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ABSTRACT

Title of Thesis: Art-inspired techniques for visualizing time-varying data

Alark Prakash Joshi, Doctor of Philosophy, 2007

Thesis directed by: Dr. Penny Rheingans, Associate Professor
Department of Computer Science and
Electrical Engineering

Time-varying data is huge and contains specific features of interest to an application

expert. Visualizing time-varying data using standard visualization techniques such as snap-

shots or animations is limited in its ability to convey change and draw the users attention

to a region of interest.

We present novel visualization techniques for visualizingtime-varying data that con-

veys change over time in a single image. The aim is to provide temporal context to the do-

main expert using art-inspired techniques. Illustrators and painters have conveyed concepts

through their work using illustrative cues. Time-varying data in which three-dimensional

features are moving over time, can be effectively visualized using illustrative techniques

such as speedlines, flow ribbons, strobe silhouettes and opacity-based techniques. We ap-

plied these techniques to computational fluid dynamics dataand evaluated the effectiveness

of our techniques with the help of a formal user study. Our illustration-inspired techniques

were also applied to the field of atmospheric physics, where we generated novel hurricane

visualizations that allowed our collaborators to obtain further insight into the evolution and

intensification of a hurricane.

For effectively visualizing time-varying data such as infant mortality over eight years

or global rainfall over an entire century, we developed a novel pointillism-based technique.

This technique was inspired by paintings by Seurat who used the visual color blending

theory by placing brush strokes close to each other. We applied techniques from pointillistic

paintings to convey variability in time-varying data as well as convey trends over time in

a single image. The formal user evaluation conducted to evaluate these techniques gave us



insight into the strengths of our techniques and led us to theresult that users though correct

were less confident of their answers.
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2.1 This figure shows some innovative visualization techniques that lead to ex-

pressive visualization of medical volumetric data. The topleft image shows

a boundary and silhouette enhanced representation of an abdominal CT
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2.5 This is an image of a novel technique to visually represent driving direc-

tions data. Easy-to-use driving directions with context information were

generated and simple cognitive cues were provided to the user. The user

study conducted confirmed the effectiveness of their clutter-free visualiza-

tion of driving directions (Agrawala and Stolte 2001). . . . .. . . . . . . 20
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2.9 The left image shows a visualization of multi-valued vector data being visu-

alized using line integral convolution (LIC). The multi-valued vector data is

visualized with separate colors allowing for visual blending instead of col-

oring it with a resultant/blended color (Urnesset al. 2003). The right image
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use of pointillism (Saunderset al. 2005). . . . . . . . . . . . . . . . . . . . 26
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traversed by the bird and intermediate position indications (MacCurdy 1954). 29
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3.3 This image depicts the motion of a feature in an experimental data set over
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3.6 This illustration uses speedlines to depict the runningmotion of the man.

The lines get thinner and lighter as they approach the running man. Illus-

tration provided courtesy of HarperCollins publishers andScott McCloud

(McCloud 1994). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.11 This set of images highlights the difference between various types of flow

ribbons. In their simplest form, flow ribbons are merely pairs of speedlines

that convey the change to the viewer. In the middle figure, theother ex-
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3.16 The image shows strobe silhouettes depicting motion over time. The down-
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3.21 The rotational motion of the feature in the experimental dataset is conveyed

using a combination of opacity-based techniques and flow ribbons. This

figure conveys the actual motion of the feature whose snapshots are shown

in Figure 3.3. This motion is not at all obvious by looking at the snapshots

in Figure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xvi



4.1 The image above displays increasing simplification of the coastline of Sar-

dinia from left to right. The rightmost image could be used toconvey the

overall structure of Sardinia whereas for the purpose of coastal shipping

the leftmost detailed map would be more appropriate (Robinson and Sale

1969). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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the viewer are retained almost faithfully. . . . . . . . . . . . . . .. . . . . 54
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4.6 The top image depicts the unsimplified curve in blue and the simplified

representation in red. The center of interest is marked in the form of a big

green point at the center of the image. A graph depicting the center-of-

interest based simplification function explains the situation better. . . . . . 56

