsicists and weather re-
searchers to explore and study their data. A commercialggeekidely used by the mete-
orological community is IDL (Bowman 2005). It is mainly uskx its data processing and
statistical analysis capabilities but the newer versieasifre some basic three-dimensional
graphics functionality. Vis5D (Hibbard and Santek 1990) &sAD (Hibbard 1998) (the

java version of Vis5D) are some of the most popular applicetiamongst weather re-
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searchers.

Hurricane visualization has been a topic of interest fotaisefew years because of the
immense destruction that has been caused by hurricanebe AEEE Visualization 2004
contest, Hurricane Isabel data was made available as ptre @ontest (Kuet al. 2004).
Researchers adopted approaches based on immersive zagioali(Gruchalla and Mar-
bach 2004), multithreaded OpenGL-based glyph visuatmatiohnson and Burns 2004),
interactive brushing in data views (Doleisehal. 2004), anisotropic diffusion for visual-
izing vector fields (Helgeland and Elboth 2005), variantyafime rendering techniques
(Jianget al. 2004) and texture advection techniques for flow visualmatiSchafhitzekt
al. 2004). These techniques, though effective in visualizieigatn aspects of the hurri-
cane, were limited in their ability to show internal struetidetails of a particular timestep
as well as to convey the temporal nature of the hurricane.

Woodring and Shen (2006) as well as Saudteal. (2006) discussed new techniques
to visualize multi-attribute data and used the multi-btite hurricane datasets as an exam-
ple. Their work discussed novel ways to provide insight tondmn experts by highlighting
attribute correlations between various attributes (swheaperature, pressure, and vor-
ticity) in a single timestep. Such systems that can help exp®d correlations between
multiple attributes can be of immense use to domain experts.

Similar to traditional visualization techniques for timarying data, the hurricane vi-
sualization tools and techniques generate visualizatitatsmerely provide a visual repre-
sentation of the underlying data without considering thedi® highlight, accentuate and
emphasize important features in these large multi-atigilolatasets. Providing temporal
context to increase the understanding of the origin of tbenstand the direction of mo-
tion in which the hurricane is moving is crucial. Within a gia timestep, identifying and
accentuating structural features is also of immense usernachne experts. An in-depth
study evaluating the effectiveness of such techniques ttwrpoint of view of domain
experts can be very valuable.

Analysis of the data being visualized reveals crucial $tmat and temporal character-
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istics that can be used to produce insightful visualizatias well as to annotate visualiza-
tions to be more informative. lllustrators distill the chateristic features of their subject
and produce illustrations that capture those details ratt#tg out irrelevant information.
Through techniques that have been inspired by such insigititistrations, we produce

meaningful and expressive visualizations of hurricanesfgestigation purposes.

2.4 \isualization of value variant data

Value variant data is time-varying data in which a certatnitaite is changing over
time such as global temperature measured over a time iht@nrgant mortality in the na-
tion over the last eight years and so on. In most cases, thagdspatially two-dimensional
and varies over time. Such data is cald+t data and can be visualized using a variety
of techniques.

Visualizing such time-varying data is traditionally dong drenerating a snapshot for
each timestep based on a color scale and viewing all the kaepsimultaneously. In
such cases, it is extremely easy for a user or even a welleagxpert to miss increas-
ing/decreasing patterns as well as interesting variationgalues of the attribute being
visualized. In some cases, animation of the snapshots caisdzbas an alternative but
there are always cases of inattentional blindness whereisual system misses important
features due to other irrelevant distractions that causeigwer to lose focus or attention.

Figure 2.7 shows a visual representation of infant mogtatitthe nation over a five-
year period from 1998 to 2002. The snapshots of the data raitetl in their ability to
convey interesting patterns in the data. Questions suchhashvstate consistently has
the highest infant mortality in the country over the five ypariod requires the viewer to
closely examine each of the images. Using the color scald@tendisual ability, a viewer
can finally find the answer. The question though is not whegheh a straightforward ques-
tion can be answered, but whether more interesting pattertie data can automatically

emerge by using such simple techniques.
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FIG. 2.7. These set of image depict the infant mortality in thiérercountry over a period
of five years from 1998-2002. The color scale provided can $exuo understand the
data. Identification of clear, interesting patterns andsualibehavior in the data cannot be
clearly seen by looking at these snapsh@ata credits: US Centers for Disease Control
and Prevention, National Center for Health Statistics.

2.5 Art-inspired visualization of value variant data

Since traditional snapshot/animation-based technigee® $imited in conveying pat-
terns and visualizing change in attributes, we investijatevel techniques from the field
of art, in particular from the field of pointillistic paintghas invented by Seurat.

Non-traditional computer graphics has led to interestinggery in the form of sketch-
style images (Winkenbach and Salesin 1994) and paintylg-shages (Hertzmann 1998)
given a photograph/scene as an input. Researchers havepmyasystems that generate
painterly rendering (Haeberli 1990), (Litwinowicz 199%)well as animation in a painterly
style (Meier 1996). Hertzmann developed a system to gemesihterly rendered images
given an input photograph in various styles such as impvagsn, expressionism, pointil-
lism and colorist wash (Hertzmann 1998).

Researchers in data visualization have identified the gtinsrof the medium and ap-
plied it to visualize various kinds of data. Laidlawal. (1998) used concepts from painting
to visualize tensor fields in diffusion tensor imaging. Thegd oil painting concepts such

as layering and encoding information in the brush diregtgiroke frequency and satura-
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FIG. 2.8. The top left image depicts the painterly visualizatad a mouse spinal cord
where meaning was associated with attributes of paintirty s1$ layering, brush stroke
direction, color saturation and so on (Laidlabal. 1998). The right image depicts a multi-
attribute painterly visualization which depicts the meanditions in the month of August.
In this case too, multiple brush attributes such as brush sialor, direction, coarseness
and so on were used to encode information regarding theprauéittributes such as rainfall,
temperature, wind speed and so on into the visualizatioal@ye2001). The bottom image
is a visualization for the month of January for southwest&dn Aesthetic concepts were
included to generate visually pleasing results that woldd eonvey useful information to
a viewer. (Tateosiaat al. 2007).

tion. Figure 2.8 shows an example of a mouse spinal cord Nzsti@n using their painterly
rendering techniques. They later extended their methodstealize incompressible flows
with multiple values (Kirbyet al. 1999). In this work, they leveraged the concept of multi-
ple layers in a painting to convey the values of multipleilatiies in a visualization.

Healey (2001) investigated the use of the painterly medmmeffective visualizations
of multidimensional datasets. The idea was to map attribiatgpainterly parameters such

as the path of a brush stroke, its length and the density opldeed brush strokes in a
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FIGc. 2.9. The left image shows a visualization of multi-valuetttor data being visual-
ized using line integral convolution (LIC). The multi-v&ld vector data is visualized with
separate colors allowing for visual blending instead obadal it with a resultant/blended
color (Urnesset al. 2003). The right image shows a nanoparticle visualizatibens the
structure is shown through the use of pointillism (Sauné¢ed. 2005).

region. In addition, the amount of paint at the beginningadrestroke and a coarseness
factor was also mapped to attributes. Perceptual charstatersuch as perceptual bal-
ance, distinguishability and flexibility of colors were ds& addition to the brush stroke
attributes. They further extended their work in perceptiaded painterly rendering that al-
lowed their system to incorporate perceptual knowledgefigctive visualization (Healey
et al. 2004). The top right image in Figure 2.8 shows a visualizatibclimate conditions
using the painterly paradigm. The visualization depicesriean conditions for the month
of August for the United States. They conducted a rich sesef gtudies to evaluate their
system on paintings as well as multidimensional weathea.d&he user study results in-
dicated that users preferred the non-photorealistic \iatgons better than the standard
visualizations. Such user studies indicate the strengtuoh media and enforce the need
for visualization researchers to continue investigatitgpased techniques for visualization
purposes. Recently, Tateosianal. (2007) have further extended the painterly concept by

incorporating artistic concepts such as interpretaticoahplexity (IC), indication and de-
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tail (ID), and visual complexity (VC) into the process of geating a visualization. The
bottom image in Figure 2.8 shows a visualization of cond#ion January over the south-
west Canadian region where temperature, pressure, wirgsperecipitation and other
attributes of weather are mapped to brush, color and othetipg related attributes.

Urnesset al. (2003) discussed the concept of sampling and color mixing fo
visualizing 2D vector distributions. To visualize multdued flow data, they ap-
plied the pointillism-based principle of visual mixing oblors as opposed to using a
blended/resultant color in the visualization. The left gaan Figure 2.9 shows an ex-
ample of a visualization using LIC being depicted usingidettcolors instead of blending
the colors. Later, Saundeet al. (2005) applied concepts from pointillism for visualiz-
ing nanoparticles in formation. They used pointillism tdtbe visualize distribution of
nanoparticles in space. They augmented their techniquesibg glyphs with more in-
formation regarding the nanopatrticles. The right imageigufe 2.9 shows an example of
nanoparticles being visualized using the pointillism pégen. The figure clearly shows the
structural distribution of the nanoparticles and allowsmsgo understand the nanopatrticle

formation process better.



Chapter 3

ILLUSTRATION-INSPIRED TECHNIQUES FOR
VISUALIZING TIME-VARYING DATA

Visualization of time-varying data has been a challengiraplem due to the nature
and the size of the datasets. The naive approach to visuglime-varying data is to render
the three-dimensional volume at each individual time s&pgistandard volume rendering
techniques (Cabragt al. 1994). This technique relies heavily on the user’s abilay t
identify and track regions of interest over time. At the sdime, the number of snapshots
generated can be quite high (100-3000), requiring conadereffort for the user to track
features. To reduce this effort, we draw inspiration froma ilfustration literature to enable
us to convey change over time more succincilyne-varying datare three-dimensional
snapshots of a process captured at regular time intervalmahs such as computational
fluid dynamics, weather forecasting, and medical scansa@dtind) generate time-varying
data.

Time-varying data visualization generally consists okethsteps. First, the dataset
must be analyzed to identify interesting featurésaturesare regions of interest depending
on the scientific domain. Feature extraction can be done allgmwhere a user selects
features, semi-automatically (where an algorithm ideggifeatures which are validated by
a user), or automatically identifying features by analgaiifferent time steps.

The second step in visualizing these datasdesiire tracking The extracted features

(from different time steps) are tracked over the time stdpsature tracking requires the

28
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FiGc. 3.1. This illustration depicts the motion of a bird in flighith the abstract path
traversed by the bird and intermediate position indicai@iacCurdy 1954).

ability to identify the features and correlate them overdim

The third step is visualizing this tracked information ajowith the actual time-
varying data. The visualization conveys the change oveg tmrthe underlying data. The
feature extraction and feature tracking approach is faidgnmon in time-varying dataset
visualization (Silver and Wang 1996).

Generally, identifying and visualizing features over timea particularly hard task,
even for the well-trained eye. The problems are numerousjing from the large number
of time steps that are rendered to the ability of the usen@reo identify and visually track
a particular feature of interest. There is always the pnobdé occlusion of the feature of
interest by another uninteresting feature. The problemlavbe further complicated by
issues such as the large number of features in each time step.

Pylyshyn (Pylyshyn 2003), it was found that observers cackta maximum of five
independently moving objects at the same time, as showrisdhematic in Figure 3.2. As
the speed of the moving objects and the number of objectsasess, the performance of the
observers dropped considerably. The results of this exymeri are particularly significant
because they imply that even a trained domain expert willtrpazbably not be able to
visually track more than five features over time. It is notamenon to have 10-20 features
in a particular dataset and the experimental results ableaely state that it is impossible
for the human visual system to track their paths over time.

lllustrations are able to convey information easily, dnagvihe viewer’s attention to



/ P, B BRSNS
o ‘0 . ,0 o)
0 O 4o =¥ | |07 S0 °
O o 2 0 . 0y 0 5 2O
1 Lo‘\ & o, ©
O 0 +"e '4 : o /4 0 0 o
V :¢9:' - © /
1 2 3 4

Fic. 3.2. A schematic depicting the multiple object trackingpesment conducted by

Pylyshyn. The subject is first shown eight identical objépisnel 1) and then a subset
of four are briefly highlighted (panel 2). After that the otfe start moving in a random

manner (panel 3) and once they stop, the subject is askeeéntfidthe objects that were

designated earlier as targets. They found that users weoessfully able to track no more

than five features over time (Pylyshyn 2003).

the important details and abstracting out the irrelevamaitie lllustrators have used nu-
merous techniques to depict change over time in a singleer(fdgCloud 1994).

Leonardo Da Vinci in his treatise on the the flight of birds @@ardy 1954) writes
“The lines of the movements made by birds as they rise are ofkiwds, one which is
always spiral in the manner of a screw, and the other is neetir and curved. That bird
will rise up to a height which by means of a circular movementhie shape of a screw
makes its reflex movement against the coming of the wind amaghagthe flight of this
wind, turning always upon its right or left side.” To illuate this effect, he drew the
illustration reproduced in Figure 3.1 that depicts the mwotof the bird in flight. The
illustration conveys the motion to the viewer by using linesapproximate the path taken
by the bird to ascend into the sky. The lines do not conneatte@sitions of the bird as it
took flight, but show an abstract representation that capttire motion in a simple, easy-
to-understand manner. lllustrators tend to rely more orrabton than accuracy when
conveying change over time.

The problem of efficiently and succinctly displaying a mimireet of images that con-
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veys information about the interactions within a time-wagydataset is still unsolved. We
have identified a few techniques from the illustration hiteire and apply them to depict
change over time in time-varying datase&peedlinesre one such technique which fol-
lows features and draws the user’s attention to regionstefast. A group of speedlines
together form flow ribbons that convey change of a feature tree more succinctly. Re-
searchers in the field of visualization have used opacisetaechniques to draw the user’s
attention to a particular feature in a visualization (Silead Wang 1996). We extend this
technique to vary the opacity of features as they transforer bme. Opacity-based tech-

niques can be used in conjunction with speedlines to conesifipnal change better.

3.1 Approach

We first preprocess the time steps to analyze them and igdeétures of interest. In
the second step, the identified features are correlatedeleetwach time step to facilitate
tracking. In order to track a feature, we calculate the aedwf the feature and track it over
time. Since the centroid of a feature can fall outside th&ufeawe also track the extreme
points of the volume at each time step to provide us with moferination for tracking.
The centroid and the extreme points are used by our techaitgueonvey the direction of

motion of the feature over time.

3.1.1 Feature identification

We have used feature-extracted data from the Rutgers dataitery (Fernandez and
Silver 1998). Every voxel in each time step has an identifiat indicates the flow feature
at every time step, making it possible to track a particuddios flow features.

In this process of enhancing the rendering to draw the usétesntion to regions of
interest, we first need to identify features of interest,chiwe shall calillustration features
to avoid confusion with actual three-dimensional featumebe data.

In the preprocessing step, we analyze the time-varying sitt#o identify flow fea-

tures that are most actively moving (unstable), mostlylstab well as significantly larger
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compared to its surrounding features. This preprocessiogsus to target a certain class
of flow features (stable/unstable) that facilitate moreeif/e visualizations.

We define a quantity called themporal variation Temporal variation of a feature is
defined as a quantity that measures the amount of changefé@dtiee undergoes over time.
We used theoefficient of variation (COV)a statistical measure of the standard deviation
of a variable. The coefficient of variation has been usedréordfer function generation in
time-varying data (Jankun-Kelly and Ma 2001), for accelagavolume animation (Shen
and Johnson 1994) and for accelerating the rendering of¥eingng data using TSP trees
(Shenet al. 1999), (Ellsworthet al. 2000).

The CQOV for a data value is given by:

=2

In the above equatiom, is the mean of the samptg ; under consideration over
time steps.o, is the standard deviation of, , from its calculated mean. The CQY is
calculated by dividing the deviation, by the overall mean,,. A larger COV implies high
variation and less stability and similarly a smaller valoglies more stability over time,
implying that it may be a feature of interest (illustratiagature). In our case, we chose to
focus on more stable features, identified by low COV valuassyilsualization purposes.

Temporal variation is computed by comparing consecutiveisteps. For each pair
of consecutive time steps, we compute a gradient volumectivdtins temporal gradients
for each voxel. The temporal COV is then computed for the mmapgradients. Temporal
gradients give a sense of how the voxel density changed iowerfor a particular voxel.

We use a synthetic dataset to show the efficacy of the tecbgsigud then present
our results on actual CFD data. In Figure 3.3, the featureasing in a circular manner,
but it is not at all apparent from visualizing the individuehe steps as shown in the fig-
ure. Figure 3.4 shows the snapshots for five consecutivestaps in the turbulent vortex

dataset (Fernandez and Silver 1998). It is evident frometfigsires that visually tracking
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a particular feature over time is hard.

FIG. 3.3. This image depicts the motion of a feature in an expamtal data set over time.
The direction of motion of this feature is not clear from themapshots.

FiG. 3.4. These are a set of snapshots from successive time aftegpsgolume. As is
evident from looking at the snapshots, it is very hard to eate and track a particular
feature over different time steps. The problem partly lieshe fact that many features
are very short lived which is why we used the coefficient ofatwn measure to identify
stable, interesting features (illustration features).

3.1.2 Speedlines

Speedlines can be defined as lines that convey informatitretaser about the path
traversed by a particular feature over time. They are bHgiliaes that follow a particular
feature over time. lllustrators have used speedlines tgegomotion by altering the char-
acteristics of these lines. The thickness, the line-stye, variation of the opacity are the
types of characteristics that successfully convey the ghan

For example, in Figure 3.5 the illustrator has been sucaésstonveying the motion
of the pitcher’s arm to the viewer (Kawagis#tial. 2003). In particular, the thickness of the
lines is varied to show the direction of motion of the pitchérand. It is also important to
note that the curve tracing the pitcher’'s arm is smooth andrregular. It is an abstraction

of the actual movement of a pitcher’s arm. The motion of treeball towards the viewer is
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successfully depicted by the speedlines that start outdtdepict the origin of motion, but
later thicken to imply the increased intensity during thiease of the ball and then again

start thinning towards the end as it gets closer to the viewer

FiGc. 3.5. This illustration shows the use of speedlines to depation of the pitcherin a
single frame. lllustration provided courtesy of Kunio Kan@Kawagishiet al. 2003).

lllustrators use thicker, denser lines to represent oide tnstants and lighter, thinner
lines to represent newer time steps. Figure 3.6 shows asirdition with speedlines. The
lines are thicker and darker farther away from the man ang ¢fes thinner and lighter as

they approach the man.

Fic. 3.6. This illustration uses speedlines to depict the migmnhotion of the man. The
lines get thinner and lighter as they approach the running. Mlastration provided cour-
tesy of HarperCollins publishers and Scott McCloud (Mc@ld994).

In Figure 3.7 we have identified one feature and conveyed d@som over twelve
timesteps. To convey the notion of time, we have used spelli The darker, thicker
regions of the line convey an older time step whereas thedrgthinner regions of the
speedline depict a more recent time step. Figure 3.7 endiBegewer to understand the
rightward motion of a feature. The characteristics of theegflines are similar to that of
Figure 3.6. The line style is thicker and more opaque in otaee instants and thinner,

more translucent towards the newer time instants.
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FiG. 3.7. The image shows the use of speedlines to depict mofitmedeature in the
experimental dataset through twelve timesteps. The @#mgi motion of the feature from
left to right is depicted using speedlines. The speedlimeshgnner just and translucent as
they get closer to the latest timestep, just as Figure 3.6.

FIG. 3.8. The image depicts change over time in a feature for C&B.d’he downward,
rightward motion of the flow feature is conveyed using speedl

We applied the speedlines technique to real world data ffemcomputational fluid
dynamics (CFD) domain to depict the direction of motion ofaatigular feature as can
be seen in Figure 3.8. In this image, the motion of the featuearly depicted using
speedlines. The downward, rightward motion of the featsidaarly conveyed to a viewer
looking at this image.

Researchers in the field of CFD simulation use particle gdoevisualize the exact
path taken by a featureRarticle tracesconnect trajectories of a particle over time (Gal-

lagher 1994). Particle traces are by definition requiredaddithful to the path followed
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FiIG. 3.9. This set of images highlights the difference betwestigle traces and the speed-
lines technique. The leftmost image depicts a particlestizddhe feature, the middle and
rightmost image depict its motion using speedlines. In tiddie image, we used alternate
points from the path traced by the feature and in the rightimage we use one out of
four points to generate speedlines.

by the feature. A speedline, on the other hand, is an expres$ihow an illustrator would
depict the same change. The speedlines approximate thergatihsed by a feature and
incorporate the smooth, natural strokes of an illustrabodeépict the motion of the fea-
ture. Speedlines differ from particle traces in that the jpmoperties such as thickness and
opacity of the speedlines are varied to depict the temptiahge.

A streamline, by definition (Gallagher 1994), is a line thattangential to the in-
stantaneous velocity direction and generally a colleatibstreamlines are used to convey
flow. Speedlines, on the other hand, are used to track theomofia feature over a cer-
tain interval of timesteps. The goal of using speedlineoism convey flow for the entire
time-varying dataset, but to facilitate tracking a featoiraterest. Figure 3.9 illustrates the
difference between using particle traces and speedlires|eftmost image depicts a parti-
cle trace of the feature, the middle and rightmost imageaéisimotion using speedlines.
In the middle image, we used alternate points from the patiett by the feature and in the
rightmost image we use one out of four points to generateddipes. Our speedlines im-
ages are similar to the ones that illustrators would dravotwvey the motion of the feature.

The speedlines are smooth and succinctly convey the direofimotion to the viewer.
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3.1.3 Flow Ribbons

Flow ribbons are used extensively by illustrators to showtiomo Flow ribbons are
particularly interesting because they occlude underlyggjons to depict change. This

facilitates the depiction of motion over time.

;- (4 M » M

FiG. 3.10. The illustration depicts the motion of the monstegsd using a flow ribbon.
The region near his thighs is occluded and is abstracted)ssirall lines within the flow
ribbon. The small lines convey to the viewer the presenceottire under the flow ribbon.
lllustration provided courtesy of HarperCollins publist@nd Scott McCloud (McCloud
1994).

For example, in Figure 3.10, the illustrator has occludedspaf the monster’s legs
to depict the motion of his hand. At the same time, the sma#i Begments, inside the
flow ribbon (near his legs), serve as an abstraction to reptessimplified structure of the
region of the legs occluded by the flow ribbon. Flow ribbonsway morphological change
of the feature as well as the path of motion of the feature fthenfirst time step to the
current time step.