4.7 The original curve is depicted in blue and the simplified representation is

in red. High curvature points are preserved in the simplifiedrepresentation. 58
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4.15 The top image shows the original path in blue and the simplified paths in

red. The naively simplified representation is shown in the second visual-

ization from the top. Much detail near the source and destination is lost in

this representation. The third visualization shows a semantic simplification

where detail near the destination is preserved whereas the remaining path is

simplified. Such a visualization is useful since one is familiar with getting

to the nearest freeway from Inez house. The last visualization image shows

a path where detail is preserved near gas stations (shown as green circles

near the path). These visualizations are generated from actual driving di-

rections obtained from Google Maps. . . . . . . . . . . . . . . . . . . . .64
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5.5 Another screenshot of a sample screen that is shown to thesubjects. Here

the subjects were shown an animation and were asked to indicate the di-

rection of motion of a particular feature moving over time. They were also

requested to indicate their level of confidence level in their answer. . . . . . 78
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5.9 In this graph, the accuracy of the users for synthetic data versus real world

data is compared. As can be seen, the accuracy for synthetic data is high

for both with and without illustration-inspired techniques. The accuracy for

real world data without illustration-inspired techniquesis very low whereas

the use of illustration-inspired techniques when applied to real world data
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6.6 The top image is a volume rendered image of the vorticity,rendered in

green, and vertical velocity, rendered in red, of the first time of hurricane

Bonnie. Dark red regions are regions of strong positive vertical velocity

and the bright green regions are high positive vorticity regions. The bot-

tom image depicts an illustration-style rendered image of the same positive

vorticity. It provides a three-dimensional representation that clarifies that
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6.11 This image depicts the use of opacity-based techniquesto convey the trans-

formation of a semi-organized cluster of storms into a category 5 hurricane.

The transformation from the topmost faded rendition of the hurricane at

timestep 10 to the bottommost rendition is at timestep 71 captures the tem-

poral nature of the evolution. . . . . . . . . . . . . . . . . . . . . . . . . .104
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wards and starts turning rightwards. The thickness of the speedlines re-
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6.17 This image shows four snapshots of cloud water being rendered in hurri-

cane Katrina at four different timesteps. The direction of motion is not

easily apparent by just looking at this set of images. . . . . . .. . . . . . . 111

6.18 This image depicts a 2D visualization showing isocontours for cloud water

in hurricane Katrina at a single level. . . . . . . . . . . . . . . . . . .. . . 113

6.19 This image depicts a 2D visualization showing hedgehogs for visualizing

wind vectors in hurricane Katrina at a single level. . . . . . . .. . . . . . . 114
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7.4 This schematic describes our brush selection, color selection and brush

placement approach. The brush size decreases as the temporal distance of

the selected timestep from the current timestep increases.As can be seen in
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7.8 The image depicts a synthetic time-varying dataset visualized using pointil-

listic techniques with information from five timesteps. Thesynthetic data

was created to highlight the possible variations in time-varying data. The

values in the alphabet “V” are monotonically decreasing, in“I” are con-
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Chapter 1

INTRODUCTION

Visualizationis the process of converting data into a visual representation. The aim

of visualization is to provide application-domain expertswith insight into their data. Vi-

sualizing medical data obtained usingComputed Tomography(CT) andMagnetic Reso-

nance Imaging(MRI) scans has become an integral part of the way doctors diagnose and

plan treatments. Using two- and three-dimensional visualizations, radiologists can visually

identify anomalies and provide advice to specialists for further medical treatment. Sim-

ilarly, scientists performing large-scale time-dependent experiments use visualization as

an aid to understand their experiments. This can help researchers to preempt or restart

experiments with a different set of input parameters, if undesirable results are observed.

In climatology, researchers study climate and large scale weather patterns to get an im-

proved understanding of the science behind the same. For example, an atmospheric physi-

cist would prefer to visualize and track a hurricane or a typhoon as it develops over time

instead of just looking at snapshots taken at regular intervals. The transformation of fea-

tures within the phenomenon, as well as the overall direction of motion, can be invaluable

to an expert.

The data generated from these experiments, scans and simulations can be better un-

derstood by visualizing it to get some insight for exploration or diagnosis purposes.Time-

varying dataare three dimensional snapshots of a process/phenomena captured at regular

time intervals. Domains such as computational fluid dynamics, weather forecasting and

medical imaging (ultrasound/fMRI) generate time-varyingdata.

1
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Time-varying data can be loosely divided into the followingcategories based on the

questions that domain experts try to answer using visualization:

• Fields such as computational fluid dynamics have datasets that contain three dimen-

sional features that move and morph over time. The path traversed by these three

dimensional features in time-varying datasets are of considerable interest to scien-

tists. Visually or computationally tracking these features is a typical task undertaken

by domain scientists. Scientists correlate the features and their motion to understand

the path taken by one or more features of interest. The task ofvisually tracking

features is further complicated by occluding features and their change in shape over

time. We call this type of datapositionally variantdata.

• In some cases, the data is time-varying only in the form of theattribute that is varying

over time (e.g. global rainfall readings for a decade). In this case, the more common

tasks include identifying anomalies as well as observing trends (incremental or decre-

mental) that need further investigation. Weather and climate researchers investigate

such trends and anomalies on a regular basis to understand the overall change in the

values over the interval. One such example could be visualizing the variance in tem-

perature values over the North American region over the lastcentury. These kinds of

datasets with varying values of a quantity such as temperature or rainfall are referred

to asvalue variantdata.

Visualization of time-varying data has been a challenging problem due to the complex

task of assimilating the undergoing changes. A researcher may be interested in multiple

regions or features of interest that are all changing/moving over time. Visually tracking and

understanding the changes in data can be impossible in certain cases and could potentially

overload the cognitive abilities. It may even lead to incorrect inferences being drawn from

the knowledge gleaned.

The naı̈ve approach to visualizing time-varying data is to generate a snapshot for each

individual time step using standard visualization. This process of generating and observing
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FIG. 1.1. These are a set of snapshots from successive time stepsof a volume. As is evident
from looking at the snapshots, it is very hard to correlate and track a particular feature over
different time steps.

snapshots relies heavily on the user’s ability to identify and track regions of interest over

time. At the same time, the number of snapshots generated canbe quite high (100-5000),

requiring considerable effort for the user to visually track features. Figure 1.1 shows one

such example with only five snapshots of timesteps showing the motion of three features in

a time-varying dataset. As can be seen, the direction of motion of the three features is not

easily understood by just looking at the snapshots.

Additionally, some practitioners inspect animations to visualize and get insight into

their time-varying data. But, with animations too there areknown limitations such as inat-

tentional blindness which may affect the visual tracking capabilities of a practitioner.

1.1 Illustrations

The human visual system is a complex and intricate system. Illustrations have been

used extensively to convey information not easily conveyedby photographs (Hodges 1989).

Illustrators are well aware of our visual and cognitive abilities. They purposefully produce

illustrations that convey important information to the viewer by adding cues that will attract

attention of the viewer.

1.1.1 Conveying motion through illustration

Snapshots are of limited use as they produce a pictorial representation of the current

timestep without any context regarding the previous or subsequent timestep. The user is
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required to mentally complete the motion by looking at multiple snapshots. In the case

of viewing an animation, research in psychology has proven that human beings can only

remember information from five to ten frames before the current frame. An animation

of time-varying data snapshots containing over 100 frames will be of limited use and its

effectiveness will heavily depend on the skills of the expert examining the animation.

Due to the fact that an application domain expert is primarily focused on being able

to visually track features as they move over time, neither ofthese techniques particularly

help in that task. Occlusions by other features or limited memory in the case of visualizing

more than a few timesteps of a huge dataset, can severely limit the user’s capability to track

a feature of interest over time.