To obtain flow ribbons, we identify the centroid and the extitées of a selected fea-
ture in every time step and we use that information to dravfltve ribbons. An important
characteristic for flow ribbons is that they fade into thekmaound and stop short of the
feature. As can be seen in all the figures in Figure 3.11, tiféxtegives the viewer an

opportunity to mentally complete the diagram by filling irettetails. In this process of
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mentally completing the picture, the viewer is convincedhaf change over time.

FiG. 3.11. This set of images highlights the difference betwesious types of flow rib-
bons. In their simplest form, flow ribbons are merely pairspéedlines that convey the
change to the viewer. In the middle figure, the other extremetiich the region under the
flow ribbon is occluded by the ribbon to draw the viewer’s atien to the moving feature
and emphasize its motion. In the rightmost figure, techrécumilar to Figure 3.10 were
used to generate the ribbons. Small line segments were asdabtract features occluded
by the flow ribbons.

We define three different types of flow ribbons based on themmlexity. Figure
3.11 shows examples for these three types of flow ribbons. |&@tmost image shows
the simplest type of flow ribbons which are the ones in whichaa pf speedlines are
considered together to convey change over time. The segpeaf flow ribbons, as shown
in the middle image in Figure 3.11, are opaque and occludenyidg features. It serves to
draw the user’s attention to the feature of interest. Thelttyipe of flow ribbons use small
line segments to abstract the underlying occluded featasesan be seen in the rightmost
image in Figure 3.11.

To obtain the line segments overlapping underlying featuam alpha test followed
by a stencil test in OpenGL is used. The alpha test checksrfdenying features and
the stencil test draws the line segments on the underlyisityife to provide an abstraction
for that feature. The line segments are dynamically geadras the timestep is being
investigated. In Figure 3.12, the helical motion of the ekpental data feature is shown

using flow ribbons. The flow ribbons depict a change of motitomg the path of the
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Fic. 3.12. The image shows the helical motion of the experimeatdta feature using
flow ribbons. Just as in Figure 3.10, the occluded featuresbstracted using small line
segments. The flow ribbon gets thinner as they get closeetagivest timestep.

ribbons. As per Figure 3.10, the regions where the flow ribbocludes actual data, the
line segments convey an abstract representation of thdanying presence.

We applied the flow ribbons techniques to CFD data to traclkatufe in Figure 3.13.
The ribbons occlude the underlying feature and provide atratted representation of it
by small line segments, similar to Figure 3.10. The motiamfrthe bottom right part of

the figure to the upper left part is shown using flow ribbons.

3.1.4 Opacity modulation

[llustrators have often used techniques where they usereediidesaturated image to
depict an older time step whereas a brighter, more detaited)é represents a newer time
step.

For this technique, we identify a particular interestingttee and then merge the ren-
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FiG. 3.13. The image depicts random motion of a flow feature uiowg ribbons. The
feature moves from bottom right to upper left corner. Thedess occluded by the flow
ribbon are abstracted using thin, small lines to represktie underlying features.
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FIG. 3.14. This illustration conveys the direction of motiortieé hand over time. They use
low detail, thin lines for the older instants of time and hagtail, darker lines for the latest
positions of the hand to convey the motion. lllustrationyided courtesy of HarperCollins
publishers and Scott McCloud (McCloud 1994).

dering of the snapshots of each timestep into one image. éAsdime time, we modulate
the opacity of the older timesteps and make them less opagldwdl whereas the newer
timesteps are more opaque and the colors of the newer stesighter compared to the
older time steps. This provides insight into the origin of fieature and its path through
multiple timesteps. We found that the opacity-based tephes in conjunction with speed-
lines were a better combination to convey the change oves tiran opacity-based tech-
niques.

Figure 3.14 conveys the change over multiple timestepsdovibwer. The varying
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line thickness and increasing level of detail conveys tltetteright motion of the hand.

FiG. 3.15. The image conveys change over time using a combmatithe opacity-based
technique with the speedlines based technique. The ttanslaotion of the feature from
upper left to bottom right is conveyed by the image.

We combined this technique with our speedlines techniqugetd=igure 3.15. The
older time step is less saturated and dull, whereas the rtewesstep is brighter and more
well defined compared to the blurred older time steps. Thig@gonveys the motion of
the feature, from the left upper corner to the right bottormeo, to the viewer using a
combination of the two techniques very effectively. Jusivith the speedlines technique,

the thickness of the older line decreases as the line geterdio the newer timestep.

3.1.5 Strobe silhouettes

lllustrators have used strobe silhouettes to convey pusvmsitions of an object. As
can be seen in Figure 3.16, the direction of motion of the axapparent from the trailing
silhouettes. The strobe silhouettes are increasing im kel of detail as they get closer
to the current position of the object. The oldest time steptha most abstract, low level-
of-detail silhouette. The trailing silhouette effect comsingly conveys the motion of the
axe.

To obtain strobe silhouettes, we precompute a directiemation vector for the fea-
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FIG. 3.16. The image shows strobe silhouettes depicting motrentime. The downward
motion of the axe is conveyed using strobe silhouettessthition provided courtesy of
Kunio Kondo (Kawagishet al. 2003).

ture. The dot product of the direction-of-motion vectoriwiibe gradient vector of the voxel
under consideration, as shown in the equation below, iflestivhether that voxel should
be included in the silhouette computation or not. We comlbirgesilhouettes to get the

strobe silhouette effect.
(V fn - motionvector) < 0 = Strobesilhouette

Figure 3.17 for the experimental dataset uses strobe sthesito convey a transla-
tion in the horizontal direction to the viewer. The featutarts from the left extreme and

translates to its current position.

CCCR

Fic. 3.17. The strobe silhouettes technique applied to thererpatal data set. The
horizontal motion of the feature from left to right is de@dtusing the strobe silhouettes
technique.

Figure 3.18 shows the upward motion of the flow features ustngpe silhouettes.
The direction-of-motion vector facilitates the generatad trailing silhouettes. The bottom
figure is moving upwards and the right part of the top feataregening up. The direction

of motion and interaction between features is understoothbyiewer due to the use of
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FIG. 3.18. The strobe silhouettes technique applied to flow.date strobe silhouettes
convey the upward motion of the two features. The directémotion vector enables the
generation of trailing silhouettes.

strobe silhouettes. This image is much more effective ateging the motion as compared
to the snapshots shown in Figure 3.4.

Strobe silhouettes are extremely effective in conveyirggdinection of motion to the
viewer because they provide an abstraction of past timesst&€pe viewer can mentally
recreate the motion with the help of these strobe silhosettel that helps in conveying

positional change over time to the viewer.

3.2 Multi-feature tracking

We know that all flow features are moving in time-varying dafée have annotated
visualizations of time-varying data containing multipafures with our illustrative cues.
Figure 3.19 shows a visualization where the motion of sixuiesis conveyed using speed-
lines. The image clearly conveys temporal history for eaature.

Figure 3.18 shows an example of upward motion of two featusésg strobe silhou-
ettes. Figure 3.20 shows another example where the motithrex features in real world

data is conveyed using a combination of techniques. Flobonls are used to show the
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Fic. 3.19. The image shows multiple feature tracking using gliees for a synthetic
dataset with six moving features. In this case, the six featare moving independently of
each other and the addition of illustrative cues provideged regarding the direction of
motion of each feature.

motion of a feature and speedlines are used for the motidmeodther two features. Since
flow ribbons occlude underlying flow features, we use flow ol to depict the motion of
higher priority features and speedlines are used for lowieripy flow features. The cen-
tral feature is moving leftwards and its motion is shown gsarflow ribbon. The topmost
feature’s rightward motion and the bottommost featurefsMard motion is shown using

speedlines.

3.3 Discussion

The suitability of these techniques is highly dependententype of motion the fea-
ture undergoes. The strobe silhouettes or the opacityddashniques are not suitable for
types of motion where the feature re-traces the path it Hisrfed because the silhouettes
will overlap each other making it harder for the viewer tockkahe feature and disam-
biguate older silhouettes with newer ones. Similarly, fpacdty-based techniques an older
timestep will be occluded by newer timesteps and can caudfeision for the viewer. For
such motion, the speed lines or the flow ribbons would be moitalde. Among other

types of motion, the speedlines as well as the flow ribbonsnigoes would be suitable
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FiG. 3.20. Multiple feature tracking using flow ribbons for thigier priority flow feature
and speedlines for the lower priority flow features. The c@rfeature’s leftward motion
is represented using a flow ribbon. The rightward motion ef tthpmost feature and the
leftward motion of the bottommost feature is representadguspeedlines.

for twisting motion. Figure 3.12 is a great example that deggpiral motion of the feature
using flow ribbons.

This brings us to the use of multiple techniques in a singseiaiization. We have
already seen the combination of speedlines and opacigdb@ehniques in Figure 3.15.
Figure 3.21 is another example that uses flow ribbons andtygaased technique to con-
vey change over time. This is the actual motion of the feathrese snapshots are shown
in Figure 3.3. It is evident that this single image (Figur2l3.effectively conveys the rota-
tional motion of the feature compared to the five snapshd&sgare 3.3. The combination
of opacity-based techniques and flow ribbons conciselyuraptthe feature’s rotational

motion.
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Fic. 3.21. The rotational motion of the feature in the experitabdataset is conveyed
using a combination of opacity-based techniques and flawonb. This figure conveys the
actual motion of the feature whose snapshots are shown urd-8)3. This motion is not
at all obvious by looking at the snapshots in Figure 3.3.



Chapter 4

INTENT-BASED SIMPLIFICATION OF PATHS

Simplificationinvolves generating a simplified version of a higher resolumodel.
Simplification is increasingly popular in computer graghidue to the constant need to
provide realism as well as interactivity. For example, inoaputer game the participant
cares more about the goal of the game than the detail of theudings. From a distance,
a model containing 100K polygons will look indistinguistelirom its simplified repre-
sentation that contains 1K polygons. Graphics researc@metggyame developers leverage
this to improve the speed and interactivity of the game otiegion. In generalgeometric
simplificationinvolves automatically generating a geometric mesh basetdedistance of
the viewer from the object (Luebleat al. 2003). Geometric simplification is also employed
to obtain simplified representations of a mesh to reduce dhnepatational complexity or
increase user’s interactivity. It is primarily driven byetimeed to simplify due to graphics
hardware limitations or computational limitations. Theattenge in geometric simplifica-
tion is maintaining visual fidelity and keeping the procetsimplification transparent to
the viewer. High visual fidelity is hard to maintain and reséars have worked on mea-
suring the simplification by comparing rendered images wipdified meshes (Lindstrom
and Turk 2000) or appearance-preserving simplificatioretas pixel-based comparison
(Cohenet al. 1998).

Cognitive simplificationon the other hand, attacks the problem of generating sim-
plified versions using cognition-based principles. The Btep in cognitive simplification

is identifying features that are important from the pointvegw of an user. Cognitively

47
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FiG. 4.1. The image above displays increasing simplificatiothefcoastline of Sardinia
from left to right. The rightmost image could be used to contree overall structure of
Sardinia whereas for the purpose of coastal shipping thmteft detailed map would be
more appropriate (Robinson and Sale 1969).

significant features are different from perceptually siigaint features. Perceptually sig-
nificant features stimulate the visual senses by theirtgliti capture attention with their
color, brightness or co-location with other features. Qogely significant features, on the
other hand, contribute towards the increase of knowledgeaasist in the decision mak-
ing process. They are generally task-specific and the pcesafra domain-expert may be
required to characterize a cognitively significant feature

The second step in the cognitive simplification processdggneration of a simplified
representation without losing the identified features. Jingplification is primarily driven
by human factors such as cognitive bandwidth overload asuiviclutter. The simplified
representation retains the salient characteristics ofittterlying features. Ahn and Wohn
(Ahn and Wohn 2004) have applied techniques to generateligdprepresentations of
motion capture data for scenes with large crowds. They apiphplification techniques
to the motion patterns for each character in a large crowdedkas their character mesh
for real-time rendering of crowds. In such situations, araétige simplification approach

would be extremely useful to represent the motion of charactarther away from the
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viewer in an abstract manner and preserving detail for cters closer to the viewer.

Consider a scenario in which motion capture data of a characnsists of a path as
shown in blue in Figure 4.2. In an effort to use a naive oneeadut simplification, the loop
will be completely eliminated as has been shown in the siieglrepresentation depicted
in red in the figure. Using more sophisticated geometric $ifmation algorithms can still
not ensure preservation of desired features in a low-lemasentation. We would like to
generate a simplified representation that preserves &sainthe data. For example, in the
bottom image in Figure 4.2, the simplified representatiboys in red, preserves the loop
in the path. A cognitive-simplified representation wouldaixe to preserve such features

based on a user defined function or a mask.

i
S e

FIG. 4.2. The original path is depicted in blue and its simplifiepresentation, obtained by
using a simple one-out-of-n simplification algorithm, i©gim in red. The bottom image
depicts a feature-preserving representation of the satheugang cognitive simplification.

We have applied our path simplification techniques to vigua the path traversed
by the eye of hurricane Katrina. Information regarding théhphat the hurricane is likely
to take is very crucial for planning rescue and evacuatiogragmons. Our cognitive sim-
plification techniques on the path of the hurricane produaih pepresentations that are
easy to use for decision-making purposes. That is primdribyto their ability to preserve

relevant features even at simplified representations ogpétle.
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4.1 Approach

Cognitive simplification is a two step process. The first stwplves the specification
of a function that identifies the features that should begesl in the simplification pro-
cess. We call this function the “simplification function.’hif function could be specified
in the form of an equation or could be specified manually inftren of mask per curve
point that specifies the simplification factor individualty each curve point.

The second step consists of performing simplification gitrensimplification func-
tion. Based on the specified simplification function, poifmtsn the original curve get

included into the simplified representation.

4.1.1 Weighted averaging of eliminated points

In the process of simplification, the specified function esuthe elimination of cer-
tain control points of the original curve. The points, thbugiminated, are a part of the
original curve and contain information related to it that tmeto capture using weighting.
The primary reason for weighting the eliminated points icépture the essence of the
eliminated control points. They could be considered as thutvalent of knots in splines
that affect the shape of the curve. Similarly, these elit@dgoints have weights that affect
the position of the neighboring control points includedhe simplified curve.

For example, if point-1 and point i are included in the simplified representation but
k points were eliminated in between due to the simplificatiomction, a weighted average
of those eliminated points is performed to affect the poifithe weighting is Gaussian and

is performed using the following formula.

s(i) = ) weight(m) x il

* 011 CUTVE; (4.1)
m=0 k
k—m

weight(m) = weight — (weight * ) (4.2)
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The first equation computes the weight for the eliminatesh{sobased on their dis-
tance from the current point. The points that are closeshéocurrent point, have the
largest weight. The weight decreases rapidly as we go fuaivay from the current point
i under consideration. Equation 2 specifies the weightingtfan as the eliminated points
from the original curve from to i-k affect the current simplified point.

In Figure 4.3, the top image depicts the simplified represtéat in red but without av-
eraging the eliminated points. The bottom image depictefteet of weighting eliminated
points on the overall appearance of the simplified curve héntop image, the eliminated
points do not have any effect on the shape of the curve edlyecsar the three peaks in
the central region of the curve. In the bottom figure thoubk, gimplified representation
with weighting clearly affects the shape of the curve byrigkinto account the eliminated
points. The overall shape of the curve, in the bottom imageis to capture the essence

of the original curve better than the simplified represeatatvithout the weighting.
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FiG. 4.3. The top image depicts the simplified representatiaedrbut without averaging
the eliminated points. The bottom image performs Gausskighting on the eliminated
points to take those into consideration to affect the ovapgearance of the curve. As can
be seen in the bottom image, the second bump is a little mpezd¢d and the subsequent
bumps too are weighted due to the eliminated points.
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Our simplification functions are based on properties of aeuwe now explore sim-
plification functions that include linearly increasing gilification along the curve, depth-
based simplification, simplification based on region-déiast and curvature-based func-
tions. We allow the user to specify a simplification functibat ensures the preservation

of features of interest to the user.

4.1.2 Linearly increasing simplification

Consider a situation where we have information regardiegtith traversed by a char-
acter in an animation over time. In such a situation, an atanraight be more interested
in preserving details of the path for the newer instants amglify the path for older time
instants. In such a situation, a linearly decreasing siioption function could be used to
generate feature-preserving simplified representatitorgyahe path.

In this method, the simplification factor at the beginningttod curve is at a maxi-
mum. This implies that the simplification is maximum for aldiene instants and linearly
decreases towards the end of the curve where it almostdéiihnthe original curve. The

simplification function s(i) is given as

s(i) = 1.0 — — (4.3)

In the above equatiom,denotes the index of the current point andenotes the total
number of points in the original curve. Asends ton, the simplification function gets
closerto O.

Figure 4.4 depicts the original curve in blue and a simplifiegresentation in red.
The simplified representation is obtained by linearly iasiag the simplification factor as
it approaches the endpoint of the curve. A graph showingdhgrsimplification function
is shown below in Figure 4.4. As the simplification factorreases, the simplified repre-

sentation gets less faithful to the original curve. A lingancreasing simplification s(i)
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could be specified as
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FIG. 4.4. The image depicts the original curve in blue and thepbfied representation in

red. The ramp simplification function implies increasingigplification as we traverse the
curve. The graph depicts the simplification function as thgpfication factor increases
towards the end of the curve.

4.1.3 Depth-based simplification

Another scenario from the field of computer animation cowdsist of a character

running into the distance away from the viewer. In such sibms, it would be more ap-
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propriate to preserve information regarding the path trse@ by the character when closer
to the viewer and generating a simplified representatioativa to its distance from the
viewer. The viewer will notice detail in the path closer teth and the depth-based simpli-
fied representation will provide the necessary cues to gotihedirection of motion of the
original path.

In this method, the simplification factor is based on theadlise of the points in the
curve from the viewer. The simplification factor is high favipts that are farther from the
viewer while those points close to the viewer have a very bsnaplification factor. This
method preserves detail for features that are closer toitveev and generates simplified
representations for features that are away from the vieWse. depth-based simplification
function s(i) is given below. Here point.z refers to the vispace depth of the point under

consideration.

FIG. 4.5. The image depicts the unsimplified curve in blue wilsitadow being cast on the
surface below. The simplified representation of the cunaejgicted in red. The shadow
of the simplified curve clearly depicts that points on theveufarther away from the future

are simplified and points closer to the viewer are retainatbat faithfully.



55

point.z — znear

s(1) (4.5)

zfar — znear

In the equation above, the simplification function is defibeded on the distance of
the z-coordinateof the current point from the vieweZfar andznearare the distances to
the far and near clipping planes respectively. As the disgtaf the current point from the
viewer increases, the simplification factor increases auses more simplification.

In Figure 4.5, the original three dimensional curve is shawblue and the depth-
based simplified representation is depicted in red. In thi@ogonal view, the depth-based
simplification is not apparent, but on closely observinggthadow of the simplified rep-
resentation, the depth-based simplification is obviouse ftints closer to the viewer are
retained whereas the points constituting features faiiey from the viewer are repre-
sented in a simplified manner. The preserved detail in pdivasare closer to the viewer
allows the user to explore a particular region without beafigcted by the surrounding

visual clutter.

4.1.4 Distance from center of interest

Consider a situation in which a comet is traveling and thelieformation regarding
its path. Scientists would want to know more about its patarination as its proximity
to the earth increases. As the comet’s path gets closer tedfth, every detail would
be crucial whereas in the other regions the comet’s pathdwoat be as important to the
scientists. In such situations, a region of interest (tle@ aurrounding the earth) can be
specified and details of the path in that region can be predeanud the rest of the path may
be simplified.

In this case, the simplification factor increases radiafiytfee distance of the points
on the curve from the center-of-interest increases. Pdivasare closest to the center of

interest are retained almost faithfully, whereas pointsstibuting features that are farther
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away are represented in a simplified manner.

s(i) = /(P, — COL)? + (P, — COL,)? + (P, — COL)? (4.6)

In the equation above?;, stands for the x-component of ti& point in the original
curve andC'O1, stands for the x-component of the center-of-interest. Hmesnotation
holds for the y- and z-components of the point under conatder and the center of inter-
est. As can be seen from the equation, the simplificatiorofastlarger for points farther

away from the region of interest and smaller for points ctdaeghe center of interest.
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FIG. 4.6. The top image depicts the unsimplified curve in blue thedsimplified repre-
sentation in red. The center of interest is marked in the fofra big green point at the
center of the image. A graph depicting the center-of-irgebased simplification function
explains the situation better.

In Figure 4.6, we see the unsimplified curve in blue and thekfied representation
in red. The simplified representation is faithful to the aim the region surrounding the
center of interest due to a small simplification factor, ve@er it is highly simplified in
regions farther away from the center of interest. The sifigaliion factor increases with

increase in the distance of the point from the center-cérigt.
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4.1.5 Curvature-based function

In a situation where one is driving along an unknown road, eriaformation and
warning regarding upcoming sharp turns would be helpfuMmichaccidents. Naive sim-
plification techniques could completely remove informatregarding such a turn which
would be dangerous for the driver. If we have high detail @unding such regions, it
would help the driver to prepare for the upcoming turn. Suathden, acute turns could be
identified automatically using curvature at each point ia plath. We can preserve detalil
around such regions using curvature-based techniques.

The simplification function is computed based on the cumeatd the curve at each
point in the original curve. Based on the amount of simplifaa that is desired, the
minimum threshold for the acceptable curvature is specifiéd simplified curve contains
all the points whose curvature is higher than the threshold.

In Figure 4.7, the blue curve depicts the original curve dradimplified representa-
tion of the curve is shown in red. Simplification is performaased on regions that have
high curvature. Regions of high curvature could be poinisitgfrest and are therefore pre-
served. The simplified curve is obtained by eliminating powith a low value of curvature

since smaller values of curvature generally imply similawith straight lines.

4.1.6 Manually specifying a simplification function

There are many situations where a domain expert’s knowleahgeexperience are
invaluable. Our system has the ability to incorporate sugbedise. In the process of
simplification of a map, a cartographer might want to presgrath details in tourist spots
as more people will visit and use that detail to navigate seaes. The rest of the path
could be simplified more. The cartographer will then speeifjnask that preserves path
detail at the tourist spots which will result in a low-levepresentation with sufficient detail
at specified points.

The features specified by a domain expert will be preservetarsimplified repre-

sentation and simplification shall be carried out as perpleeified simplification function.
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FIG. 4.7. The original curve is depicted in blue and the simplifiepresentation is in red.
High curvature points are preserved in the simplified regméation.

As can be seen in Figure 4.8, the original curve is depictdaue and a simplified
representation of the original curve is depicted in red. $heplification is performed
based on the importance mask specified by the user. A graple specified simplification
function is shown in the rightmost image. The simplificatfanction can be specified in
the form of a file or the user can draw a graph in another appdicavindow. As can be
seen from the image, the simplified regions of the curve spwad to the peaks of the
simplification function graph and the curve is more faittttuthe original in the troughs of

the simplification function.

4.2 Cognitive simplification of hurricane paths

We apply our cognition-based simplification techniquefieovisualization of the path
taken by the eye of Hurricane Katrina. lurricanecan be defined as a tropical cyclone
with high-speed winds. They blow in a large spiral arounddéetral region called theye
of the hurricane. A hurricane consists of three main pahiseyewhich is a low pressure

area at the center of the hurricane, dye wallis the region around the eye with the fastest
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FIG. 4.8. The original curve is depicted in blue and the simplifiepresentation is depicted
in red. The simplified representation is based on the mangakcified simplification
function that is shown below in the form of a graph. The siffingadi curve is more simplified
near the peaks of the simplification function and faithfullte original near the troughs of
the function.

winds, and theain bandswhich are the bands of thunderstorms circulating outwawchfr
the eye that feed the storm.

Our dataset is a simulation of the hurricane Katrina andaiostattributes such as
vertical velocity, relative humidity, temperature, andwdl water. The dataset consists of
70 timesteps, each of which has dimensions 276x288x60.ré&-#9 shows a screenshot
of the volume rendered image of the 70th timestep. The eyleedftirricane is surrounded
by the eyewall. Some rainbands too can be noticed towardsgheside of the image.
We tracked the eye of the hurricane since it is the region thighhighest wind speeds and
representative of the direction of motion of the hurricaAay other tracking information
for the hurricane’s direction of motion can easily be usegliace of the eye tracking
information used here.

Generally hurricanes form over the ocean and sometimes tosetds land. In a
situation where the hurricane is approaching the land, if@mation regarding the path

that the hurricane could traverse is of critical importafardocal authorities. The linearly
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FIG. 4.9. The figure depicts a screenshot of the visualizatisghehurricane Katrina simu-
lation dataset. The cylinder structure towards the lethéeye of the hurricane surrounded
by the eyewall. Some rainbands can be seen towards the righttthe image. The im-
age is a volume rendered image of the cloud water componehgiiiOth timestep of the
hurricane dataset.

decreasing simplification function could be used in thigaakere the simplification factor
reduces to almost zero as the hurricane approaches land.

Figure 4.10 depicts the original path traversed by the bame. increased simplifica-
tion as the hurricane approaches the current timestep. atheipformation contained in
earlier timesteps is simplified to convey the general dioectA simplified representation
using a ramp simplification function is shown in Figure 4.11.

An important measure of the potential damage and coastalifiggossible due to a
hurricane is thecategoryof the hurricane. The category of a hurricane is predomigant
determined by the speeds of the winds within the hurricaneat&gory 5 hurricane can
have wind speeds of 155 mph. Studying the conditions whenre&choe changes its cate-
gory is of great interest to meteorologists. In such situedj being able to visualize high
detail regarding the path of the hurricane based on a cataégarsition is very useful. A
region-of-interest can be specified that will facilitate $tudy of conditions in these cate-
gory transition areas. For example in Figure 4.12, a ceviténterest is identified around
the center of the path. The figure shows that the detail inrégion is preserved and the
path is simplified in the surrounding areas. The region clogbe center-of-interest seems
to have large perturbations that might indicate the tramsédion undergone by the hurri-
cane. The hurricane seems to be heading downward but thémémsity of the hurricane

increases and it starts moving back up. The zigzag pattesieasly visible in the Figure
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FiG. 4.11. A ramp simplification function with more detail towlarthe eye of the current
timestep

FIG. 4.12. The center-of-interest simplification functionttpeeserves detail around a
region of interest.

FiG. 4.13. Curvature based simplification that preserves regod high curvature.
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FIG. 4.14. The top image depicts simplification based on a maséifsgd by the user.
The graph shows the manually specified simplification fuomctvith two peaks.

4.12 after which the hurricane continues moving leftwanad apwards.

High curvature points in a path can specify unexpected ahamglirection. Visu-
alizing detail in such regions can help the study of the cioorni that caused the abrupt
change in direction of the path. In an attempt to identify amant features automatically,
the curvature at the points constituting the path could mElusHigh curvature regions
could be used to capture important events in the path of thchne. Such regions could
be preserved whereas the simpler, straighter path of théchoe could be simplified to
allow effectively visualizing the path of the hurricanegbie 4.13 depicts the original path
and the simplified path that retains detail in high curvategons of the path. Salient
features near the center of the path and towards the end dreaptured in the simplified
representation.

A domain expert could specify an importance mask that wontticate regions in
which detail needs to be preserved. Use of such an importaiask is extremely useful
when regions of interest cannot be defined as clearly by spegia center-of-interest
point discussed earlier. Figure 4.14 depicts such a sttmatiwhich a user has specified an
importance mask that contains two peaks. The peaks implynegvhere the simplification

factor is highest. On observing the simplified represeotatthe mask causes the low-
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level representation to be faithful to the original pathhe tentral regions as well as the
endpoints. In the other regions corresponding to the peh&simplification is performed
to give a representation as per the specified mask.

Our cognitive simplification techniques shall greatly hegeision-making by present-
ing more detail regarding the path of the hurricane neariheghabited areas, oil rigs and
land, in general. The general direction of the hurricane beagufficient when it is far from

the critical areas.

4.3 Semantic simplification of driving directions

Figure 4.15 shows the original path, a naive simplificatiod &wvo examples of se-
mantic simplification being applied to driving directiorige top image shows the original
path obtained from Google Maps for a location in Seattle, WA&Redmond, WA. The sec-
ond path from the top shows a simplified representation liatgon where one out of
eight points from the original path are selected. It simgdifcrucial detail near the source
and destination. The third visualization from the top shawsemantic simplification where
detail is preserved towards the destination. This type s@ialization can be very useful
since one is sufficiently familiar with getting to the nediieserstate from their own house,
but needs the detail towards the destination. The fourthaligation from the top shows
another example of semantic simplification where the detiaihg the path is preserved
near gas stations (indicated by green circles close to ttig.fauch a visualization can be
useful when one is traveling on a road trip and needs to knoerevthe next gas station is
and some detail around it.

The hurricane path is obtained by automatic tracking of #mer of the eye of the
hurricane in every timestep. This provides us with highlyadled information regarding
the path of the hurricane. The driving directions is in theXGRita format that is obtained
from Google Maps driving directions. Our system allows tkernto input any source and
destination and converts the data we obtain from Google imap$PX data points along

the path. This data is then used for the path simplificatiocgss.
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FIG. 4.15. The top image shows the original path in blue and timplgied paths in red.
The naively simplified representation is shown in the secdsdalization from the top.
Much detail near the source and destination is lost in thisesentation. The third vi-
sualization shows a semantic simplification where detail tlee destination is preserved
whereas the remaining path is simplified. Such a visuabimas useful since one is famil-
iar with getting to the nearest freeway from Inez house. ‘BiséVisualization image shows
a path where detail is preserved near gas stations (showreas gircles near the path).
These visualizations are generated from actual drivingations obtained from Google
Maps.

4.4 Conclusions

We have proposed cognitive simplification techniques tcegatie simplified feature-
preserving representations of curves. Our techniques earséd to reduce visual clutter
and generate better task-oriented representation of swamd paths. Various simplifica-
tion functions have been introduced that perform varyimggdification along a curve to
allow the user to view details in a curve/path as per theideeé\e have applied our
techniques to the path visualization of the eye of hurricdagina. We believe that us-

ing our cognitive simplification techniques to simplify patof the hurricane can facilitate
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easy decision-making. Our cognitive simplification tecjug@s can be used in many other
application domains of computer graphics such as compuienadion, motion editing,

non-photorealistic rendering and cartography.



Chapter 5

EVALUATION OF ILLUSTRATION-INSPIRED
TECHNIQUES

This chapter discusses the first of two user evaluationsnbed conducted to exam-
ine the effectiveness of our art-inspired techniques. Tde @ this particular study was
to evaluate the effectiveness of our illustration-insgitechniques in aiding the feature
tracking abilities in positionally variant time-varyingth visualization. Practitioners use
large panoramas of snapshots taken over time to track aréeatun some cases watch an
animation to help in the task of feature tracking. The ainoisvaluate the benefit the use
our techniques for which we measure user accuracy, timereshhy the users to complete
a task and user confidence in their answers.

To measure the visual tracking ability of human beings, Btyyjy (2003) conducted a
user study by showing subjects moving objects over timejestbwere asked to visually
track these objects as they moved through time. The outcdntleeostudy was that a
human being can successfully track five objects moving alagively moderate speed but
as the speed of the moving objects increased, the usertyadbitrack the features reduced
drastically. They also found that the user’s ability to k&eatures reduced sharply as they

were asked to track more than five objects.

66
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5.1 Hypothesis

Our testable hypothesis is that illustration-inspirechtéques can lead to improved
visual tracking of features as they move over time.iBprovedvisual tracking, we mean
our techniques will facilitate faster and more accurate&isracking compared to standard

snapshot-based or animation-based visualization of tiamging data.

5.2 Independent variables

The independent variables for the user study are the twerdift ways that thposi-
tionally varianttime-varying data can be viewed.

They were as follows:

e A panorama of snapshots or a single image augmented withlostration-inspired

techniques

e An animation depicting the motion of the feature or an aniomahugmented with

illustration-inspired techniques.

h Sy N

FiG. 5.1. These are a set of snapshots from successive timex$tepslume. As is evident
from looking at the snapshots, it is very hard to correlate @ack a particular feature over
different time steps.

Figures 5.1 and 5.2 show sample images of a panorama of sstapahd an
illustration-inspired visualization of the same data exdwely. Inspecting a set of snap-
shots is one of the standard visualization techniques usedan be seen by looking at this
series of snapshots, it is very hard to identify the direciio which the contained three-

dimensional features are moving. Figure 5.2 shows a samgl@hzation created using
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FIG. 5.2. An example of an illustration-inspired technique laggpto the vortex data. The
strobe silhouettes technique has been applied in this Gisebe silhouettes convey the
upward motion of the two features.

our techniques. The upward movement of the features islgleanveyed using our strobe
silhouette techniques.

For evaluating the illustration-inspired techniques, wenpared baseline techniques
such as looking at a panorama of snapshots or an animatibnweitializations gener-
ated by our techniques. There are primarily two kinds ofsiitation-inspired techniques.
Speedlines and flow ribbons are similar in nature. Opacitgutettion and strobe silhou-
ettes are similar in the way they communicate path positdiisatures. We evaluated our
techniques with speedlines and opacity-based techniguégwawere representative of the

class of illustration-inspired techniques.

5.3 Procedure

Before we began the formal evaluation process, we ran ag@ijo¢riment. Pilot stud-
ies always seem to reveal some problems and allowed us toeim before we began the

entire user study (Martin 2003).
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5.3.1 Subjects

We tested our techniques with 24 subjects who had basicitaityilwith using com-
puters. We did not restrict ourselves to any age group or gendle performed full fac-
torial, within-subjects testing to evaluate our techngukn order to balance the ordering
effects we tested the subjects with all possible combinataf orderings of trials.

Table 5.1 shows the ordering used for the subjects. Withah eategory such as
“Snapshots” and so on, we tested the subjects for four diffievisualization techniques.
The ordering used within each category is provided in Talf?e Bable 5.3 shows the entire

table for the study enumerating the order in which each usellavsee each visualization.
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Sub ID | Snapshots| Augmented Snapshotg Animation | Augmented Animation
1 1 2s 3 40
2 1 2s 4 30
3 1 3s 2 40
4 1 3s 4 20
5 1 4s 2 30
6 1 4s 3 20
7 2 1s 3 40
8 2 1s 4 30
9 2 3s 1 40
10 2 3s 4 1o
11 2 4s 1 30
12 2 4s 3 1o
13 3 1o 2 4s
14 3 1o 4 2s
15 3 20 1 4s
16 3 20 4 1s
17 3 40 2 1s
18 3 40 1 2s
19 4 1o 3 2s
20 4 1o 2 3s
21 4 20 1 3s
22 4 20 3 1s
23 4 30 2 1s
24 4 30 1 2s

Table 5.1. Ordering for evaluation of our techniques in canmgon to standard visualiza-
tion techniques. Hersstands for speedlines andstands for opacity-based techniques as
discussed in the previous chapter.
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Table 5.2. In each of the four categories mentioned in taldletBe subject is shown four
differentimages/animations. These examples are varigatding to the order given above.



Sub ID Snapshot Augmented Snapshots Animation Augmented Animation

l-a|1-b| 1-c|1d| 2s-a| 2s-b| 2s-c| 2s-d| 3-a| 3-b| 3-c| 3-d | 40-a| 40-b | 40-c | 40-d
l-a|1-b| 1-d| 1-c| 2s-a| 2s-b| 2s-d| 2s-c| 4-a| 4-b | 4-d | 4-c | 30-a| 30-b| 30-d| 30-C
l-aj1c| 1-b|1d| 3s-a| 3s-c| 3s-b| 3s-d| 2-a| 2-c| 2-b | 2-d | 40-a| 40-c | 40-b | 40-d
l-aj|1c|1d|1-b| 3s-a| 3s-c| 3s-d| 3s-b| 4-a| 4-c| 4-d| 4-b| 20-a| 20-c| 20-d | 20-b
l-a|1-d| 1-b| 1-c| 4s-a| 4s-d| 4s-b| 4s-c| 2-a| 2-d | 2-b | 2-c | 30-a| 30-d | 30-b| 30-C
l-a|1-d| 1c|1-b| 4s-a| 4s-d| 4s-c| 4s-b| 3-a| 3-d | 3-c | 3-b | 20-a| 20-d | 20-c | 20-b
2-b|2-a|2-c|2-d| 1s-b| 1s-a| 1s-c| 1s-d| 3-b| 3-a| 3-c | 3-d | 40-b| 40-a| 40-c| 40-d
2-b|2-a|2-d|2c| 1s-b| 1s-a| 1s-d| 1s-c| 4-b| 4-a| 4-d | 4-c | 30-b| 30-a| 30-d| 30-C
9 2-b|2-c|2-a|2-d|3s-b| 3s-c| 3s-a| 3s-d| 1-b| 1-c | 1-a| 1-d | 40-b| 40-c | 40-a| 40-d
10 2-b|2-c|2-d| 2-a| 3s-b| 3s-c| 3s-d| 3s-a| 4-b| 4-c | 4-d | 4-a| 1o-b| lo-c| 1lo-d| lo-a
11 2-b|2-d|2-a|2-c|4s-b| 4s-d| 4s-a| 4s-c| 1-b| 1-d| 1-a| 1-c | 30-b| 30-d| 30-a| 30-Cc
12 2-b|2-d|2-c|2-a| 4s-b| 4s-d| 4s-c| 4s-a| 3-b| 3-d | 3-c | 3-a| 1o-b| 1o-d| lo-c| lo-a
13 3-c| 3-a|3b|3d|lo-c| lo-al lo-b|lo-d| 2-c| 2-a|2-b| 2-d| 4s-c| 4s-a| 4s-b| 40-d
14 3-c|3a|3d|3b|loc| lo-al lod|lo-b|4-c|4-a|4d|4b| 2sc| 2s-a| 2s-d| 2s-b
15 3-c|3-b| 3-a|3-d| 20-c| 20-b| 20-a| 20-d| 1-c| 1-b | 1-a| 1-d | 4s-c| 4s-b| 4s-a| 4s-d
16 3-c|3-b| 3-d| 3-a| 20-c| 20-b| 20-d| 20-a| 4-c | 4-b | 4-d | 4-a| 1s-c| 1s-b| 1s-d| 1ls-a
17 3-c|3-d| 3-a| 3-b| 40-c| 40-d| 40-a| 40-b| 2-c| 2-d | 2-a| 2-b| 1s-c| 1s-d| 1ls-a| 1s-b
18 3-c|3-d| 3-b|3-a| 40-c| 40-d| 40-b| 40-a| 1-c| 1-d| 1-b| 1-a| 2s-c| 2s-d| 2s-b| 2s-a
19 4-d| 4-a| 4-b| 4-c| lo-d| 1o-a| lo-b| 1lo-c| 3-d| 3-a| 3-b| 3-c| 2s-d| 2s-a| 3s-b| 2s-Cc
20 4-d| 4-a| 4-c|4-b| lo-d| 1lo-a| lo-c| lo-b| 2-d| 2-a| 2-c| 2-b| 3s-d| 3s-a| 3s-c| 3s-b
21 4-d| 4-b| 4-a| 4-c| 20-d| 20-b| 20-a| 20-c| 1-d| 1-b| 1-a| 1-c| 3s-d| 3s-b| 3s-a| 3s-c
22 4-d| 4-b| 4-c| 4-a| 20-d| 20-b| 20-c| 20-a| 3-d| 3-b| 3-c| 3-a| 1s-d| 1s-b| 1s-c| 1s-a
23 4-d| 4-c| 4-a| 4-b| 30-d| 30-c| 30-a| 30-b| 2-d| 2-c | 2-a| 2-b | 1s-d| 1s-c| 1s-a| 1s-b
24 4-d| 4-c| 4-b| 4-a| 30-d| 30-c| 30-b| 30-a| 1-d| 1-c| 1-b| 1-a| 2s-d| 2s-c| 2s-b| 2s-a

N OO A WN -

Table 5.3. Complete table enumerating the ordering of Vizakons for user evaluation of illustration-inspireabamiques.

[AA
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5.3.2 Datasets

A mix of synthetic and real world data was used. For initiairiing purposes, syn-
thetic data is suitable to familiarize the users with theurebf the dataset and tasks that
they will be asked to perform.

Specific characteristics of the datasets that we use fouatiah were:

e Three-dimensional in nature containing three-dimengifeaures. There should be

at least one feature in the dataset.

e Features have to be trackadoriori to facilitate visualization. This means that our
work does not deal with the actual task of identifying andkrag a feature over
time. Our work focuses on aidingsual trackingof a feature and does not deal with
automatic feature tracking in time-varying data (Samtaetegl. 1994), (Silver and
Wang 1996). The paths traversed by the contained featumegdshe available for

visualization purposes.

In order to evaluate our visualization techniques, we dgwedl a few synthetic
datasets that have all the characteristics mentioned ab®wvee the datasets were gen-
erated by hand, they were very useful for evaluating thengties and weaknesses of a
visualization technique.

Some synthetic datasets that we used were:
1. Simple linear/circular motion of a feature
2. Multiple features with simple motion paths - linear, ailer and spiral
3. Multiple features moving at the same time - with complexioms

The real world data that we used is the Vortex dataset frong&tatuniversity (Fer-
nandez and Silver 1998). The dataset is a pseudospectrdbsiom of coherent turbulent
vortex structures with a 128x128x128 resolution (100 tineps). The variable being vi-

sualized is vorticity magnitude. This time-varying datds@s numerous features changing
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over time in the form of splitting into multiple features owitiple features merging into a

single feature.

During the user study, we followed this procedure:

1. Explain the user study to the subject and inform them oftwitemntails.
2. Obtain consent from the subjects for the user study.

3. Present them with training material and let them famimthemselves with the task

for some time.

4. Conduct the user study and collect the results after thesg Wone

5. Present a usability questionnaire and get subjectivdbfaek from the subjects.
Questions for this questionnaire are specified in the netise

5.3.3 Subjective Evaluation

Subjects were requested to fill out a questionnaire whereghbility was evaluated.
Their answers were obtained on a scale of 1 (easy/agree)haré/{lisagree). Questions

asked in the questionnaire were as follows:

1. Were the questions asked for each evaluation straigtefol?

2. Overall did you think the speedlines techniques helpedepdirection better than

standard visualization techniques?

3. Overall did you think the opacity-based techniques hklpanvey direction better

than standard visualization techniques?

4. Could you perform simple tasks such as tracking a singiéufe using standard

snapshots/animation-based techniques?

5. Could you perform simple tasks such as tracking a singlufe using illustration-

based techniques?
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6. Could you perform hard tasks such as tracking multipléutes using standard

snapshots/animation-based techniques?

7. Could you perform hard tasks such as tracking multipléutes using illustration-

based techniques?

5.4 Tasks

We primarily ask users to track features as they are moviregg tine. The reason
for picking such as task is because it is representative aft wdsearchers need to do on a
regular basis as they track vortex tubes in feature dat@yegsttack hurricane features over
time, as they track the energy of jets as they enter a regidisaon. Our tasks were simple
enough to test the effectiveness of our techniques witrestdbyvho may not necessarily be
application-domain experts, but at the same time they semtdasks that scientists need to
perform on a regular basis.

The question we asked the user was

Which of these paths seems to best represent the obsereetiatirof motion of the
feature?

The subject was presented with four choices of paths anddqaok one of them
according to the perceived motion. This enabled us to teaptex motion paths instead of

just simple linear motion of features.

5.5 Dependent variables

We measure the accuracy of the users in performing the tagdition to the time
required to complete the task. Theer performance timie the time required by the user to
read the question, look at the snapshots/animation andstiitenit the answer. Time helps
us analyze whether subjects perform the task faster usingeohniques as compared to
standard techniques. Additionally, we measuredctrdidencef the user in their answer.

We also obtain feedback in the formsibjective satisfactiowhere we ask subjects to rate
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their experience on a scale of 1-9 (Likert scale).

5.6 Conducting the user study using a web browser

The user study was conducted using a web browser. As we hdmbio\sdeos to the
subjects, we used Riva Free FLV encoder to encode AVI files fiash files that can be
shown to the viewer in the browser setting. Figure 5.3 is aetshot of the first screen
shown to the subjects. It gives an overview of the user stadlge subjects. After answer-

ing any other questions that the subject might have, we stdhe consent of the subject

to continue the user study.