FIG. 1.2. This illustration shows a ball that has bounced in the past. The path traversed by
the ball is conveyed using simple lines in a style similar to what illustrators would do to
convey the motion of a cartoon character.

Illustrations communicate concepts to a reader in an easy tounderstand manner. Par-

ticularly, many children’s book illustrators convey concepts using very few lines and sim-

ple, meaningful shapes. Figure 1.2 for example shows an illustration similar to ones we

may see in a children’s book. It shows an image of a ball augmented by a line tracing an

approximate path that the ball has traversed to get to its current location. It conveys past

positions of the ball, where it originated from and most importantly gives a dynamic quality
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to the static image of the ball. Many such examples imply thatillustrations and comics in

particular are very effective at conveying motion or changein position over time in a subtle

yet effective manner.

FIG. 1.3. This figure contains four illustrations depicting themotion of water as it is flows
around an obstruction. Da Vinci draws similarities to the properties of hair as he discusses
the flow of water around and over obstacles in its path (MacCurdy 1954).

Leonardo Da Vinci used such techniques to convey motion overtime. He used such

techniques frequently in his scientific illustrations to convey change over time. He de-

scribes Figure 1.3 as follows:

“Observe the motion of the surface of the water, how it resembles that of hair, which
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has two motions - one depends on the weight of the hair, the other on the direction of the

curls; thus the water forms whirling eddies, one part following the impetus of the chief

current, and the other following the incidental motion and return flow.” He used illustration

principles to effectively convey concepts such as eddies and motion of water around an

obstacle.

Illustrators have used numerous techniques to depict change over time in a single im-

age (McCloud 1994). We are all familiar with comics where theillustrator uses techniques

such as motion blur, faded representations of older positions, silhouettes of older positions

and so on to convey motion and action in scenes. Figure 1.4 shows one such example where

the downward motion of the axe is conveyed using trailing silhouettes.

FIG. 1.4. The downward motion of the axe is conveyed using trailing silhouettes.
Illustration provided courtesy of Kunio Kondo (Kawagishiet al. 2003).

Illustrators such as Scott McCloud have discussed techniques for conveying motion

from the perspective of an artist (McCloud 1994). Techniques such as speedlines and mo-

tion blur were discussed in detail with excellent examples such as in Figure 1.5 and Figure

1.6. In Figure 1.5, the illustrator conveys the flying motionof the man by adding lines that

convey the direction of motion of the man. The image, though static, successfully conveys

motion and provides information regarding the original location of the man.

In Figure 1.6, one can observe four different ways of conveying the rightward motion

of a man using various techniques. The techniques are variedbut are still able to convey

the motion. The top-left image conveys motion without any past information, whereas the

top-right and bottom-left show some information regardingpast positions of the man in the
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FIG. 1.5. This illustration depicts the flying motion of a man. The motion lines convey the
direction of motion of the man and provide context to the current location of the man with
respect to older locations in a single image. Image credits:McCloud (1994)

form of silhouettes or faded representations of the man. Thebottom-right image depicts

a technique inspired by Japanese art, where they convey the motion by implying that the

scene around the person is moving more than the person himself/herself. This can be seen

in many Japanese anime cartoons, where a character is racingon a motorbike but the scene

around him is what is shown to be moving past more than that person moving in the scene.

1.1.2 Effective visualization of positionally variant data

In this work, we adapt such illustration principles to visualize time-varying data. For

positionally variantdata, we adapt techniques from the field of comics and apply tech-
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FIG. 1.6. This figure depicts four different techniques discussed by Scott McCloud to
convey motion. The top-left image does not show any information about past positions, the
top-right and bottom-left images clearly show some information regarding past positions
and the bottom-right image depicts a style where the scene around the subject is shown to
be moving to convey motion to the viewer. Image credits: McCloud (1994)

niques to convey positional change in a single image to the viewer. We identified four

specific techniques; namely speedlines, flow ribbons, opacity-based modulation and strobe

silhouettes to annotate static images with motion cues. Based on our user evaluation, we

found that our illustration-inspired techniques helped users complete tasks such as visual

tracking more accurately and confidently as compared to traditional visualization tech-

niques. Participants consistently preferred our techniques over standard snapshot-based

visualizations or animations.