/& User Study - Flow illustration - Microsoft Internet Explorer E ﬁ |
File Edit WView Favorites Tools Help i
p W A ™~ B, . = 2
Qs - © - [¥ B €| Osewer Slpravens )| (- L2 -l A3
acdress ] http: . cs.umbe. ecyjalarkl/serstudyfuser_study.php M B e s
Google [C+ v Goog RS~ @ ~ B~ 1Y Bockmarksw Bhoblocked 3 Check = % Autolink = | Send tow () settings

User Evaluation

Alark Joshi and Penny Rheingans
University of Marvland Baltimore County

Please enter the user ID assigned to you:

User Number:
Thank vou for agreeing to participate in our survey.

Before we start, we'd like for you to read the informed consent information below. Informed consent refers to the voluntary choice of an individual to participate in research based on an accurate and
complete understanding of its purposes, procedures, risks, benefits, and alternatives. The survey will be completely anonymous and volntary. We will not identify any individuals who plan to participate in this
survey. If you have any questions before completing this survey, please contact the investigators, Alark Joshi by phone at 410-455-8935 or by e-mail at alark ] @umbc._edu

Informed consent:

You nmst be of 18 years or older to participate in this survey

The study is used to find whether our novel techniques help a user follow an object/feature over time. We use techniques inspired from ilustrations to add cues to an image or an animation. There is no right
answer to any question, and the data analysis will help us determine whether our techniques are effective at conveying the direction of motion of a feature over time.

There are no known risks involved in completing the survey.

There are no tangible benefits for completing the survey. but your participation will help us understand more about the effectiveness of our techniques for feature tracking. The survey may take about 30/35
minutes to complete, and time loss may be the only loss you suffer.

Participation is entirely voluntary; you may at any time withdraw from participation. There is no physical injury risks involved with this survey.
All data obtamed will be strictly confidential. There is no way for us to find out who vou are, and your data will not be shared with any other parties under any circumstance.

This study has been reviewed and approved by the UMBC Institutional Review Board (IRB). A representative of that Board. from the Human and Animal Research Protections Office. is available to discuss
the review process or my rights as a research participant. Contact information of the Office is (410) 455-2737 or HARPO@umbc edu.

After reading the consent items, please proceed to the questionnaire on the next page. Click "Next" to get started with the survey. If you'd lilke to leave the survey at any time, just click "Exit this survey”.

[JPlease click the checkbox to electronically indicate the consent

FIG. 5.3. A screenshot of the welcome screen that was shown guthjects. The subjects

were explained the user study and any other questions weveeaad before obtaining their
consent.

Figures 5.4 and 5.5 show screenshots of screens that thectabge. We first ask the
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user a question and depending on the kind of data (snapshatsmoation), the user then
observes it and provides an answer. We ask the user to sgheifgirection in which a
particular feature is moving. The user then picks one of ikiergchoices and indicates a
confidence level in their answer. We use a Likert scale to oreate confidence that the
subjects have in their answers. The user was asked to setecifidence level from one

of: Not at all confident, Slightly confident, Confident, Higt€Confident, and Completely

confident.

(2 User Study - Flow illustration - Windows Internet Explorer

& - [anm

T 4| @ User Study - Flow lustration

1. Shown here are four snapshots in time depicting the motion of an object. Which direction does the object shown here seem to move?

Pick your choi

—_—

ice:
o1 2 o o4
of your answer?

Ho confident are you

€ Not at all confident
O Slightly confident

& Confident

< Highly Confident

© Completely confident

FIG. 5.4. A screenshot of a sample screen that is shown to thedsbijThe subjects were
shown images and were asked to indicate the direction ofamatf a particular feature
moving over time. They were also requested to give their denfte level in their answer.
This helps us identify how confident the subjects were widirtanswers using standard as
well as our illustration-inspired techniques.

5.7 Results

To analyze the effectiveness of our techniques we analyzedesults of the user
study using statistical techniques. In order to obtain antjtedive comparison of our tech-
niques, we evaluate the accuracy, the time required forestdbjo complete a task and
their confidence in their answers. To compare the four difievisualization types we

use the statistical tegtnalysis of Variance (ANOVAThis test allows us to compare the
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(2 User Study - Flow illustration - Windows Internet Explorer

G- [am

TS0 | @ User Study - Flow iustration

2. Shown here is a video of a feature moving over time. Which direction does the object shown here seem to move?

) o:00/00:00 =l [m] =

»l
Pick your choice:
o1 o1
your answer?

How confid

O Not at all confident
O Stightly confident
© Confident

O Highly Confident

© Completely confident

Click here (o continue (3/9)

Fic. 5.5. Another screenshot of a sample screen that is showretsubjects. Here the
subjects were shown an animation and were asked to indicatditection of motion of

a particular feature moving over time. They were also retpeeto indicate their level of
confidence level in their answer.

accuracy, timings and confidence obtained from the four ggdignapshots, augmented
snapshots, animations and augmented animations). Thieegists with a null hypothesis
that the use of illustration-inspired techniques providespeedup in completing tasks, no
improvement in accuracy and that the users feel equally d@enfiin their answers for all
techniques. The statistical measure of significgnegaluates the probability of the result
agreeing with the null hypothesis. For valuespof. 0.05, the null hypothesis is rejected
and it implies that the use of illustration-inspired teciugs makes a difference.

The first metric that was used to evaluate our techniqueslveasder accuracy. Based
on the number of correct answers per user per technique, lealae the accuracy per
visualization technique. The means and standard deviatetisted in Table 5.4. Figure
5.6 shows a graph showing the same data. A comparison of #pskats technique with
the snapshots technique augmented with our techniquessshaivthe subjects got more
answers correct using the augmented snapshots. Similatlye case of animations com-

pared to augmented animations, the subjects were moreageocuhen using augmented
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Type of visualization | Mean | Standard Deviation
Snapshots 76.851 15.14
Augmented Snapshots 91.67 13.87
Animations 91.67 12.01
Augmented Animations 97.22 10.59

Table 5.4. This table shows the mean and standard devidtitve accuracy of the users.
Users completed tasks with the most accuracy in the casegofiented animations.

Source of variationf Sum of squares Degrees of freedom Mean squares F
between 6181.0 3 2060.0 12.02
error 1.78E+04 104 171.4
total 2.40E+04 107

Table 5.5. This table shows the result of performing the ARQ@¥st on the accuracy per

user. The probability of this results, assuming the nulldtpsis, is less than 0.0001. This
implies that the result is extremely significant and the hypothesis that the illustration-

inspired techniques do not increase the accuracy in comglattask, is rejected.

animations, as can be seen in Figure 5.6. The temporal dahtthe illustration-inspired
techniques provide seem to help users complete the task acotgately. Amongst all
the four techniques, the augmented animations technicgesssto provide users with the
most useful information to correctly complete the task.

Analyzing the accuracy results using the ANOVA test prosidesults shown in Table
5.7. The results show that the variation between the fofermift visualization techniques
is high. The probability of this result assuming the null hypothesis is less than@.00
This implies that the result isxtremely significardnd that the null hypothesis is rejected.
This proves that the use of illustration-inspired techesgjincreases the user accuracy for
visual tracking of features.

Additionally, we measured the time required by the subjectamplete each task
per visualization technique. Table 5.6 shows the mean artiatd deviation for all the
four visualization techniques. Figure 5.7 shows a graph&aresentation of the timing
results. The subjects required more time when viewing dmatgsas compared to the other
three cases. Animations augmented with our techniqguegtiepbjects answer questions

faster than just animations. Overall, even though loadm@m@imation took more time,
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FIG. 5.6. This graph shows accuracy results for all the questasked evaluating the
illustration-inspired techniques. The results were gexipccording to the categories of
guestions asked. The categories from left to right as SmapsAugmented Snapshots,
Animations and Augmented Animations respectively. Thea aseuracy for Augmented

Snapshots is better than Snapshots and similarly the axcigr@etter for Augmented An-

imations as compared to Animations.

Type of visualization | Mean | 95% confidence interval Standard Deviation
Snapshots 54.822 47.85-61.80 31.9
Augmented Snapshots 22.696 15.72-29.67 11.2
Animations 33.411 26.44-40.38 10.3
Augmented Animations 26.248 19.27-33.22 9.22

Table 5.6. This table shows the mean, 95% confidence inseavalind the mean as well
as standard deviation for the timings results.

animations seemed to give the user a better understandthg tfne-varying nature of the
data to complete tasks.

The time required to complete a task in each of the four casesamalyzed using
ANOVA. Table 5.7 shows the result of the ANOVA test on the tignidata. The value of
p computed using ANOVA was less than 0.0001 which implied thatnull hypothesis
was rejected. The value gfimplies that the result isxtremely significanaccording to
the ANOVA test and implies that the use of illustration-iimed techniques clearly helped

users complete tasks faster than with just snapshots oradioins.
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FIG. 5.7. This graph shows the amount of time required by thesstbjo complete the task
using all the four techniques. Users took more time to cote@eask using snapshots as
compared to all the other techniques. Users also took moetth answer questions using
animations as compared to animations augmented withréitigh-inspired techniques. In-
spite of the fact that the users had to wait for the animatidadd, they were able to answer
guestions faster for animations and augmented animatgogsrapared to plain snapshots.

Source of variationn Sum of square$ Degrees of freedom Mean squares F
between 1.6779E+04 3 5593.0 16.75
error 3.4724E+04 104 333.9
total 5.1503E+04 107

Table 5.7. This table shows the result of performing the AR@¥®st on the time required
by the users to complete a task using all the techniques. Tdigpility of this results,
assuming the null hypothesis, is less than 0.0001. Thisi@shat the result is extremely
significant and the null hypothesis that the illustratiosgired techniques do not increase
the accuracy in completing a task, is rejected.
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Type of visualization | Mean | 95% confidence interval Standard Deviation
Snapshots 3.6389 3.418-3.860 1.28
Augmented Snapshots 4.0278 3.807-4.249 1.11
Animations 3.7407 3.520-3.962 1.40
Augmented Animations 4.4907 4.270-4.712 0.803

Table 5.8. This table shows the mean, 95% confidence inskeavalind the mean as well
as standard deviation for the confidence results.

Source of variatior] Sum of squares Degrees of freedom Mean squares F
between 40.23 3 13.41 5.806
error 988.5 104 2.310
total 1029.0 107

Table 5.9. This table shows the result of performing the AR@&st on the confidence per

user. The probability of this results, assuming the nulldtipsis, is less than 0.0007. This
implies that the result is statistically significant and il hypothesis that the illustration-

inspired techniques does not increase the confidence ofutbjects in their answers, is

rejected.

In addition to the user accuracy and the time required by tigests, we requested
the subjects to specify a confidence level for each questi@hnle 5.8 shows the mean
and standard deviation of the confidence obtained for eatimigue. The confidence was
higher in both augmented snapshots and augmented animaisocan be seen in Figure
5.8. The subjects had least confidence in their answers éopldin snapshots and low
confidence for the plain animations.

Table 5.7 shows the results of performing the ANOVA test oarunfidence per
guestion. Analyzing the confidence that the subjects hadlair tesults, we found that
subjects were more confident in the correctness of their arsswhen using illustration-
inspired techniques. The value @from the ANOVA test obtained was < 0.0007 which
according to the ANOVA test is aextremely significantesult and rejects the null hypoth-
esis that the users feel equally confident with and withdustitation-inspired techniques.
Our techniques clearly instill more confidence in the usetsoth the augmented snapshots

and augmented animations.
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FiG. 5.8. The users were asked to specify their confidence im #mswers. This graph
shows a representation of the overall confidence that thes sl in their answers. As can
be seen, users were more confident about their answers fautireented snapshots and
animated animations as compared to plain snapshots or oirea
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5.8 Discussion

Based on the analysis of the user study, we can say that osirdtion-inspired tech-
niques help users track features in three-dimensionalfdatar and with more accuracy.
The use of illustrative cues seemed to provide temporalectihat allowed users to visu-
alize multiple features

For synthetic datasets, the users were much more accumfastrfor all the four vi-
sualization techniques. In the case of real world data,susere less accurate without the
illustration-inspired techniques as can be seen in FigilgeHe illustration-inspired tech-
niques when applied to real-world datasets clearly aideditter in accurately identifying

the direction of motion of the features.
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Synthetic (Snapshots and Synthetic (Augmented Snapshots Real world data (Snapshots and Real world data (Augmented
animations) and animations) animations) Snapshots and animations)

FIG. 5.9. In this graph, the accuracy of the users for synthetia dersus real world data is
compared. As can be seen, the accuracy for synthetic daighigdr both with and with-
out illustration-inspired techniques. The accuracy fal rgorld data without illustration-
inspired techniques is very low whereas the use of illustnainspired techniques when
applied to real world data has boosted the accuracy of ths.use

Amongst the four techniques, the subjects preferred thaatnons with illustration-

inspired techniques the most. This could have been due téathehat the illustration-



85
inspired techniques augmented animations without distiguche viewer from the main
aim of the viewing the time-varying phenomenon. The illas#e cues provide important
cues to the viewer in a non-invasive manner and clearly hetess complete tasks more
accurately and faster than the other techniques. Theyatnlitomplete the task correctly
with the use of illustration-inspired techniques seemsatgelprovided the users confidence
regarding the correctness of their answers.

Our subjective evaluation gave us feedback regarding tbesupreferences for the
various techniques. Almost all the users thought that duhspeedlines and the opacity-
based techniques helped convey direction better than agshots or only animations.
Amongst the two techniques, the users indicated throughdhswers that they preferred
the speedlines technique more than the opacity-basedit¢g®E® From discussions with
domain experts, we think this might be due to misinterpretedf older timesteps actually
being data for the current timestep. The amount of opacitiatian from one timestep to
another needs to be investigated further to avoid such sanfu

They also said that it was easier to perform simple tasks ssctiacking a single
feature of interest using our illustration-inspired teiciues. Tracking multiple features of
interest using snapshots was found to be very hard and teésrped the use of illustration-

inspired techniques for multi-feature tracking as comgdcesnapshots or animations.



Chapter 6

CASE STUDY: EFFECTIVE VISUALIZATION OF
HURRICANES USING ILLUSTRATION-INSPIRED
TECHNIQUES

New visualization techniques are of limited use if not agglio multiple application
domains. The use of the developed visualization technigaede better understood after
applying them to specific application domains. Experts ftbose domains provide critical
insight into the true value of the techniques and suggestifspscenarios when those
techniques can make it easy for them to perform a specific task

In our case, we applied our illustration-inspired techeis|to the field of hurricanes.
Through a domain expert, we not only had access to hurricatesets but were also able
to generate visualizations of value to researchers in thebdfeatmospheric physics. Visu-
alizations generated by using our illustration-inspirechiniques in the field of hurricanes,
were evaluated by domain experts to provide us with feedbegé&rding the use of those
techniques. They saw value in the techniques and prefened in most cases over stan-

dard two-dimensional visualizations that they currensg.u

6.1 Introduction

Accurate forecasts of the tracks and intensification ofibanes are crucial in order

to minimize loss of life and to plan evacuation strategie$ie Gategoryof a hurricane

86
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is an important measure of the potential damage and coastalifig. The category of
a hurricane, as defined by the Saffir-Simpson scale, is predmtty determined by the
sustained wind speeds and the minimum central pressure bithicane. Figure 6.1 shows
a table that specifies how the category of a hurricane is iitkshtbased on its sustained
wind speeds. The category ranges from 1 (74-95 mph) to thé mtnse category 5

(greater than 155 mph).

Category Central Pressure (mb)  Winds Typical Damage
m/s (mph)
1 >= 980 33-42 (74-95) No real damage to building structures. Some coastal road

flooding and minor pier damage.

2 965-979 43-49 (96-110) Some roof, door and window damage to buildings. Considerable
damage to mobile homes, poorly constructed signs and piers.

3 945-964 49-58(111-130) Some structural damage to small residences and utility buildings.
Low-lying escape routes cut by rising water 3-5 hours before arrival
of the hurricane center.

4 920-944 58-69(131-155) Complete roof structural failures on small residences. Complete
destruction to mobile homes, trees and all signs. Major damage to
lower floors of structures near the shore.

5 <920 >69 (155) Roof failure on many residencess and industrial buildings. Massive
evacuation of residential areas on low ground within 5-10 miles
of the shoreline required.

FIG. 6.1. The Saffir-Simpson Scale for category assignment torcane.

Certain structural features of hurricanes, and their evatun time, give information
about the dynamical processes involved in the intensi@inatr dissipation of a hurricane.
Common representations are two-dimensional visualimatibat allow the user to visual-
ize the data only at a particular height/level in the data (8Q988). This may prevent
the user from being able to correlate features on that leitblsurrounding spatial features
or features in adjacent timesteps. This significantly kntite user’s ability to explore the
data for further investigation and discovery. Three-disienal visualization systems can
provide an overview of the spatial structure of a phenomesumh as a hurricane (Hibbard
and Santek 1990), (Hibbard 1998). Such systems are gredstalizing the overall struc-
ture using standard visualization techniques such as iifsasog, volume rendering and

iso-contouring. All these techniques are limited by thd that they may occlude inter-
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nal structural details and are not able to provide tempavatext to experts investigating
hurricanes.

The process of understanding spatial relationships betveericane features in a
single timestep and temporal relationships within the tiragying data is one of the main
challenges in this application domain. Specific challeragsd with the identification and
visualization of the vertical wind shear and visualizatadrthe formation and evolution of
mesovortices in the hurricane. The hurricane is embeddéukitarger scale global wind
field. Vertical wind sheaiis when the magnitude and direction of the winds surrounding
the hurricane vary across the height of the hurricane. Taises the storm to lose ver-
tical coherence. A sufficiently strong vertical wind shealf ilgad to the weakening of a
storm. The region surrounding the eye of the hurricaneedatheeyewal) is crucial and
visualization of attributes in that region immensely heipshe process of understanding
and correlating the scientific models to the observed stradh the hurricane.

The use of illustration-inspired techniques, such as velulstration techniques
(Rheingans and Ebert 2001), stippling techniques €Lwal. 2002), importance driven
volume visualization (Violaet al. 2005), exploratory volume visualization (Bruckner and
Groller 2006), (Correat al. 2006) and flow illustration techniques (Joshi and Rheingans
2005), (Svakhinet al. 2005), have resulted in informative visualizations thatlitate the
effective visualization of structural data and the abitdymore effectively convey the tem-
poral nature of time-varying data. We use techniques fragifibld of research to visually
investigate and understand the structural and temporalggsain a hurricane.

Drawing from our respective expertise in visualization atehospheric physics, we
approached the application domain based on the questiomgeveeattempting to answer.
To answer questions related to a single timestep such asfidation and quantification
of the vertical wind shear, we used techniques to accentuateane features in a single
timestep. In order to answer questions regarding the tinoéugwn process of the hur-
ricane, we used illustration-inspired techniques to @dgphe change in attribute values

when the hurricane changes its category. The visualizatidemporal information in a
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single image provides useful semantic information aboetrttie of intensification of the
hurricane.

To evaluate the value of the visualizations that we have igée@, we invited experts
and practitioners in the field of hurricane research to gs/entical feedback. We presented
them with a set of images that contained two-dimensionedgetdlimensional visualizations
generated by tools that they were more familiar with, as aslvisualizations generated
using our illustration-inspired techniques. Experts nygsteferred our visualizations over

those generated from their standard tools to visualize tinedanes.

6.2 Application Domain

A hurricaneis another name for a tropical cyclone, a vertically coherantex of
rapidly swirling air with a low pressure core that forms irettiopical Atlantic and Eastern
Pacific oceans. Warm moist air over the tropical oceansIsgimavard at the sea surface
and ascends in theyewal| the cloudy region of maximum winds surrounding the cloud-
free eyewhere the air is descending on average. The air flow is outaatde top of the
hurricane, and the cloudy spiral arms are thmbands

The inward spiraling air gathers up moisture, and as it rigeger vapor condenses
into clouds and rain with an accompanying release of lateat.H_atent heat of condensa-
tion, the energy source for the storm, leads to further galtnotion which accelerates the
winds viavortex tube stretchingJltimately then, the fuel for the hurricane engine resides
in the warm surface layer of the tropical ocean (NOAA 1999).

Hurricanes form from thunderstorm clusters in environmsehtt have four specific

characteristics. The following conditions have to be metlie formation of a hurricane.
e The sea-surface temperature must equal or exceed aBoGt(81° F)

e The surface layer of warm water in the ocean must be suffigieigep, typically

about 60 meters or more
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e The winds in the atmosphere must not change substantialiyheight (weak vertical

wind shear).

e The location must be at least five degrees north or south adqhator

While forecasts of hurricane track have improved in recaary, accurate prediction
of hurricane intensity change has proved elusive. Incse@sehe spatial and temporal
resolution of both satellite observations and NWP model® ravealed numerous small
scale, turbulent flow features that may play an importang iol determining hurricane
intensity, although the exact mechanisms are not known {tytoneryet al. 2002). Among
these arenesovorticessmall scale and intense vortices in the eye and eyewall.

Mesovortices in the eyewall are thought to be associatdustibng vertical motion in
so-callednhot towers and the rising eyewall motion may in fact be largely concaet in
these regions (Brauet al. 2006). Other effects of eyewall instabilities include eddrans-
port of warm, buoyant air from the eye to the eyewall, or t@ors of angular momentum
from the eyewall to the eye which is thought to be importamiansification (Montgomery
et al. 2002). In addition to their possible role in intensity changiesovortices may lead
to significant increases in damage to coastal areas, dueitdiph tornado-like winds.

Vertical wind shear has been known to cause dissipation uriécane and is closely
observed by meteorologists during the evolution of a ham& Current methods used by
meteorologists to observe wind shear consist of lookinghahations of satellite data of
the movement of cloud features. A recent analysis of thedame Bonnie simulation used
here (Brauret al. 2006) suggests that wind shear, convection, and mesoviomneation
are linked, and one of the objectives here is to develop nasttiwat allow this connection
to be seen clearly in three dimensions.

The goals specific to the application domain were varied fgemerating images for
educational and outreach purposes to generating insigigfializations to facilitate explo-
ration and attain a better understanding of the internakimgs of a hurricane. Identifying
basic structural features such as the eye, the eyewallathbands and mesovortices was

crucial to the domain. In addition to that, studying the etioinary process of the hurricane
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as it starts from a disorganized cluster of clouds and infiesso a category 5 hurricane
was crucial to the overall understanding of the phenomenon.

The hurricane visualizations presented here are based delminulations of hur-
ricane Bonnie (August 1998), hurricane Isabel (SeptemB@BY and hurricane Katrina
(August 2005). The data for hurricane Bonnie was obtainechfa MM5 model simula-
tion, with 2 km spatial resolution and 3 minute temporal legon for 6 hours (Brauret al.
2006). The data for hurricane Isabel was produced by the Mde&esearch and Forecast
(WRF) model, courtesy of NCAR, and the U.S. National Scieihgendation (NSF), and
was the same data used for the IEEE Visualization 2004 cofitas et al. 2004). The hur-
ricane Katrina simulation was obtained by running the NalcCenter for Environmental
Prediction’s Eta numerical weather prediction model, rtd@km horizontal resolution
and a 1 hour temporal resolution for 72 hours, with 60 veltiegels. The variables con-
tained in our dataset are Cloud water [kg/kg], Geopotehiggdht [gpm], Mean sea level
pressure (Eta model) [Pa], Relative humidity [%], Tempama{K], u wind [m/s], v wind
[m/s] and Pressure vertical velocity [Pa/s].

The current tools that application domain experts use are-tested and effective but
limited due to their two-dimensional nature (COLA 1988).0rdimensional visualization
was effective in visualizing contour plots of a single leuait exploring the three dimen-
sional structure of the hurricane was not possible. Sityildhe change in value of an

attribute from one timestep to the next or over an intervaldmot be directly observed.

6.3 Approach

Current hurricane visualization tools facilitate the exqalion of dynamic structures
using a combination of isosurfacing, volume rendering, aector visualization to visual-
ize the attributes in the hurricane. These techniques dhtofaonvey internal hurricane
structures, especially in the eyewall region. The hurrcattuctures around the eye con-
tain crucial information that can be used to predict charnigdbe intensity of the hurri-

cane. When a simultaneous change in humidity and vertidatirg over a small interval
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of timesteps is observed, it is generally followed by a cleaimgntensity of the hurricane.
Visualizing such change is key to being able to predict leane intensification.

lllustration has been proven to be highly effective at cgnmvg instructional informa-
tion in the form of textbooks, charts and, in the case of nrelegy, weather forecasts.
lllustrators have also been able to convey internal strattietails without completely re-
moving external information (Hodges 1989), (Wood 1994)eyban convey motion to a
reader using very few frames using illustration cues. Theitity to convey information
effectively and succinctly, their ability to draw our attemm to certain regions, and their
ability to convey motion highly influenced our choice of tadues for this application
domain.

Visualizing hurricanes in an illustrative style provides@al morphological and tem-
poral information that is not always apparent from standasdalization techniques. We
apply illustration-based techniques such as boundaryrex@maent and silhouette enhance-
ment to accentuate internal features in the underlying. défa found that the silhouette
enhancement algorithm also helps in the identification dfced wind shear in a hurricane.
lllustrative visualization was useful in investigatingriex rollup and mesovortex forma-
tions. Such phenomena are believed to cause dissipatidmirriaane and so their investi-
gation proves crucial. We convey temporal change in the lokatgpplying our illustration-
inspired techniques such as speedlines, strobe silhguwetteopacity-based techniques to

convey the temporal nature of the storm.

6.4 Understanding spatial distributions

Visualizing the morphology of a single timestep is crititmthe overall understanding
of the phenomenon. A visual representation of each timestefpe obtained by visualizing
the various scalar quantities such as cloud water, humidnyg temperature. Currently
used tools provide a two-dimensional visualization of dnlatte such as humidity at a
certain level (height) from the sea level, as shown in Figh& The three-dimensional

structure of the hurricane cannot be visualized and undedstising this method. We



93

FIG. 6.2. This figure shows a two-dimensional visualization wiiidity in a single level
in hurricane Katrina being visualized using isocontours.

generated a volume rendered representation of the huertcgorovide a three-dimensional
representation of the hurricane.

Traditional raycasting-based visualization tends toftlithe visualization of internal
structures of the hurricane due to the obscuration of voeeteer from the eye by voxels
closer to the eye. Volume illustration techniques wereinespby illustrations that capture
and accentuate key features de-emphasizing uninteraestjigns (Rheingans and Ebert
2001). These techniques generate expressive visuahzaticscientific data by using data
dependent characteristics such as the gradient magnitutidieection. One of the tech-
niques identifies the boundaries between features in treseiaby identifying regions of
large gradients and accentuating these identified bowsslafinother technique identifies
the silhouette of the structural features in the data andraaates it. This helps identify
internal features such as the eyewall, surrounding raidbaand other features that are
significant for exploratory and investigative purposes.

The humidity attribute is particularly useful for domainpexts to visualize the evo-

lution and transformation of the storm. Figure 6.3 shows tao$examples where our



FIG. 6.3. The leftimage depicts a standard volume renderederaigumidity for timestep
71. The central image depicts the boundary enhanced ves$ibre same image with the
eye, eyewall and the rainbands being seen. The right imggjetd¢he silhouette enhanced
version with clearer depiction of the features.

techniques generated more insightful images than standsudlization techniques. The
leftimage depicts a standard volume rendered image of timedity attribute with lighting.

The eye is located towards the top left of the image. The meighdhge show a visualization
where the boundary enhancement technique has been applathance feature bound-
aries. The boundary enhancement technique enhances theéas@s of the rainbands and
the eyewall. The right image is of a visualization generateittg the silhouette enhance-
ment technique where the eyewall and the rainbands aretaeted while the unimportant
detail is removed. The width of the eyewall as well as thecstme of the rainbands can be

most clearly seen in this visualization.

6.4.1 Investigating vertical wind shear

Visualizing the hurricane using knowledge about the infesagion and dissipation
of hurricanes produces more effective and informative aligations. It is known that the
presence o¥ertical wind sheateads to hurricane weakening and dissipation. Verticatiwin
shear is the difference in the wind speed and direction bertwiiee upper and lower atmo-
sphere. If there is large vertical shear the hurricane cafamm and hold itself vertically

which eventually leads to its dissipation.
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FIG. 6.4. This image depicts the silhouette of the wind speedsaatross sectional view
of the same time step. The top row shows a completely formeuler silhouette that
indicates no vertical wind shear as can be verified from thletrcross sectional view. The
bottom row shows a light, barely visible silhouette thatioades high vertical wind shear.
The cross sectional view confirms the presence of high \@mitnd shear in the hurricane
at that timestep.

To identify such vertical wind shear, a top-down view to cartgpsilhouettes is most
suitable. The silhouette computation considers voxelssetgradient is perpendicular to
the view vector. This is ideal for identifying vertical wirghear as a strong, crisp, well
defined silhouette would imply less vertical wind shear arduared, diffused silhouette
would indicate the presence of a large vertical wind shesthis manner, not only can the
presence of vertical wind shear be identified, but it can kentjfied by the strength and
crispness of the observed silhouette. The equation to peothus silhouette enhancement

for the investigation of vertical wind shear is

Os = Ov(ksc + kss(l - abs(vfn : V>>kse)

whereo, is the original opacity of the voxe¥/f,, is the gradient of the current volume
sample and/ is the view vectorp, is final silhouette enhanced opacity of the voxel,
controls the scaling of the non-silhouette regions, dontrols the amount of silhouette

enhancement and kcontrols the sharpness of the silhouette curve.
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In order to validate our vertical wind shear identificatiare generated visualizations
to investigate the shear in a particular timestep basedsosilliouette enhanced image.
Figure 6.4 shows the results. The left column depicts tHeaitte enhanced image for
timestep 7 and timestep 46. The middle column shows a crati®sal view of the wind
speeds volume. The lower image shows the vertical sheardswhe right in the hurri-
cane. The right column contains the transfer functions tsggnerate the cross sectional
visualizations. The top image in the left column shows angjravell defined silhouette
that correlates with the strong vertical coherence of theitane that can be seen in the
top image in the middle column. On the other hand, the lowkogette image is blurred
and can barely be seen. This correlates with the large anauightward vertical wind

shear that can be seen in the lower image in the middle column.

6.4.2 Investigating the structure of mesovortices

Theoretical studies have shown that a rapidly spinningroalof fluid becomes un-
stable and wavelike perturbations will grow. In Figure 6uMbiich is an illustrative visual-
ization of cloud water in hurricane Katrina, we can see thetof instability showing a
nearly vertically aligned wave having an altitude dependenplitude in the cloud water
field. Due to this instability, some cloud water can breakfaffn the main eyewall. This
image shows a depiction of the hurricane eyewall just befoeenook shaped cloud breaks
off from the hurricane. These instabilities in the eye of thericane are clearly associ-
ated with regions of strong upward motion (upwelling). Rypirising air stretches in the
vertical direction and vorticity is spun up by vortex tubeesthing. The basic principle
is conservation of angular momentum, an example being asgrskater who draws in
her arms and spins up. To investigate this instability ferthve visualized the vorticity
attribute in conjunction with the upward (vertical) veltci

The top image in Figure 6.6 is a volume rendered image of thicity and verti-
cal velocity fields of the first time step of hurricane Bonnie. this image, the vertical

wind velocity is rendered in red and the positive vorticisyrendered in green. Dark red
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FIG. 6.5. The left image was generated using the boundary eeh@t technique on the
cloud liquid water attribute of the 53rd timestep. The rightaige shows a closer look at
the hook in an illustrative style.

regions are regions of strong positive vertical velocitg gmeen represents regions where
the positive (counterclockwise) vorticity is large. Theheique emphasizes regions that
are vertically aligned. The outer band of green in the nortipart of the eyewall coincides
with strong upwelling. The vorticity changes sign in the appart of the storm, thus the
restriction to positive vorticity enables us to focus on lineer portion of the storm where
release of latent heat leads to rising of warm, buoyant de Bottom image in Figure 6.6
is an illustration-style rendering of the same positivetietty. The illustrative visualization
shows that the two green vorticity rings in the top image ateally observed at different
levels and can be seen as a ledge.

The top image in Figure 6.6 also shows mesovortices whichseam as localized
patches of high vorticity (green) around the outer vojicihg. Those vorticity regions are
co-located with high vertical velocity regions which confs the theory regarding strong
upward convection (upwelling) in regions of high vorticifapidly rising air (signified by
high vertical velocity) stretches in the vertical directiand vorticity is spun up by vortex
tube stretching. This process is similar to the flowing ofevdéitom a bathtub into the drain.

The illustration-inspired image provides depth cues thablame rendered image
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FIG. 6.6. The top image is a volume rendered image of the vorti@nhdered in green, and
vertical velocity, rendered in red, of the first time of heane Bonnie. Dark red regions are
regions of strong positive vertical velocity and the briginéen regions are high positive
vorticity regions. The bottom image depicts an illustratityle rendered image of the
same positive vorticity. It provides a three-dimensiorgiresentation that clarifies that the
double green rings visible in the left image are actuallyesbsd at different levels in the

data.
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FIG. 6.7. Time sequence showing various stages of vortex rolline left column shows

a series of volume rendered snapshots of the 13th, 26th aB@tI33rd timestep. The right
column shows a illustration-style visualization of theresponding timesteps. The illus-
trative images greatly help in an increased understandinigeothree-dimensional nature

of the vortex rollup.
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with lighting cannot provide. The illustration-stylizechage facilitates the visualization
of mesovortices and allows the viewer to visualize the vhdepths at which these vortex
structures occur. Such illustrative images help us ingesti and understand the interac-
tions between the vorticity at different levels.

A spinning ring of fluid is known to become unstable when théiabwind shear
becomes sufficiently large (Drazin and Reid 1981). In thise¢cdhe vortex ring rolls up
into localized vortices as can be seen clearly in Figure @8is process again leads to
mesovortices, but unlike the vortex stretching mechanisoussed earlier, it does not
necessarily involve vertical motion. Figure 6.7 is a timgusence showing various stage
of a vortex rollup. The left column shows a volume rendereddes of the vorticity in a

top-down view. The images in the left column are the 13thh280th and 33rd timestep

of the vorticity respectively.

Timestep 21 Vortex rollup begins Significant Vortex rollup
Timestep 24 Timestep 30

FIG. 6.8. These images show snapshots from three differensteps of vorticity in
hurricane Bonnie. They show the vortex rollup phenomenearty.

This view allows us to look more carefully at the characterssof mesovortex forma-
tion in the lowest part of the storm. The first image in the ¢afilumn shows that the vortex
has developed a wavelike perturbation which increases pliarde subsequently. Vortex
rollup begins in the subsequent image and continues in thagxge from the top. In the

last image in the left column, the eyewall vorticity has bmeoconcentrated into four or
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FIG. 6.9. This image shows the positive vorticity rendered ieegr and vertical velocity
rendered in green for the 33rd time step corresponding tdetsterow in Figure 6.7. The
image shows that the mesovortices formed near the bottoineofi@irricane are not cor-

related with strong vertical velocity as there is almost motical velocity in the strong
positive vorticity regions shown in green.

five mesovortices. Figure 6.9 shows that the mesovorticesdd near the bottom of the
hurricane are not correlated with strong vertical velacity

The illustration style of the same sequence, shown in thg gglumn in Figure 6.7,
gives a clearer view of the complex 3D nature of vortex ralldjnis view shows the ver-
tical alignment of the eyewall mesovortices, and shows tivecate nature of the vortex
dynamics occurring in the eyewall. The illustrative styldgs the viewer to understand
that the vortex rollup is a three-dimensional phenomenahdoes not occur only at the

lower level.

6.5 Understanding and exploring the time-varying nature ofa hurricane

Visualizing a snapshot of each timestep individually Isriihe ability to get an un-
derstanding of the trends and transformations that thedaure undergoes. For such time-
varying datasets, visualizing volume rendered snapshotsach timestep or viewing an
animation of rendered images of each timestep may be ofdinise. These snapshots or
animations may not convey change in structure and positidheocontained features in

the time-varying dataset.
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We have used illustration-based principles to visualizzdhange undergone by the
hurricane. Using these principles, we can convey morphcédgnd temporal changes in
the hurricane using a single image. Opacity-based teckaiqucombination with speed-

lines and the strobe silhouette techniques convey chargyeiow effectively.

6.5.1 Investigation of the motion of the hurricane center

The translatory motion of the hurricane is accompanied hgti@n around its axis.
The direction of motion of the hurricane center is criticathe understanding of wobbling
motion of the hurricane as it progresses along its path. Tdigbling motion, also known
as precession, is a key component in the investigation sipiition due to shear in the
upper levels.

lllustrators use trailing lines to create the effect of roatin still images (McCloud
1994). On observing the properties on these lines, we fonatlilustrators encode tem-
poral information in them. Our visual system processeseliesling lines as evidence of
the object having been there in the past and having moves taitent state. We call these
trailing lines speedlinesand have previously shown their use in visualizing timeyiray
CFD data (Joshi and Rheingans 2005). We applied the spesdbohnique to visualize

hurricane data. Figure 6.10 depicts a visualization of tikeitene with speedlines. The

eye of the hurricane is tracked automatically by identifyihe lowest mean sea level pres
sure and the minimum wind speeds in every timestep. Thissgiveidea of the track the
hurricane has followed. The path is then offset in a direcperpendicular to the motion
in each direction to obtain speedlines. The hurricanefitselisualized in a pen-and-ink
shaded style to be consistent with the illustrative pamadif the image. The annotation of
the image with speedlines provides the effect of motion amyeys important information

regarding the upwards curving motion of the hurricane. Tgezsllines also show a cycloid
motion of the hurricane center due to an overall rotationuatibe center. This may be
a useful way to depict Rossby modes which involve a precessiohe top of the storm

relative to the lower levels.
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FiG. 6.10. This image depicts a pen-and-ink style renderedalimtion of timestep 44 of
the hurricane. The annotation of the image with speedlinegiges temporal context and
conveys information regarding the upwards curving motibthe hurricane.

6.5.2 Examining the rate of intensification

The speed at which a hurricane intensifies is critical in therall understanding of
the intensification process. For example, an intensifinatiba category 2 hurricane to
a category 5 in a few hours could prompt a further investagatnto the conditions that
caused such rapid intensification. Studying the rate ofmgifieation is also crucial in
correlating the trends in observed values of attributeseturricane.

This problem was approached by using a technique that hasibspired by illus-
trators who use blurring and desaturation for older timestend bright, crisp renditions
of newer timesteps (MacCurdy 1954), (McCloud 1994). Suklstfations are generally
used to convey past positions and structure of the feataréisei current timestep. This
technique provides context to the visualization of the enirtimestep by providing faded
visualizations of older timesteps that convey change ipsharientation and position. To
generate a visualization using this technique, certagraésting timesteps are merged into

a single timestep to create a composite volume. The viataiz is then created taking
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FIG. 6.11. This image depicts the use of opacity-based teckritpuconvey the transfor-
mation of a semi-organized cluster of storms into a cate§dmyrricane. The transforma-
tion from the topmost faded rendition of the hurricane atetstep 10 to the bottommost
rendition is at timestep 71 captures the temporal natureeoétolution.

into consideration the age of each component timestep.alsng change over time in a
single image can be achieved using this technique.

Figure 6.11 shows a visualization of the current timestefh whe older timesteps
fading out. The oldest timestep (timestep 10) is visible tha barely organized cluster of
storms can be seen. The subsequent timesteps (timested 38)are when the hurricane
seems more organized with an eye and an eyewall. By time&tgph& hurricane is a full-
blown category 5 hurricane. The evolution of a hurricanef@small organized cluster to
a category 5 hurricane is conveyed from this visualization.

Figure 6.12 contains footprints of the timesteps when thedane changes its cate-
gory. This produces a visualization that depicts a snapsttbe hurricane at every step in
the intensification process. This image depicts the intieasion of the hurricane from a

category 2 onwards. The last footprint is for the hurricatewit intensifies to a category



105

FIG. 6.12. This image depicts the use of opacity-based techritpuconvey the intensifi-

cation of the hurricane. The visualization contains a faatdor every category change it

undergoes. The first footprint, on the bottom left of the imag the change to category 2.
The hurricane intensifies very quickly after that, as perghlesequent two footprints and
then the last footprint signifies the intensification to gaty 5.

5 hurricane. The rapid intensification of the hurricane ghle from the image. The hurri-
cane is a category 2 hurricane initially and quickly intéesiin a matter of a few hours to
a category 4 after which it intensifies to a category 5 as atéid by the last footprint.
Some of these techniques can be used in combination to pradoce informative
visualizations. For example, Figure 6.13 shows the opdmased technique being applied
in conjunction with the speedlines techniques to visuaizembination of the 10th, 35th,
53rd and 71st timestep. The change in size, structure antiquosf the hurricane is
conveyed from the image. The aim of the image is to capturedenward and rightward
motion of the storm. The structural changes in the hurric intensifies over 24-hour
periods can be seen by the increasing size of the hurricame speedlines technique
provides additional temporal cues to convey change in tithe. opacity-based techniques

can also be used to draw the user’s attention to a specifisteap®f interest.
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FIG. 6.13. The image depicts the combination of opacity-baseldniques and speedlines
to convey the motion of the hurricane. The hurricane moveaxards and starts turning

rightwards. The thickness of the speedlines reduces apibaphes the current timestep.
The image depicts the visualization of time steps 10, 356374 of the cloud water quan-

tity. The growth in size of the hurricane along with the im@rstructure of the hurricane is

visible.

6.5.3 Investigating the temporal and structural change in ge of the hurricane

Visualizing past positions of the storm can be useful in eyivg the direction in
which the hurricane is progressing. lllustrators have usaiting silhouettes to depict
past positions as well as the direction of motion of an obpeer time (McCloud 1994),
(Kawagishiet al. 2003). Trailing silhouettes have been effectively usetovey past posi-
tions and the general direction of the feature in a time-vaygataset (Joshi and Rheingans
2005).

We use the strobe silhouettes technique to depict the direof motion as well as
past positions of the hurricane in a single image withouttefing the visualization. The
direction-of-motion vector is calculated based on the geain position of the eye of the
hurricane and is used to compute the strobe silhouettes.

Figure 6.14 shows the past positions of three such timestiepg with an illustra-
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FIG. 6.14. This image depicts the strobe silhouettes techrigirey applied to the hurri-
cane dataset. The cloud water quantity for timestep 71 islied in an illustrative style
with trailing silhouettes for timestep 10, 35 and 53 beingidied in the image.

tive rendition of the final 71st timestep of the cloud wateauity. The past positions of
timesteps 10, 35 and 53 are depicted by trailing silhouefié® strobe silhouettes tech-
nique is particularly effective in conveying the past pasis of the hurricane along with
visualizing the current timestep in full detail. This prdes temporal context as well as
conveys information regarding the change in size of thenstoFhe downward direction,
increase in size of the hurricane and origin of the storm iwveged effectively in Figure

6.14 using strobe silhouettes.

6.6 Expert Evaluation

In addition, we evaluate our techniques with seven expenttsusom the application
domain who provide us with subject feedback regarding thabilisy of our techniques.
As has been mentioned by Kosataal. (2003), “the input of application domain experts

is worth its weight in gold”. We wanted to evaluate the benefiiour techniques in the
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application domain of hurricane visualization, which was primary domain of focus.

Our users were

Jeff Halverson, Associate Director of the Joint Center fartk Systems Technology.
e Scott Braun, Research meteorologist at NASA's Goddard &péght Center.

e Julio Bachmeister, Associate Research Scientist at thel&dd=arth Sciences and

Technology Center (GEST)

¢ Bill Olsen, Research Associate Professor at the Joint Céant&arth Systems Tech-

nology.

e Lynn Sparling, Associate professor of physics at UMBC andvB(C affiliate mem-

ber of JCET.
e Hai Zhang, Postdoctoral researcher in the Physics DepattatéJMBC
e Samuel Trahan, Graduate Student in the Physics DepartrneiMAC.

For this purpose, we created a website which contained isnggeerated from visu-
alization packages that the experts use on a regular bagisasuGrADS (COLA 1988) as

well as our illustration-inspired visualizations. The \géb is at
http://www.cs.umbc.edu/"alark1/hurricane_study.php.

Figure 6.15 shows a screenshot of the first page of the welfshe expert evaluation.

6.6.1 Procedure

The procedure for this expert evaluation was:
e Explain the purpose of the expert evaluation to the domaiees.
e Get their information for the expert evaluation.

e Conduct the expert evaluation.
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Hurricane Visualization Expert Feedback Form
An investigation into the use of illustration-inspired techniques for visualizing hurricanes

Alark Joshi, Pemny Rheinzans and Lynn Sparling
University of Maryland Baltimore Coundy

Figure la Grads Visualization of a single lewel of the clond
wwater atiribute.