The strengths and weaknesses of new visualization techniques are more evident when

applied to an application domain. We applied our illustration-inspired techniques to vi-

sualize hurricane data. An expert evaluation was conductedto obtain the feedback of at-

mospheric physicists. They found our techniques to be useful for investigating hurricane

structures as well as phenomena that can lead to intensification or dissipation in a hurricane.

1.1.3 Effective visualization of value variant data

Value variantdata has change in values of an attribute over time within thedata. To

visualize the change in values over a time interval or identify trends in a dataset, snapshots
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and animations are of limited use. We introduce pointillism-based techniques inspired

heavily by the impressionist painter Seurat. Seurat, a keenstudent of color theory, ap-

plied the color mixing theory developed by Chevreul and Rood(Rood 1879) to generate

expressive paintings.

We developed techniques where the canvas was painted using pointillistic strokes to

represent the change undergone by the quantity over the specified time interval. A for-

mal user evaluation of the techniques clearly indicated that the participants preferred our

pointillism-based techniques over static screenshots of time-varying data. Our experiments

revealed that participants were better at visually identifying trends in the dataset using our

techniques compared to standard visualization techniques.

1.2 Contributions

Our research contributions to the field of visualization arein the form of novel visual-

ization techniques inspired by art to visualize time-varying data. These techniques can be

used to provide temporal context to the viewer by conveying motion as well as change over

time more effectively.

Specifically our contributions are as follows:

• Flow illustration techniques facilitate tracking of features over time. Our work allows

a viewer to better visualize the path traversed by a feature in a single image.

• Our semantic simplification techniques maintain path features that are crucial to the

process and produce simplified representations to mimic an illustrator’s represen-

tation. Task-based simplified representations can be generated using our semantic

simplification techniques.

• Pointillism-based visualization of change in values attained by attributes in time-

varying data. Using our techniques, trends in time-varyingdata can be clearly seen

and used for understanding and conveying information aboutthe properties of the

attribute as it changes over time.
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Our techniques have led to the following contributions in the application domains:

• In the field of fluid flow visualization, our flow illustration techniques provide im-

proved visual tracking of features of interest over a large number of timesteps. Our

user evaluation provided convincing results that our techniques work better than stan-

dard snapshots or animations.

• Atmospheric physicists found our art-inspired techniquesto be useful in the process

of investigating a hurricane as it evolves over time. The internal structure of the

hurricane, the path of the hurricane and changes in attribute values such as humidity

and temperature in the hurricane can now be better visualized using our techniques.

Our expert user study provided crucial feedback that our techniques were preferred in

most cases over visualizations that their tools were generating. These visualizations

provided insight and helped them answer crucial questions and helped give them an

increased understanding into the science behind the development of a hurricane.

This is a significant contribution to the visualization community as well as the applica-

tion domain. It fulfills our goal of successfully collaborating and integrating visualization

with scientists to enable them to explore and understand their data based on those new

findings.

1.3 Dissertation Roadmap

The remainder of this dissertation is organized as follows.In Chapter 2, we describe

our work on illustration-inspired visualization of time-varying data for positionally vari-

ant data. In Chapter 3, we present results of a formal user study of those techniques and

validate their effectiveness. In Chapter 4, we discuss various representations of the paths

discussed in Chapter 3 and identifysmartrepresentations of those paths that preserve im-

portant features based on the context.

In Chapter 5, we discuss a case study describing the application of our techniques in

the field of hurricane visualization. The field of hurricane visualization has benefited from
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our techniques and our new contributions were validated by our expert user study in which

we obtained feedback from researchers in the fields of atmospheric physics, hurricane mod-

eling and simulations.