Commente:

Figare 1b: 2D Slice Visualization of cloud water in two
different levels in the upper region of the hurricane. The third
image shows the histogram and color legend for the slices

Comments

FIG. 6.15. A screenshot of the first page of the online expertatain conducted to
conduct an expert evaluation of our techniques.

6.6.2 Datasets

For this expert evaluation, two hurricane datasets weré.u3éne first dataset was
a simulation ofHurricane Katrinawhich was provided by Dr. Hai Zhang, Dr. Miodrag
Rancic and Dr. Lynn Sparling at UMBC. The dataset was 276x288n size with 72
timesteps simulated at 1 hour intervals and had values fal poecipitation, cloud water,
geopotential height, mean sea level pressure, relativedityntemperature, u wind, v wind
and pressure vertical velocity.

The second dataset was a simulatiorHoirricane Bonniewhich was obtained from
Dr. Scott Braun at NASA. The dataset was 250x250x27 in sizb W20 timesteps at
3-minute intervals and had values for radar reflectivitytieal velocity, temperature, po-

tential temperature, divergence, u wind, v wind, vorti@atyd pressure.
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6.6.3 Expert feedback

We found that the experts preferred our illustration-imsgitechniques over standard
visualization techniques in most cases. The experts foundisualization techniques to
be very useful for examining hurricane structure, thremeatisional mesovortex formation
and visualization of current timestep with context. Forrapée, Figure 6.5 was preferred,
over 2D isocontour (Figure 6.18) and the 3D volume rendernmages(Figure 6.16), by all
the experts for the ability to clearly visualize the intdratructure of the hurricanes. One
expert says This is an exceptionally effective portrayal of the cloudevdield. Here we
can see a wave perturbation in the eyewall that has an akitlependent amplitude. This
type of visualization has a lot of potential for investigatithe dynamics in the hurricane
inner core” The illustrative visualization in Figure 6.5 was found te more suited for
answer questions regarding the internal structure of destingestep in a hurricane. Figure

6.18 was useful for answering other hurricane related gquestvhich we discuss later.

FIG. 6.16. This image shows a volume rendering of the cloud wgpiantity in hurricane
Katrina.

Experts preferred the illustrative pen-and-ink style aiszation in the right column to
the standard volume rendered vorticity images in the lefiirom in Figure 6.7. The abil-

ity to clearly visualize the three dimensionality of the hicaine in the illustration-inspired
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FIG. 6.17. This image shows four snapshots of cloud water beindered in hurricane
Katrina at four different timesteps. The direction of maetig not easily apparent by just
looking at this set of images.

visualizations helped understand the structural detditeehurricane. One expert writes
“The illustration-based technique on the right is radicalifferent from anything currently
used in hurricane research. The cases here show vortexprimll8D .. this is a very promis-
ing new way to look at hurricane inner core structures andatyics” Using the illustrative
visualization, the hurricane experts were able to answestipns regarding the presence
and structure of mesovortices and further investigate timeex rollup phenomenon.

The simple illustrative techniques such as boundary artusdtte enhancements
shown in Figure 6.3 were preferred over standard volumeeend techniques. The abil-
ity of the illustrative images to clearly shows featurestsas eyewall and rainbands was
appealing to them. Based on Figure 6.4, one expert notes wralising silhouette enhance-
ment and writes This is very useful for looking at the effects of verticaldvathear on the
hurricane structur€. This helped hurricane experts answer questions regattiegffect
of vertical wind shear on the dissipation and eventual tigration of a hurricane.

Figure 6.12 was liked by all the six experts one of whom wrdithi$ is a great way
to visually track the motion of the stormAnother expert writes The figure might be
very useful in a study of category change in response to tapby etc. during landfall,
wind shear or sea surface temperaturegzigure 6.11 and 6.13 were both preferred to
looking at snapshots of each timestep individually or vieyva panorama of constituent
timesteps as shown in Figure 6.17. They liked the fact thdt tiee storm motion and the

structural evolution could be clearly seen in both the insagéigure 6.10 was found to
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be effective and the illustrative style found to be novel.eMisualizations helped them
answer questions regarding the direction of motion of theitane, regarding the rate of
intensification of the hurricane as well as the evolutionhe hurricane at various stages
along its track.

For Figure 6.6, an expert wrotd@his is an effective way of showing the correlation;
this particular plot shows that a region of strong, vertigatoherent vorticity marks the
inner region of upwelling. The problem here is that we cartetitif the green annular
features are displaced in the vertical or if we are seeingséary eyewall formation. The
illustrative visualization helps clarify that by showirtat the features are accruing at two
different vertical levels” The visualization helps experts correlate the vorticityl dine
vertical velocity variables in the data and led to them figdimat the two vorticity rings in
the hurricane occur at different altitudes.

In some cases, the traditional 2D visualization techniquer® preferred. We suspect
that this might be due to the familiarity with a particulaotor due to their training in using
a particular 2D visualization technique. For example, irtipalar the integration concept
of volume rendering was confusing to the experts, since th&ning in interpreting 2D
visualizations led them to interpret the values as beingdhthe topmost level. Experts
prefer to investigate the values at particular levels sapérand so visualizing a composite
image seemed unintuitive to them. Despite the fact thatwmeltendering images were less
preferred, our illustrative representations such as thentlary and silhouette enhanced
visualizations, shown in Figure 6.3, were liked due to thet that they enabled them to
look at three-dimensional features such as the rainbahdssttucture of which is not as
clearly visible in 2D visualizations. Figure 6.18 shows aaraple of a 2D visualization
technique (isocontours) being used to visualize a singlel e the hurricane. An expert
mentioned that such an image can reveal the 2D structureiaeytewall clearly but the 3D
structure cannot be seen.

Figure 6.19 shows another example of wind vector visuabpah a single level. They

preferred visualizing the wind quantity in this manner th@ualizing just the windspeeds
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FIG. 6.18. This image depicts a 2D visualization showing istaors for cloud water in
hurricane Katrina at a single level.
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FIG. 6.19. This image depicts a 2D visualization showing hedgslfor visualizing wind
vectors in hurricane Katrina at a single level.

in three-dimensions. Visualizing hedgehogs in this maneezn though at a single two-
dimensional level helped them visualize both the magnitua# direction of the winds.
They like the fact that it showed the wind structure at a sriglel nicely. In such cases,
we believe that texture-advection techniques introduge8dhafhitzel et al. (Schafhitzel

et al. 2004) could be easily adapted for three-dimensional vigatbn of wind vectors.



Chapter 7

POINTILLISM-BASED VISUALIZATION OF
ATTRIBUTE CHANGE IN TIME-VARYING DATA

Standard visualization techniques for time-varying datach as snapshots or ani-
mations) are limited at conveying temporal informationtie viewer. Time-varying data
invariably contains multiple attributes, such as tempemtrainfall and so on, at each lo-
cation in space. The complexity of viewing and understagtire data is increased by the
fact that these attributes are constantly changing oves.tindomain scientist would like
to get a better understanding of the nature of change thattigydar attribute is undergo-
ing over time. Our discussions with domain experts led usteatization that they need
to understand the change in attribute value in a particelgion in their data. For exam-
ple, in our application domain of hurricanes our collaboratwvould like to understand the
changes a hurricane is undergoing as it intensifies. Vaadwibutes in a hurricane such
as humidity and windspeed are of interest to them and spaityficarticular regions in the
hurricane that are undergoing change in values. Existipgageches either produce snap-
shots of each timestep or an animation requiring them to leetalunderstand the changes
the hurricane is undergoing over time.

Alternatively, the change can be visualized by computirg difference in values
and then visualizing the computed difference. The limitasi of these approaches is that
they are not able to capture the intermediate values anddg@comprehensive unifying

picture that conveys attribute change over the time interva
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We develop a novel visualization technique that conveysattw@ute change in a
single image as well as convey intermediate values in theifsge: time interval to allow
the user to visualize trends in the data. We investigatediete of illustrations and art in
general to look for a solution.

Pointillism is a technique in painterly rendering where the artist gabyt placing
brush strokes in the form of points on the canvas. The brusiket form a cohesive
picture when looked at from a distance, but on looking clpsglpear to be a seemingly
incoherent collection of brush strokes. This painting estylas pioneered by Seurat and
Signac around the 1890’s. The most famous examples of tdilpisi painting can been
seen in the “Sunday Afternoon on the Island of La Grande’Jautig “La Parade de Cirque”
as shown in Figure 7.1 where the paintings look beautifuinfl@ distance, but on close
inspection reveal an intricate composition of brush stsoéie can be seen in Figure 7.2.
Seurat incorporated color theory and color mixing, as psgaidy Rood et al. (Rood 1879),
into his paintings (Kemp 1990). Instead of the common peaaif physically mixing colors
on a palette, Seurat applied the color mixing theory by plgad&rush strokes close to each
other to facilitate a visual “mixing of colors”. It can be aldy seen in the closeup of the
man in Figure 7.2, where warm colored brush strokes are glager the underpainting of
the man’s head. The effect on looking at the entire painsraf & soft light being reflected
onto the man’s head. The ability of the human eye to visually time colors to obtain
a certain effect is quite significant and we use it for the psgof visualizing attribute
change in time varying data.

In our approach, we use the pointillism paradigm to conveyai change in attribute
values over time. Instead of computing the change over amvalt of time, we sample
each timestep in the interval and visually represent tha daing a pointillistic painterly
style. We use various attributes of painterly renderinghsas brush size, brush color and
saturation to convey change visually. This provides a Visg@esentation of the attribute
distribution in space and time. In the subsequent timestepsh strokes are placed on the

canvas in a non-overlapping manner, to mimic pointilligtnting.
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FiGc. 7.1. “La Parade de Cirque”, Georges Seurat, 1888. Notellgiainting is made of
multiple small closely placed brush strokes.

We demonstrate our results with synthetic data as well aswardd data such as global
rainfall, infant mortality (CDC 2002), US presidential etns per county (PurpleAmer-
ica 2004), and hurricane simulations over a time intervahe Tesults clearly show the
efficacy of our techniques in being able to convey these atgagd visualizing interesting
patterns using the pointillism style of painting. We conigilca user study to evaluate the
effectiveness of our techniques. The user evaluationtesubwed that users were able
to conduct tasks faster and more accurately using our tqukras compared to traditional

snapshots/animations based techniques.

7.1 Approach

We use pointillism-inspired techniques, as introducedws®t by Seurat in his paint-
ings, where brush strokes of various colors are placed ooaheas relying on the viewer’s
ability to blend them visually. In the visualization litéuse, Urness et al. (2003) have

proved the effectiveness of such techniques where theyhes®isual blending” paradigm
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FIG. 7.2. Detall of “La Parade de Cirque”, Georges Seurat, 188&ly depicts the detail
and arrangement of strokes. For example, in the backgrosimgel as on his suit there are
brush strokes that almost seem random to the viewer at the$ & detail, but on looking
at Figure 7.1, it visually blends to produce a visually apipggpainting.

for visualizing flow.

We generate a painterly rendering in the pointillisticetyhere values are represented
in the form of colored brush strokes on the canvas. The cutm@estep being visualized
is given highest priority and is rendered using the largessib size. An older timestep is
visualized with a smaller brush stroke and a desaturateshizalor.

We create the pointillistic visualization over the spedifieterval by sampling inter-
mediate timesteps. We use the contribution of the valueach sampled timestep to paint
the canvas with brush strokes. Older timesteps are repegbevith smaller, desaturated
brush strokes.

We consider a simple synthetic dataset as shown in Figutte @&x3lain our technique

clearly. Figure 7.3 shows an example where five snapshotma tThe colors represent
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values of an attribute changing over time. The images inwwtjon with the color scale

convey an increasing trend in the data over time (timesteptiinestep 5).

Current Timestep

Tirne 1 Tirne 2 Tirme 3 Tirne 4 Tirme &

I
1]

Maximum value

FIG. 7.3. This image depicts a simple synthetic dataset wherdith images represent
values of an attribute that change over time. The increasamgl is apparent by visualizing
the data in conjunction with the color scale.

7.1.1 Sampling

Our pointillistic visualization paradigm allows us a ungggampling strategy where
we specifically sample each timestep over the interval asdalize it with a brush stroke
on the canvas. This ensures that intermediate values oxeintie interval are visualized.
Regions of homogeneity, regions of constant increase ardse now become visually
apparent and allow an application domain expert to quiakéytify regions that they would
like to investigate further. Additionally, a viewer can neasily identify patterns such as an
increase followed by a decrease, as well as a decrease éallbwan increase in attribute
values. Figure 7.4 shows a depiction of the sampling styaiegt we use to visualize the

data.

7.1.2 Brush selection

Pointillistic brush strokes are not perfect circles. Poegly, the pointillistic painting

style has been represented in the form of circular or porgdsbrush strokes (Hertzmann
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FIG. 7.4. This schematic describes our brush selection, celecg8on and brush placement
approach. The brush size decreases as the temporal distiatheeselected timestep from
the current timestep increases. As can be seen in the figwraet brush stroke is the
smallest in size since its timestep (time = 1) is farthesmfritie current timestep (time

= 5). The color of the brush stroke is selected based on a ddmginbow color scale.

The saturation of the stroke color is decreased dependirtgeotemporal distance of the
selected timestep from the current timestep. Since thetiingstep (time = 1) is farthest
from the current timestep (time=5) being visualized, the lbeush stroke color is much

more desaturated/faded. The stroke placement algoritbntiftes a location on the canvas
that is not occupied and then places a stroke there and ntekkotation as occupied.

1998), (Saunderst al. 2005). We experimented with using circular brush strokes, b
found the results to be too regular, as can be seen in thereafije in Figure 7.7. Closely
observing pointillistic paintings by Seurat, such as Feyuirl, validate our observation that
brush strokes are not perfect circular points.

In order to provide a painterly feel to the created visuaiag we painted pointillist-
style brush strokes on a canvas. These point brush strokestiven scanned in and used
as alpha textures for the strokes being rendered on thersdfegure 7.6 shows the sixteen
brush strokes that we painted, scanned, and used in ouepdgirgndering process. The
right image in Figure 7.7 shows a painterly visualizatioattlooks much more organic and

has a true pointillistic feel to it.
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FIG. 7.5. This image shows a pointillistic visualization of hgthetic example described
in Figure 7.3 and Figure 7.4. The brush strokes represettiegurrent timestep are biggest
and brightest as compared to brush strokes representirgy tidesteps. The clamped
rainbow color scale shown here helps the viewer understa@dricreasing trend in the
time-varying data. We later introduce a better color legérad allows the viewer to more
easily visualize patterns in the data.

In order to simulate a painterly rendering style, we use doumily distributed prob-
ability density function to pick one of the sixteen textuesswe place the brush stroke on

the canvas.

7.1.3 Color selection

The color selection process for each brush stroke was bas#teattribute value as
well the age or the temporal distance of the current timestap the first timestep in the
interval.

One of the main aims of our painterly visualization techeiguas to allow the viewer
to be able to visualize the current timestep data with valkoes older timestep. To ensure
that the older timesteps do not dominate the visualizatianreduce the saturation of the
identified color by a factor that is inversely proportionalthe temporal distance from the

current timestep. Instead of using the complete rainbowrcetale, we use a truncated



FIG. 7.6. The painted brush strokes used as textures for theaereof a realistic
painterly visualization.
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FIG. 7.7. The left image depicts a visualization in the poirstiit style with circular brush
strokes. The right image shows a painterly visualizatiangiscanned brush strokes from
Figure 7.6. The organic, hand-drawn look is clearly obtdimethe right image.

rainbow color map to avoid misinterpretation due to a wraguad. We used the rainbow
color map as it can represent a large spectrum of values wighelization. We are aware of
the limitations of the rainbow color map (Rogowitz and Trsin1998) and are investigating
other more suitable colormaps for our painterly visualaat
We use the Hue-Saturation-Value (HSV) color space to picklardor our brush

stroke. The truncated rainbow color scale is used with theimmam hue value clamped at
300. The value at a particular point in the 2D space is usealtkup the brush color in the
HSV color space.

Saturation is given by
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1.0

Saturation = —
k

where d,, stands for the temporal distance of the current timestem filoe newest
timestep.

We again refer to Figure 7.4 where older timesteps are repted with a more faded,
desaturated brush stroke while newer timesteps are rapezb®ith brighter brush strokes.
The final visualization as shown in Figure 7.5 shows the ceteplisualization with all the
brush strokes. The faded brush color as well as brush stin&éslps the viewer differen-

tiate brush strokes representing older timesteps fromethggresenting newer timesteps.

7.1.4 Stroke placement

We observed that in pointillistic rendering the brush sé®klo not overlap much. In
particular, observe closely the detail in Figure 7.2. Wemporated the limited-overlapping
of brush strokes into our system. Brush strokes are placeskedo or in between brush
strokes already on the canvas.

To create the pointillistic visualization, we randomly ndiéy a location on the canvas
and check whether a brush stroke is already placed thereeté tis no brush stroke there,
we use a uniformly distributed probability density functitm pick a timestep. Based on the
identified timestep, a brush size and brush color is caledlathe color for the brush stroke
is obtained by using the attribute value at the location &t ttmestep. The color selection
process is used to select a color for the brush stroke. Aftaimg a brush stroke on the
canvas, we mark the region on the canvas as occupied to eyeueeally non-overlapping
brush strokes in the final painterly visualization. To kedpaak of the current state of the
canvas, we maintain a canvas data structure that contarsdhtions and extent of each
brush stroke as well as which regions of the canvas are efmpty.enables the algorithm to

decide whether a new brush stroke can be placed withoutaenadile overlap with another
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FiG. 7.8. The image depicts a synthetic time-varying datasatalized using pointillis-
tic techniques with information from five timesteps. The thgtic data was created to
highlight the possible variations in time-varying data.eNalues in the alphabet “V” are
monotonically decreasing, in “I” are constant, in “S” dease and then increase back to the
same value as in the first timestep, in “0” the values increaskthen decrease back to the
value in the first timestep and those in “7” are monotonicadlyreasing. These variations
can be followed by using the colormap provided along withwisealization.

brush stroke already on the canvas.
We show some examples in Figure 7.8 for synthetic data. Thiiaseét was particu-
larly created to demonstrate the strengths of our techsiqliee intensity of alphabet “V”

is constantly decreasing over time, the intensity of thénalet “I” is constant over the
interval, the intensity of the alphabet “S” decreases apd thcreases back to the intensity
of the first timestep, the intensity of the number “0” increa@nd then decreases to the
intensity of the first timestep and the intensity of the nunif@é is increasing constantly
over the interval.

The alphabet “V” contains five distinct colors, the brighegn maps to the initial
value from the newest timestep and is depicted using theebiggush size and the most
saturated color. The other colors visible are lighter skaofegreen, orange and a light
shade of red. On close examination of Figure 7.8, all theashostrokes can clearly be
identified and mapping them to the scalar values conveyseheedsing intensity of the

alphabet “V” over time. Similarly, since the values for thptebet “I” are constant over
the interval, the only color visible is green in various bruszes and various saturated

levels. On close observation of the remaining alphabetswanabers in the visualization,
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the decrease and subsequent increase in intensity vallgs, ahcrease and decrease of
values in “0” and constant increasing trend in “7” are cleaibible.

We experimented with using a layering based approach whereould first paint the
current timestep using the largest brush size and then fiHer‘gaps” with smaller brush
strokes for older timesteps, but the painterly representatould be largely dominated by
the current timestep and any correlation with previous steps would be almost impos-
sible using that representation. The left image in FiguBeshows a result where the first
layer has the biggest brush strokes as well as the highedtenuwhbrush strokes while the
other brush strokes for previous timesteps can barely be sSHeere are 2033 strokes for
the current timestep and 359, 234, 207 and 175 for the otheesent timesteps. Thus,
a uniformly weighted probability distribution function s better and obtains an equal
contribution from each timestep in the interval. The rigmiage in Figure 7.9 shows a

uniformly distributed weighting applied to each brush size

L
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FIG. 7.9. The image shows the effect of using a large brush staylez followed by placing
brush strokes in gaps that remain after the first layer. I sugrocess, the first layer covers
a large part of the painting and a very small fraction of theag is then painted by brush
strokes representing subsequent timesteps. The curmeestep is represented by 2033
brush strokes, while the subsequent four timesteps aresepted using 359, 234, 207 and
175 brush strokes respectively.
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7.1.5 Stroke Size/Saturation Legend

Generally a legend is provided with a visualization to ustind the values in the
visualization. To effectively understand the painterisualization and analyze the trends in
the data, using a standard colormap, as shown in Figuresm8t sufficient. We generate a
stroke size/saturation legend, as in Figure 7.10 wherettbkessizes and saturation values
used in the visualization can be mapped to attribute valnésasist the user in identifying

the timestep to which that stroke belongs.

& - @8dd
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FIG. 7.10. Stroke size/saturation legend depicting the dsorgatroke size and saturation
as we traverse downwards and stroke hue values increasig amve rightwards.

In the process of interacting with the painterly visuali@at the user may be interested
in examining certain regions of interest in more detail. Aan actual pointillistic painting
where the brush strokes seem larger as one gets closer taiténg, so do our brush
strokes get larger as the user zooms into the area of inténestder to continue to provide
effective visualization, our legend automatically resiz@ show the larger brush strokes as

can be seen in Figure 7.23.

7.2 Results

We applied our techniques to synthetic data as well as redtwiata. The synthetic
data was chosen to particularly highlight the strengthswftechniques. We then show
some examples of our pointillism-based techniques beipdjeapto infant mortality data
per state for the entire country over an eight year period ptéSidential elections results

per county from 1960-2004 and for hurricane data from hanmeKatrina and Isabel.
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7.2.1 Synthetic data

We show examples of the various trends that can be seen usitgahniques. Figure
7.11 shows two such example trends that can be identifiedihg tise color scale below.
The left image shows an increasing trend as can be seen bi; Bgidlred brush strokes,
medium-sized yellow brush strokes followed by big green kright blue brush strokes.
The rightimage in the figure shows a decreasing trend whintbeadentified by observing
small light blue brush strokes, medium sized green strokd$@ger orange and red brush

strokes. The color legend allows us to identify the decrepsiend

Current Time ¢
t-1
-2

t-3

t-4

FiG. 7.11. This set of images shows some possible trends thaieatearly visualized
using the scale shown below. The top left image shows anasurg trend as can be seen
by the small, faded red brush strokes and large, bright bhdegaeen strokes in the center.
The top right image shows a decreasing trend where oldeesalte represented by small,
light blue brush strokes and new values are representedghpiight red brush strokes.

Our techniques can convey three other trends in a datagpiteFr.12 shows examples

for those trends. The left image shows an increase in vahlkEsvied by a decrease. The
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FIG. 7.12. This set of images shows some more possible trentlsghde clearly visual-
ized using the scale shown below. The left image shows araserfollowed by a decrease
as can be seen by small yellow strokes, medium sized violethbstrokes and big green
brush stroke. The middle image in the second row shows anatbeease followed by
decrease. The third image in the second row shows varioweshand sizes of blue brush
strokes which implies that the value stays constant oves.tim

increasing trend can be seen by the fact that the smallesh lstuoke is light yellow in
color, followed by light blue brush strokes and medium-diz#let brush strokes. The
subsequent decrease is conveyed using a brighter biggebhish stroke followed by the
biggest green brush stroke. In this manner, an increasewetl by decrease pattern can
be identified. The second image from the left shows a decffeddleeed by an increasing
trend in a single image. The decrease is conveyed by the sio#l, light blue, light
yellowish green brush strokes. The subsequent increasmigeged by the bigger green
brush stroke and the biggest bright, blue stroke. The thiage shows various shades and
sizes of blue brush strokes. This implies that the value doeshange over time. The lack

of variability conveys the constancy over time.
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7.2.2 Infant mortality

We applied our techniques to infant mortality data for thetebhStates collected over
eight years from 1995-2002. The infant mortality data watsioied from the US Centers
for Disease Control and Prevention, National Center forltHeBtatistics.

Figure 7.13 shows five sample snapshots of the data in timetdepthe infant mor-
tality over a five year period from 1998-2002 based on thercgdale shown.

The problem with visualizing such snapshots is that any kihahteresting trends,
variability, unusual patterns or consistently minimumxmaum values cannot be easily
identified. For example, in Figure 7.13 one requires comaiale effort to identify the state
which consistently has the maximum infant mortality ratermthe five year time interval

shown here.

1038 [

518\

FIG. 7.13. These set of image depict the infant mortality in thigre country over a period
of five years from 1998-2002. The color scale provided can $exuo understand the
data. Identification of clear, interesting patterns andsualibehavior in the data cannot be
clearly seen by looking at these snapsh@ata credits: US Centers for Disease Control
and Prevention, National Center for Health Statistics.

In contrast, Figure 7.14 shows a pointillistic visualipatithat shows an overview of
the data over the five-year period from 1998-2002. The vigatabn can help us answer
guestions like which state consistently has the higheahinhortality over the interval or
which state has the least infant mortality over the interval

As with visualization techniques, more interesting paiseran be found by interacting
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FIG. 7.14. This image shows a pointillistic visualization oé #ntire nation showing infant
mortality over the time interval from 1998-2002. The vigmation can clearly shows that
states such as California, Utah and most of the Northeast Aaery low infant mortality
rate. On the other hand, states like Mississippi jump oubasistently having the highest
infant mortality rate in the nation. Figure 7.15 shows a eldsok at Mississippi. Other
interesting patterns can be observed by zooming into amegio

with the data. In line with the painting paradigm, we can géb$er” to the visualization to
investigate patterns/trends better. Figure 7.15 showssook example where the state of
Mississippi clearly shows maximum infant mortality acaogito the color scale shown on
the right side of the image. Alabama seems to have had a higiitimortality in the past,
but the value has dropped lately as can be seen by brightbhlisé strokes in comparison
to faded, violet brush strokes.

Another interesting pattern in the form of a spike can be olexkin the state of
Alaska. Figure 7.16 shows a visualization of Alaska wherecese see big greenish blue
brush strokes followed by the biggest brush stroke in reds ¢bnveys that there was spike
in data values in 2001 (represented by the greenish blué lstuskes). The value in 2002
dropped again as is shown by the red brush strokes.

Figure 7.17 shows an closeup example of North Dakota, Soakiota and Minnesota
being visualized using our technique. Minnesota clearyrseto have low infant mortality

rates with some intermediate moderate values as shown leyl fgellow brush strokes.
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FIG. 7.15. This image depicts a visualization of southeastegion. The state of Missis-
sippi’s consistently high infant mortality rate over theefiyear period from 1998-2002 is

apparent from this visualization.

FiG. 7.16. This image depicts a visualization of Alaska in thmpltistic style. The values
are generally low as can be seen by small orange, yellow lstngkes but a spike can be
clearly seen in the form of bluish green brush strokes. Thaagaare again back to a lower

value followed by red brush strokes.
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North Dakota’s infant mortality seems to be falling as carsben by bigger yellow brush
strokes in contrast with older blue brush strokes of varisliades. South Dakota on the
other hand seems to have had higher values (light blue btuskes) followed by a drop

(bigger faded red brush strokes) and then an increase (eggerlgreen brush strokes).
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FIG. 7.17. This image depicts a visualization of southeastegion. The state of Missis-
sippi’s consistently high infant mortality rate over theefiyear period from 1998-2002 is
apparent from this visualization.

7.2.3 US Presidential election results

We applied our techniques to data from US Presidential ielecesults from 1960-
2004 collected at a county level. Figure 7.18 shows a snaghioe elections from 2004
where red stands for Republican and blue stands for Demaddsatalizing only the snap-
shots from a single election year is again limited at shoveoge interesting patterns in
the data over time.

Figure 7.19 shows an example of our pointillistic visudtii@a highlighting patterns
in the underlying time varying data. The top row shows thmegpshots depicting results
from 1988, 1992, 1996, the second row shows snapshots fré@a@d 2004. The pointil-

listic visualization clearly highlights an interestingtfgan such as the fact that a section in
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FiG. 7.18. This image shows a visual representation of US Vatsglts per county.

southwestern Texas which consistently voted Democrat theeentire interval. There are
some regions in Colorado too that consistently voted Deatawer the last five elections.

Figure 7.20 shows snapshots for the elections held in 19884 and 1968 in the top
row. The bottom image shows a pointillistic visualizatidritte data. The variations in the
southeast are clearly visible in a single image as comparedtializing every snapshot.
The variation can be explained by the surge in popularitjhef@ixiecrats in the southern
region. The variation is particularly high, since in 196@ thixiecrats won a large part
of the Mississippi counties and then a major resurgence &8 52w them winning large
parts of the south before they merged with the Republicaty parthe 1972 elections. The

variation in the region is clearly conveyed in a single vigaion using our technique.

7.2.4 Hurricane visualization

In the hurricane visualization domain, the major challemgine process of studying
hurricanes is the change that a hurricane undergoes witlcgrtain time interval. Our
collaborators in the Atmospheric Physics department wdikkdto study the changes in

attribute values such as the change in the value of humiditywdeen multiple timesteps
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FiGg. 7.19. This image shows a visual representation of US Vatsglts per county. The
top two rows show county results from 1988, 1992 and 19960201 2004. The pointil-
listic visualization clearly shows interesting patternsls as the fact that

or the change in wind speeds between subsequent timestepgxample, the three left
images in Figure 7.21 show three timesteps of the humiditibate in a hurricane. The
change in humidity values is not apparent by looking at tlsesg@shots. There is clearly a
change in humidity values but specific regions are not clgamg standard visualization
techniques, one can find the difference between the intanéluse a color mapping to
convey the change, as in the rightmost image in Figure 7.2anly manages to capture

the overall change but does not capture the values that wieed in the intermittent
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FIG. 7.20. This image shows a visual representation of US Vatsglts per county. The
top row shows snapshots of election results from 1960, 19641868. The pointillistic
visualization clearly shows variation in the southeastegion.

timesteps and hence, does not give a complete representdtibe variation in attribute
values that the hurricane has undergone in the interval.

We applied our technique to various attributes of a hurgcanch as humidity and
wind speeds. Figure 7.22 depicts three various paintedyalizations that were created
using our system. The leftmostimage depicts a single tiapadtpicted in a painterly style.
The middle image depicts three timesteps with decreasinghbsize as well as saturation
and the third image depicts five timesteps with decreasinghbsizes and saturation. The
rightmost image shows the size/saturation legend for thealizations.

The third image from the left shows the final painterly viszation with five timesteps

of humidity varying over a 15 hour time interval. The sampglinrequency for the interme-



136
o a0 i

FIG. 7.21. Visualization of a 2D slice of the humidity attributea hurricane. The images
from left to right show the humidity attribute at timestep, Zénestep 35, timestep 41 and
the computed difference in humidity between timestep 29tanestep 41.

FiG. 7.22. Three different visualizations with different tinmgervals. The left image
depicts humidity over a single timestep which explains thiestant brush size used in the
image. The second image depicts humidity over three timpestiere smaller, desaturated
brush strokes can now be seen interspersed with bigger bttges. The third image from
the left depicts humidity over five timesteps and shows maretion in the form of older,
desaturated brush strokes. The rightmost image shows adebgat depicts brush size and
saturation values for viewers to correlated brush coloth walue and timesteps.

diate brush strokes is every three hours. The trend to notkisncase is that the older
humidity values are much lower, as depicted by various shafldesaturated, small blue
and green brush strokes on the right of the eye of the hueigarich is moving leftward.
The current timestep has higher humidity as depicted by thplg, violet and dark blue
large brush strokes. Homogeneity in the values towardsaWwer right region of the hur-
ricane can be seen in the form of smaller, desaturated btuskes. When viewed from a
distance the overall visualization conveys informatiogameling the humidity distribution
over the interval and a zoomed in view of the data can give & details regarding the

humidity values of older timesteps.
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The leftmost image in Figure 7.22 seems denser than othéis ight. This is due
to the fact that the brush strokes are all of the same size atndagion, as humidity val-
ues from a single timestep are being visualization. We thtoe information from older
timesteps in the form of smaller, desaturated brush stritk@&iscompete for the canvas.
The effect seems more diffused as we look at the second artlithage from the left

in Figure 7.22 and the contribution of older timesteps begsm@mpparent in the painterly

visualization.
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FiG. 7.23. Painterly visualization of wind speeds at differentels of zooming. The top

row shows the humidity attribute and a corresponding legenlle image depicts large
wind speeds and change around the eye. On zooming in futtteesecond row depicts
further diversity around the eye and the correspondingrnddeelps identify values and
variation over the interval. Further zooming into the eyeways to the user the fact that
the eye contains the highest speed winds in the dataset egiet] by the violet and dark
blue brush strokes.

Figure 7.23 visualizes the changes in wind speeds over a @0ihierval, sampled

every four hours for the painterly visualization. Here wedstigate regions surrounding
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the eye of the hurricane and inspect them further by zoomitg the region of interest.
Notice how the legend is regenerated to match the size ofrtighistrokes being drawn on
the canvas.

As is expected that the change in wind speeds in and arourelghes much higher
than farther away from the eye. In the lower left corner of thuricane various brush
strokes colored with various shades of red depict smallereggand homogeneity in wind
speed in those regions. On zooming into the hurricane vigatan, as shown in the right
image in Figure 7.23 one can see the high windspeed valuege@py violet brush strokes
in and around the eye of the hurricane.

The trend to notice in this visualization, is the wind spealtigs in older timesteps are
higher in the lower right regions and the upward leftward imof the hurricane causes
bright yellow brush strokes to be placed in the lower rigigioa of the image. There are
small, faded green strokes among large bright yellowishgedrush strokes in that region.
The wind speed values in the eye of the hurricane are highiev@der timesteps as can be
seen in desaturated, smaller purple, violet brush strakesd the right side of the zoomed

in image around the center.

7.3 Discussion

We believe that our techniques for encoding temporal afteilchange produce an
aesthetically pleasing visualization of the underlyingadal' he ability to show variations
in time-varying data such as an increase followed by a dseread vice versa, along
with visualizing monotonic increase and decrease in a singualization are clearly the
strengths of the technique. The “visual blending” conceptks well to allow viewers to
view the visualization from a distance to get an overviewelps identify regions of change
as well as trends in the data and facilitates easy invegiigat those regions by zooming
into those regions. The automatically updated legend lgrbetps in the understanding of
the generated pointillistic visualization.

As can be expected, the amount of information that can baillgeépresented will



139
decrease as the number of timesteps being consideredsesrdae to the limited amount
of space on the canvas. We have found the number of timegstepsan be sampled and
effectively visualized to be around five. We believe that¢his an upper bound for the

number of timesteps that can be visualized to effectivebpsbhange over a time interval.

FIG. 7.24. The image depicts a closeup of humidity when the minirbrush size is 2. The
smallest brush strokes can barely be seen due to its sizeesatlddation especially around
the center and towards the bottom where there are faded hhgé Btrokes of size 2. For
a meaningful visualization, the minimum brush size must learty visible and allow a
viewer to correlate values with the legend. The brush sinethé legend for minimum
brush size = 4 are already small.

One of the limitations of our algorithm is the range of brugtes that can be effec-
tively used. Using a brush size larger than 10 ends up cingehe canvas. Using the
smallest brush size of 2 is not useful as we found that usemotadentify the desatu-
rated brush strokes at that size. This can be seen in Fig2dewhich shows the effect of
specifying the minimum brush size as 2.

Our smallest brush stroke size is of size 4 and largest of &jz@us allowing us
to effectively visualize five timesteps. We could visualirere than five timesteps and
increase our largest brush stroke to size 10, but as mewtibetre we run into visual

clutter which may cause information overload.
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Chapter 8

EVALUATION OF POINTILLISM-BASED
TECHNIQUES

This chapter describes the second of two user studies thatoweaucted to evalu-
ate our art-inspired techniques. In this particular stwdy,evaluated the effectiveness of
pointillism-based techniques in conveying change in vatagant time-varying data. To
evaluate the effectiveness we designed a user study thatedgur subjects to perform
tasks similar to that of a domain expert. User accuracy, tegeired to complete each task

and confidence in their answers were used to evaluate théllisim-based techniques.

8.1 Hypothesis

Our hypothesis was that the new pointillism-based visaébn techniques was more
effective at visualizing trends in time-varying data théamnslard snapshots and animations

based techniques.

8.2 Independent Variables

The independent variable in our case was the visualizagohrtique. The visual-
ization techniques were used to visualize a mix of synthatid real-world datasets. The

visualization technique was one of:

e Images - A panorama of snapshots for every timestep in thee dette number of

141
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shapshots used were five.

¢ Pointillism-based visualization depicting change overeti For this visualization,

the number of timesteps considered to generate the visiializwas five.

e Animation showing snapshots at each timestep one aftertttex.oThe number of
frames in the animation correspond to the number of timastghich was restricted

to five.

FiG. 8.1. Five snapshots showing the global temperature fdr dacade from 1950 to
2000. Greyscale intensity conveys the magnitude of tentyeran regions.

Figure 8.1 shows five snapshots of temperature measurediibygears. Each snap-
shot represents the temperature over a decade. Figure @3 shpointillism-based visu-

alization of the same data.

8.3 Procedure

Before we began the formal evaluation process, we ran ag@ilmriment. Pilot stud-

ies always reveal problems and in our case allowed us to fix thefore we began the full
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FIG. 8.2. A pointillism-inspired visualization of the glob@&rmperature data for the time
interval of 50 years from 1950 to 2000.

user study (Martin 2003).

8.4 Subjects

We tested our techniques with 24 subjects who had basicitaityilwith using com-
puters. We did not restrict ourselves to any age group or gendle performed full fac-
torial, within-subjects testing to evaluate our techngjuin order to balance the ordering
effects, we randomly assigned subijects to trial orders.

Table 8.1 shows the ordering used for the subjects. We piexdehe subjects with
shapshots, pointillism-based visualizations and anwnati The ordering used within each
category is provided in Table 8.2. Table 8.4 shows the etabrke for the study enumerating
the order in which each user would see each visualization.

During the user study, we followed the following procedure

1. Explain the user study to them and inform them of what iaisit

2. Obtain consent from the subjects for the user study.
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Sub ID | Snapshot| Pointillism | Animation | Pointillism (Trends)
1 1 2 3 4
2 1 2 4 3
3 1 3 2 4
4 1 3 4 2
5 1 4 2 3
6 1 4 3 2
7 2 1 3 4
8 2 1 4 3
9 2 3 1 4

10 2 3 4 1
11 2 4 1 3
12 2 4 3 1
13 3 1 2 4
14 3 1 4 2
15 3 2 1 4
16 3 2 4 1
17 3 4 2 1
18 3 4 1 2
19 4 1 3 2
20 4 1 2 3
21 4 2 1 3
22 4 2 3 1
23 4 3 2 1
24 4 3 1 2

Table 8.1. Ordering for evaluation of our techniques in cangon to standard
visualization techniques.

3. Present them with training material and let them fam#mthemselves with the task
for some time.
4. Conduct the user study and collect the results after thesg Wone

5. Present a usability questionnaire and get subjectivabfeek from the subjects.

Questions for this questionnaire are specified in the netige
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Table 8.2. In each of the four categories mentioned in taldletBe subject was shown four
different images or animations. These examples too weled/according to the order
given above.
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Table 8.3. Complete table for user evaluation of pointilibased techniques
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8.4.1 Datasets

We evaluate our techniques with a combination of synthetitraal-world data. Syn-
thetic data were generated to contain all the possible $rdrat can be conveyed using our
techniques. We generated synthetic time-varying datasetsich the values vary over
time. The datasets were generated to evaluate whether mtillm-based techniques
were able to show trends over time.

Real-world data was used to test the effectiveness of theigges and compare it
with standard visualization techniques. We evaluate athrigues on real-world datasets

that we have obtained from various sources.

e Hurricane data obtained from NASA courtesy of Dr. Lynn Spayland Dr. Scott

Braun.

e Rainfall data for the world for the last 100 years obtainezhfrNOAA's website
(NASA 2000).

e US Infant mortality per state for the last 10 years from theCEhsus bureau (CDC
2002).

e \oting results per county from 1960-2004 for the entire omt(PurpleAmerica

2004).

8.5 Tasks

The tasks were based on the kind of tasks that an applicatioraish scientist would
perform on a regular basis to correlate timestep data. Té¢lesteequire a user to identify
variability as well as various temporal trends in a timeywag dataset by examining a
visualization.

The users were asked to perform the task of identifying adtiera highlighted region

in the dataset. The user was asked to correctly identify indrehe trend in the data was
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FIG. 8.3. This set of diagrams represent the kinds of tempoealds that we tested our
techniques. The images from left to right, show an incregsandecreasing, a constant, a
decrease followed by an increase, an increase followed Bceedse. The subjects were
asked to identify a trend using such diagrams.

increasing, decreasing, increasing and decreasing, a#ogeand increasing or constant

over time.

The user was shown the following:

e Snapshots of subsequent timesteps - Baseline (standaalizétion technique)
e An animation showing the snapshots sequentially - Baseline

e Our pointillism-based visualization of the time-varyingtd.

The subject were shown small diagrams indicating the ptessind in the specified
region and the subject then picked a trend based on theinaism. The time required
to complete the task, accuracy and confidence of the subeittsir answers were used to

evaluate the visualization techniques.

8.5.1 Evaluation questions

The questions in the user evaluation were based on idemgifirends. We asked

guestions such as:

e Based on the presented visualization, identify the trenthéndata? Does it seem
to be monotonically increasing, monotonically decreasamgincrease followed by a

subsequent decrease, a decrease followed by a subsequreasmor no change?

¢ In the shown visualization, identify regions of varialiland high change?
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8.5.2 Subjective evaluation

The subject was requested to fill out a questionnaire whereuglability was evalu-
ated. Their answers were obtained using a scale from 1 @a®eg) to 9 (hard/disagree).

Questions asked in the questionnaire were as follows:

1. Were the questions asked for each evaluation straigtefol?

2. Was it easier to perform simple tasks such as identifyiagability/change using

standard visualization techniques (snapshots and aming#

3. Was it easy to perform tasks such as identifying trendsgusiandard visualization

techniques (snapshots and animations) ?

4. Could you perform simple tasks such as identifying a gitigind using pointillism-

based techniques?

5. Was it easier to perform tasks such as identifying tremstsgypointillism-based tech-

niques?

6. Didyou prefer the pointillism-based techniques ovestiamdard snapshots/animation

techniques?

8.6 Dependent Variables

We consider theiser performance timeiser accuracyandconfidenceo evaluate our
techniques. User performance time is the time required ngptete each task. We measure
this for each task in the user study. The other variable thabkes effective analysis iser
accuracy Based on the answers of the subjects, we can compute whbéase of our
techniques helped them answer the questions correctly.|Ser@easured the confidence
of the subjects in their answers. In order to computeuber subjective satisfactipwe

ask subjects to rate their experience on a scale of 1-9 forietyaf questions.
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8.7 Conducting the user study using a web browser

The user study was conducted using a web browser. As we hdmbio\sdeos to the
subjects, we used Riva Free FLV encoder (RIVA 2006) to en@ddiles into flash files
that can be shown to the viewer in the browser setting. Fi§utés a screenshot of the first
screen shown to the subjects. It gives an overview of the sts€lly to the subjects. After

answering any other questions that the subject had, werotitaiconsent of the subject to

continue the user study.

A User Study - Pointillism-based Visualization - Microsoft Internet Explorer

v_ace

| Send tow (@ settings

User Evaluation

Alark Joshi and Penny Rheingans
University of Marviand Baltimore County

Please enter the user ID assigned to vou.

User Number: | i
Thank you for agreeing to participate in our survey.
Before we start, we'd like for you to read the informed consent information below. Informed consent refers to the vohntary choice of an individual to participate in research based on an accurate and
complete understanding of its purposes, procedures, risks, bensfits, and alternatives. The survey will be completely anonymous and vohmtary. We will not identify any indrviduals who plan to participate in this
survey. If you have any questions before completing this survey, please contact the investigators, Alark Joshi by phone at 410-455-8935 or by e-mail at alark1@umbc.edu
Informed consent:
You must be of 18 years or older to participate in this survey.

The study is about to evaluate the effectiveness of our pontillsm-based techniques to visualize trends in time-varying data There is no right answer to any question, and the data analysis will help us determine
whether our techniques are effective at conveying change over time.

There are no known risks involved in completing the survey.

There are no tangible benefits for completing the survey, but your participation will help us understand more about the effectiveness of our technigues for feature tracking. The survey may take about 30/35
minutes to complete, and time loss may be the only loss you suffer.

Participation is entirely voluntary; you may at any time withdraw from participation. There is no physical mjury risks involved with this survey.
All data obtained will be strictly confidential There is no way for us to find out who you are. and your data will not be shared with any other parties under any circumstance.

This study has been reviewed and approved by the UMBC Institutional Review Board (IRB). A representative of that Board, from the Human and Animal Research Protections Office, is available to discuss
the review process or my rights as a research participant. Contact information of the Office is (410) 455-2737 or HARPO @umbc.edu.

Atfter reading the consent items, please proceed to the questionnarre on the next page. Click "Next" to get started with the survey. If you'd fike to leave the survey at any time, just click "Exit this survey”.

[[JPlease click the checkbox to electronically indicate the consent

Click here to Continue

FIG. 8.4. A screenshot of the welcome screen that was shown guthjects. The subjects
were explained the user study and any other questions thgyhave were answered before
obtaining their consent.

Figure 8.5 shows a screenshot of a screen that the subjectsea user was asked
to identify a trend or variability in the data using one of thsualization techniques. The

user then observes it and provides an answer. The user disates a confidence level in
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their answer.
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L Showa hece are live suspsbots in fime depicling the global Lemperature in e moodl of June over Use Jast live decades, Do you thiuk Uie deunperature in Australia s inceeasing, decreasiug, iuereasiog
aul Lhen decreasing, Becrewsing aud icreasing oz staying reasonably constant over?

Fana LRAC LSS0 Tuze 1255 J350

Hiek e chiire:

7 INMIA=]

Tlaw confident are ¥ou of rour answer?

FIG. 8.5. A screenshot of a sample screen that is shown to thedsbijThe subjects were
shown images and they were asked to indicate the overallgehtirat they can visually
identify in the data. They were also requested to give thaifidence level in their answer.

8.8 Results

The ability of the subjects to visualize variability in a reqg over time as well as the
ability to identify specific temporal trends was evaluatétigh Variability implies large
amounts of changes in a region over time whereas low vaityabiiplies static values that
do not seem to change over time. Our techniques can conveusaemporatrends A
temporal trend could be increasing values of rainfall ingioe over a given time interval.

To analyze the effectiveness of our techniques we usedtstatitechniques to ana-
lyze the accuracy, overall time required to complete a tasHl,the confidence that subjects
had in their answers. The mean and standard deviation ofrtbesen the answers for
each visualization shown to the subjects was used to determhether the use of our

techniques helped the subject complete the task more aebuiguickly and with reason-
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able confidence. To compare the three different visuabpatlypes we use the statistical
testAnalysis of Variance (ANOVAThis test allows us to compare the accuracy, timings
and confidence obtained from the three groups (snapshatsa@ons and pointillist tech-
niques). The test begins with a null hypothesis that the tipeiatillism-based techniques
provides no speedup in completing tasks, no improvementcaracy and that the users
feel equally confident in their answers for all techniquese $tatistical measure of signifi-
cancep evaluates the probability of the result agreeing with thieimgpothesis. For values
of p < 0.05, the null hypothesis is rejected and it implies that the dggomtillism-based

techniques makes a difference.

8.8.1 \Variability results and analysis

The ability of the subjects to be able to notice variabilitya region over time was
evaluated and analyzed.

Table 8.4 shows the mean and standard deviation for the asaracy over all users
over all questions under that visualization category. Tleamaccuracy for the pointillism-
based techniques was higher than that of animations as svatlagpshots. Figure 8.6 shows
a graphical representation of the same. It shows that sisbyeere more accurate when
using the pointillism-based techniques as compared toséiedp or animations. The snap-
shots as well as the animations require the user to correleirges and observe a large
region with continuously changing values over time. Oumngiism-based technique pro-
duces a visual representation that obtains contributioom &ll the intermediate time in-
tervals. It highlights regions of low as well as high vari@piallowing the subjects to
accurately complete the task.

Table 8.5 shows the result of analyzing the user accuracygusBNOVA. The com-
puted probabilityp of this result assuming the null hypothesis was less thaR9.T his
implies that the result wastatistically significanand that the null hypothesis was rejected.
The pointillism-based techniques increase the abilityuder to accurately visualize trends

in time-varying data.
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Type of visualization. Mean | Standard Deviation
Snapshots 75.556 15.967
Animations 81.481 12.346
Pointillism 88.889 25.514

Table 8.4. This table shows the mean and standard devidtitve accuracy of the users.
The pointillism-based technique helped subjects compihetéask more accurately.

100
920

80 1 -
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Snapshots Animations Pointillism

FIG. 8.6. This graph shows that the overall accuracy of the stbjgas higher for
pointillism-based visualization as compared to snapshioésimations.

Source of variationn Sum of square$ Degrees of freedom Mean squares F
between 2410. 2 1205.0 3.719
error 2.5274E+04 78 324.0
total 2.7684E+04 80

Table 8.5. This table shows the result of performing the AKRQ@¥st on the accuracy per
user. The probability of this results, assuming the nulldtiaesis, was less than 0.029.
This implies that the result was statistically significantlahe null hypothesis that the
pointillism-based techniques do not increase the accuracpmpleting a task, was re-
jected.
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Type of visualization Mean | 95% confidence interval Standard Deviation
Snapshots 102.67 79.36-126.0 92.0
Animations 91.533 68.23-114.8 40.0
Pointillism 65.585 42.28-88.89 32.2

Table 8.6. This table shows the mean, 95% confidence inskeavalind the mean as well
as standard deviation for the timings results.

Source of variationn Sum of square$ Degrees of freedom Mean squares F
between 3.2667E+04 2 1.0889E+04 | 3.316
error 3.4147E+05 78 3283.0
total 3.7414E+05 80

Table 8.7. This table shows the result of performing the AR@¥&st on the time required
by the users to complete a task using all the techniques. Tdigpility of this results,
assuming the null hypothesis, was less than 0.023. Thisesfilat the result was statisti-
cally significant and the null hypothesis that the poirgitirbased techniques do not affect
the speed of the subjects in completing a task, was rejected.

We also measured and analyzed the time required for sulipectamplete each task.
Table 8.6 shows the mean and standard deviation values dotirtings results for the
subjects. Figure 8.7 shows a graphical representationeofithing results. In this case,
the subjects required much less time to complete the tastrapared to snapshots as well
as animations. In the case of snapshots, this may be due tacthinat the subjects have
to correlate values and interpret changes using all thessieap and the color scale. The
animations technique seems to allow users to identify lditya faster but not as fast as
pointillism-based techniques. Therefore, not only didgbbject require less time to finish
the task using pointillism-based techniques but also wereeraccurate as can be seen in
Table 8.4 and in Figure 8.6.

On analyzing the timings over all the users using ANOVA asxshn Table 8.7, we
found that probability of the null hypothesis being true was 0.023. Since the pridibab
was less than 0.05, the result wsatistically significant This implies that the pointillism-
based techniques aid the ability of the subjects in comqgdhe task quickly as compared
to snapshots or animations.

Along with accuracy and time required per user per task, weested the subjects
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FIG. 8.7. This graph shows the mean time required by subjectsrtptete the tasks using

shapshots (A), animations (B) and pointillism-based teqines (C). The errors bars show
the 95% confidence interval around the mean. The pointithesed techniques takes al-
most 35 seconds less compared to snapshots and 25 secamsdesnpared to animation.
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Type of visualization Mean | 95% confidence interval Standard Deviation
Snapshots 3.5407 3.228-3.854 0.796
Animations 3.4889 3.176-3.802 0.759
Pointillism 3.711 3.398-4.024 0.890

Table 8.8. This table shows the mean, 95% confidence inskeavalind the mean as well
as standard deviation for the confidence results.

Source of variation] Sum of squares Degrees of freedom Mean squares F
between 8.080 2 2.693 3.663
error 76.47 78 0.7352
total 84.55.0 80

Table 8.9. This table shows the result of performing the ANMQ¥st on the confidence
per user per answer. The probability of this results, asegrtiie null hypothesis, was less
than 0.015. This implies that the result is statisticallyngicant and the null hypothesis
that the pointillism-based techniques do not increasedberacy in completing a task, was
rejected.

to state their confidence in their answers for each quesfiable 8.8 shows the mean and
standard deviation in user confidence for all the three Vizait#on techniques. Figure 8.8
shows a graph depicting the confidence. Users were more eonfadbout their answers
for pointillism-based techniques as compared to the srpsit animations based tech-
niques. The pointillism technique was ideal for visualgirariability in data and a single
representative image can convey low as well as high vaitab@®ur pointillism-based tech-
niques draw the viewer’s attention to regions of high vatigband seem to instill more
confidence in the subjects as compared to snapshots or anisat

Performing the ANOVA test on the confidence over all the amsvae shown in Table
8.9, the computed probability of the null hypothesis being true was 0.015. Sipce
0.05, the null hypothesis was rejected andtatistically significantresult was obtained.
This implies that the increased user confidence in poisitiitbased techniques was highly

unlikely to have occurred by chance.



157

40 T =

38 =]
L L o Legend
A — Snapshots
36 = B — Animation
C — Pointillism
Confidence .
1 — lowest [ n
5 - highest 4
34 - = o
32 - i
A B C

FiG. 8.8. This graph shows the confidence the subjects had inghswers. As per the
graph, the users seem more confident of their answers wheg peintillism. They seem
to be more confident of their answers in the case of snapshaismapared to animations.
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Type of visualization Mean | Standard Deviation
Snapshots 66.667 34.174
Animations 74.275 22.128
Pointillism 77.875 25.514

Table 8.10. This table shows the mean and standard deviafitime accuracy of the
users when visualizing temporal trends. Subjects seem todye accurate when using
the pointillism-based technique as compared to snapshdterdy marginally better when
using animations.

8.8.2 Trends results and analysis

The ability of the subjects to visually correlate and idBntiends in data was eval-
uated. The accuracy, time required per task per techniqdett@ user confidence was
measured and analyzed.

We analyzed whether the subjects were able to accuratetyifigiag trends in the
time-varying data using our pointillism- based technigaesompared to snapshots and
animations. Table 8.10 shows the mean and standard deviatithe accuracy of the
subjects. Figure 8.9 shows a graph of the same. The accusity pointillism-based
techniques was higher than snapshots and only marginaghehithan animations. Users
seem to be able to visualize trends in data well using ananatioo.

Performing the ANOVA test on the user accuracy over all trersisver all the tasks,
we get the results as shown in Table 8.11. The computed pitdpaiof the null hypothesis
being true was 0.024. Singe< 0.05, the null hypothesis was rejected andtatistically
significantresult was obtained. This implies that the pointillism-dxs$echnique helps
increase the user accuracy.

Additionally, the time required per user to complete eadk f@er visualization tech-
nique was measured and analyzed. Table 8.12 shows the méantaswdlard deviation of
the time required for each visualization technique. Figid® shows a graph showing the
mean and the 95% confidence interval around it. The time redquor subjects to find
trends was significantly lower than that using snapshotsionations. The ability to visu-

alize values from various timesteps and correlating theansimgle image seems to provide
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FiIG. 8.9. This graph shows the accuracy of the subjects when letimgp tasks requiring
them to find temporal trends in the data. Subjects seem to e atcurate when using
pointillism-based techniques as compared to snapshotaranshtions.

Source of variationn Sum of square$ Degrees of freedom Mean squares F
between 3350.2 2 1402.6 2.716
error 3.2154E+04 78 472.2
total 2.9823E+04 80

Table 8.11. This table shows the result of performing the MA@est on the user accuracy
per user per answer. The probability of this results, assgrthie null hypothesis, was less
than 0.024. This implies that the result was statisticatipicant and the null hypothesis

that the pointillism-based techniques do not increasec¢beracy in completing a task, was
rejected.
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Type of visualization Mean | 95% confidence interval Standard Deviation
Snapshots 101.00 74.06-127.9 105
Animations 92.719 65.78-119.7 40.9
Pointillism 61.44 34.20-88.08 45.1

Table 8.12. This table shows the mean, 95% confidence indeaavaund the mean as well
as standard deviation for the timings results.

Source of variationn Sum of square$ Degrees of freedom Mean squares F
between 2.3886E+04 2 1.1943E+04 | 2.416
error 3.8563E+05 78 4944.0
total 4.0952E+05 80

Table 8.13. This table shows the result of performing the AMN@est on the timing per
user per answer. The probability of this results, assumimegriull hypothesis, was less
than 0.046. This implies that the result was statisticatipiicant and the null hypothesis
that the pointillism-based techniques do not increase jieed in completing a task, was
rejected.

subjects with sufficient information to identify trendstias

The time required per user over all the answers was analyzied the ANOVA test
as shown in Table 8.13. The computed probabjitf the null hypothesis being true was
0.046. Sincey < 0.05, the null hypothesis was rejected anstatistically significantesult
was obtained. This implies that the pointillism-based teghe helps subjects complete a
task faster.

The user confidence per task was obtained and analyzed. §ddlshows the mean
and standard deviation for the confidence that the usergttaeir answers for identifying
trends. Figure 8.11 shows a graph of the same. The subjectsmae confident in their
answers for animations and snapshots as compared to thellgombased techniques.
This can be attributed to the fact that the pointillism-lebisehnique was unfamiliar to the
subjects and so even though their answers were correct, agesified, the subjects were
just less confident as compared to animations and snapshots.

The ANOVA test results for the confidence answers are showrable 8.15. The
computed probability of the null hypothesis being true was 0.078. Sipce 0.05, the null

hypothesis cannot be rejected and so we cannot deduce tiadistically significant result
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FiG. 8.10. This graph shows the confidence the subjects hadimaim®vers. As per the
graph, the users seem more confident of their answers wheg peintillism. They seem
to be more confident of their answers in the case of snapshaismpared to animations.

Type of visualization Mean | 95% confidence interval Standard Deviation
Snapshots 3.4370 3.119-3.755 0.814
Animations 3.711 3.393-4.030 0.890
Pointillism 3.1926 2.874-3.511 0.786

Table 8.14. This table shows the mean, 95% confidence indeavaund the mean as well
as standard deviation for the confidence results.
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FiG. 8.11. This graph shows the confidence the subjects hadimatm@vers. As per the

graph, the users seem more confident of their answers whag asimations and snap-
shots than when using pointillism. This could be attributethe fact that the users were
unfamiliar with the pointillism-based technique as conggkio animations and snapshots.
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Source of variation] Sum of squares Degrees of freedom Mean squares F
between 3.634 2 1.817 2.631
error 53.87 78 0.6906
total 57.50 80

Table 8.15. This table shows the result of performing the AMA@est on the confidence per
user per answer. The probability of this results, assunhegiull hypothesis, was less than
0.078. This implies that the result was not statisticalgngicant and the null hypothesis
cannot be rejected.

was obtained. The result indicates that the high confidemsmapshots and animations
as compared to the pointillism-based technique could haeeirced by chance and no

technique clearly instills more confidence as comparedemther techniques.

8.9 Discussion

Analyzing the results from the user study provided someintsiinto the effectiveness
of our pointillism-based technique. The aim was to evalwdtether the technique was
useful in conveying variability in time-varying data and ether it was able to convey
trends in the data.

Particularly, in the case of visualizing variability, ouriptillism-based technique may
have worked more effectively as it samples all the timesiefise time interval to create a
visualization. This ensured that any kind of variabilitysaaaptured effectively and our hy-
pothesis was validated by the fact that the subjects weretalperform variability-based
tasks more accurately and quickly as compared to snapsheatsimations. In the case
of snapshots, it can be explained by the fact that the subfente to observe each and
every snapshot, correlate the data values in that snapstiothwe color legend and then
infer variability or identify a pattern from it. This takesare time than looking at a sin-
gle, comprehensive image. Comparatively in the case of aioms, users required less
time than snapshots since our visual system is adept atifiylagtvariability. The fact
that the subjects had to look at the complete animation befay could answer questions

might have affect the time required by the subjects to coteglee task. This is naturally



164
a disadvantage for animations when visualizing time-vayydata over a larger time in-
terval. Considering that our pointillism-based technigaa effectively visualize only five
timesteps as of now, this problem of viewing time-varyingadaver a larger interval still
needs to be addressed.

When the users were asked to identify trends in the data wingointillism-based
techniques, they performed marginally better than aniomatand much better than snap-
shots as regards accuracy and speed, but were not as coiifidlesir answers. This may
be due to the fact that these techniques are new and the userswat sure whether they
were reading the visualizations correctly. This was sufgabby their answers in the sub-
jective evaluation, where a majority of them said that it ess straightforward to identify
trends using our pointillism-based techniques. Congndetinat they thought that it was
harder to identify trends using snapshots and animatiopiesithat the task was hard to
begin with. The fact that their accuracy was reasonably higilies that they were just not
confident of their correct answers.

In the case of identifying specific trends, the users peréoroe did not vary by the
trend they were asked to identify. Users surprisingly wdre #o easily identify the harder
trends such as increase followed by decrease as well asasded@lowed by an increase.
From our initial experience, identifying more complex tisrseemed to be a problem but
over a larger population of the user study, it did not affeet $ubjects and they did equally
well in identifying complex trends as well as simple monataily increasing, decreasing
or constant trends.

Our subjective evaluation results implied that the usezégpred to use the pointillism-
based techniques over snapshots and animations to visuhézvariability. They found
it hard to identify trends in data using snapshots as welhasations. Pointillism-based
technique was found to be hard, but not as hard as the othefrvlze final question, where
they were asked whether they preferred the pointillismebddaschnique over snapshots and
animations, a score of 3.1 was received on a scale of 1 (agr&dilisagree). The accuracy,

timings and confidence along with the subjective evaluatidicates that the users seem
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to benefit from the use of pointillism-based technique in ptating tasks for identifying
variability and trends in time-varying data. Visualizimgnds in data was also accurately

done even though users had less confidence in their corrsseas.



Chapter 9

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have presented novel art-inspg&elniques to visualize time-
varying data. Using our techniques, application domainsusan visualize time-varying

data more effectively.

9.1 lllustrative cues aid visual tracking

Time-varying data visualization using snapshots and atmims.of snapshots are lim-
ited at conveying change in position as well as change iibate values. For time-varying
data, where the features are three-dimensional and mowag tone, our illustration-
inspired techniques are useful in helping a user to visuadigk a feature over time.
We have identified and applied our techniques for visuadizime-varying data using our
speedlines, flow ribbons, opacity-modulation and strobfeaettes techniques to convey
temporal change in feature positions over time.

Our user study helped us evaluate the effectiveness of ohnigues in terms of the
accuracy of the users conducting simple tasks, the amouimefrequired by the users to
complete the task and confidence in their answers. We fouatdotlr techniques helped
subjects complete the task faster, more accurately andrthéymore confidence in their
answers using our techniques. Users preferred the use elilspes over opacity-based
techniques as in some cases they seemed to misinterpretysipased techniques as data

from the same timestep.

166
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In addition to identifying new techniques, we identified agldntent-based simplifi-
cation techniques for curves and paths. The ability to garesimplified representations
based on the need of the user was novel and can be appliedi@usaomains such as
viewing hurricane paths, driving directions, maps andsiftative visualization of paths in

three-dimensional feature visualization.

9.2 Hurricane investigation through illustrative techniques

The application of illustration-inspired techniques tsualize the time-varying data
from hurricanes Bonnie, Isabel and Katrina led to interggtihallenges as well as solu-
tions. Our techniques have facilitated the study of theibane and allowed visualization
of internal structures of the hurricane. Our main contridmitwas to demonstrate the use
of illustration-based techniques, in a domain where 2Ditiathl visualization techniques
have been used, to help understand the physics behind thempleaon and assist the in-
vestigation of conditions leading to the intensificationdigsipation of a hurricane. The
silhouette computation method helped in the identificabbwertical wind shear which
provides answers to crucial questions concerning the weaggeand eventual dissipation
of a hurricane. We provided domain experts with novel vigadions that provided tem-
poral information regarding previous timesteps.

An expert evaluation was conducted to identify the effetess of our techniques.
The experts mostly preferred the illustration-inspirecht@ques over standard visualiza-
tion techniques. Visualizing energy flow through the enkitgricane system and its de-
pendencies on assumptions about the coupling of the stotitmetocean can be further

investigated to know more about the evolution of a hurricane

9.3 \Visualizing change in attribute values using pointillsm

For visualizing changes in value variant time-varying datee introduced novel

pointillism-inspired techniques. Such changes in valielard to visualize using stan-
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dard methods and generally end up giving only an idea of divelmange. Our technique
uses a unique method of sampling every timestep and usicgntsibution in the process
of creating a painterly visualization. We take advantaggefcolor mixing theory initially
proposed by Rood et al. (Rood 1879) and later used by Seutds ipaintings (Kemp
1990).

We apply our techniques to various domains such as Infantatitgrover a period
of eight years, US presidential election results from 12604 for every county, global
rainfall over the 1900-2000 period and the domain of hurresa

A user study was conducted to evaluate the ability of ourfibgm-based techniques
to convey change (variability) over time as well as visualiends in the data. The user
study indicated that users were clearly able to visualizabdity faster than snapshots and
animations and with increased accuracy. The users werdaldentify specific trends in
the data using our pointillism-based technique faster 8r@pshots and animations. The
accuracy was marginally better than animations but thesusere less confident of their
correct answers than in the case of animations. This may lbese due to the fact that the
pointillism-based techniques were new compared to the aimms technique which the

users were more familiar with.

9.4 Future Work

There are several directions for future work. In the casdlastration-inspired tech-
niques, identifying novel illustration-based techniqtiest can provide more information
to the viewer could prove greatly useful and could add to the fechniques that have been
introduced here.

In the field of hurricane visualization, many other techréggan be identified by close
collaboration with domain experts. In many cases the swigtio their problems may not
require a novel visualization technique, but it can makeggiipact in what the domain
expert can see through the visualization.

In the case of pointillism-based visualizations, usergesged that it was hard to dis-
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tinguish brush strokes and correlate them with those in #hetie. A perceptually constant
color scale such as the LAB or LUV color space could be usegausof the HSV color
space being currently used. Perceptually constant cotdesenay help users identify and
correlate various brush colors more correctly. Using défe shapes for each timestep
was another user suggestion that could work since that adither way for the viewer to
disambiguate closely placed brush strokes that look sinfleom a distance all the brush

strokes will blend as long as they are placed close enough.
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