In Chapter 6, we describe our pointillism-inspired techniques for visualizing value

variant data. We discuss our results in context of the hurricane domain as well as other

2D+t domains such as global rainfall measured over a decade, US presidential election

results for counties across the nation and infant mortalitydata measured over the last seven

years. In Chapter 7, we discuss the results of the formal evaluation of our techniques from

Chapter 6 and validate the efficacy of our techniques.

We conclude in Chapter 8 with a discussion regarding the contributions and directions

that the dissertation could be extended in the future.



Chapter 2

RELEVANT WORK

With an ever-increasing interest in illustration- and art-inspired computer graphics,

the application of abstraction principles to the field of visualization is a natural extension

to the field of non-photorealistic computer graphics. Non-Photorealistic Rendering (NPR)

applies techniques from the field of art to generate images that have an illustrative or a

painterly look.

NPR techniques have been applied to visualize data obtainedfrom scientific experi-

ments, medical scanned data and other applications. These techniques have shown great

promise in allowing users to explore medical CT scanned dataand obtain information not

readily available from traditional visualization techniques such asvolume rendering. Many

researchers have used such NPR techniques for visualizing medical and scientific datasets

(Treavett and Chen 2000), (Rheingans and Ebert 2001), (Luet al. 2002), (Lum and Ma

2002), (Csèbfalviet al. 2001) and (Hadwigeret al. 2003). These novel techniques have

generated considerable interest in the field of medical volume visualization due to their

ease of use and intuitive approach. Figure 2.1 shows a few examples of illustration-inspired

techniques being applied to medical volumetric data. The top left image depicts a visual-

ization that automatically accentuates features in the data. The boundaries and silhouettes

in the data are emphasized in this case. The honeycomb structure in the liver can be clearly

seen in this representation. The emphasized boundaries of organs helps disambiguate their

spatial location. The top right image is designed to draw theviewers attention to a region

of interest focused around the right kidney. The details in the right kidney are clearly seen

12
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as compared to the left kidney. The bottom left image shows anexpressive visualization

obtained by using the stippling style from the field of illustrations. The stippling technique

provides an excellent representation that highlights features of interest and de-emphasizes

unimportant regions. The bottom right image depicts a representation where features are

highlighted by identifying and enhancing their curvature.Regions of high curvature are

thickened in addition to the illustrative shading which generates an effective illustrative

visualization.

Illustration-inspired techniques are very powerful at conveying information to a

viewer in an informative yet pleasing manner.

2.1 Visualization of positionally variant data

Most research in the field of visualizing time-varying datasets has been focused around

the needs of the application domain (computational fluid dynamics, medical imaging,

weather forecasting) from which the data was obtained. Visually examining and explor-

ing the data seemed to provide scientists with enormous insight. Initial approaches dealt

with visualizing each timestep of these huge datasets by generating a visualization using

volume rendering or isosurface extraction techniques to represent the time-varying data

(Weigle and Banks 1998), (Bajajet al. 1999), (Chiang 2003).

Computational fluid dynamics (CFD) simulations were one of the first few applica-

tion domains that generated large amounts of time-varying data. The data contains three-

dimensional features that are moving and morphing over time. Samtaneyet al. (1994) were

the first to identify and apply techniques from the field of computer vision to deal with the

problem of tracking these features in three-dimensional time-varying data. Various kinds

of feature interactions such as merging of two features, splitting of one feature into two fea-

tures, birth of a feature, death of a feature were characterized. Feature tracking was further

improved by Silveret al. (1996), (1997). Figure 2.2 shows one of their results for feature

tracking in the turbulent vortex dataset (Fernandez and Silver 1998) . Postet al. (1995)

discussed “icon” based techniques to visualize features intime varying data. Frameworks
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FIG. 2.1. This figure shows some innovative visualization techniques that lead to expres-
sive visualization of medical volumetric data. The top leftimage shows a boundary and
silhouette enhanced representation of an abdominal CT dataset where the internal honey-
comb structure of the liver is visible along with the highlighted boundaries of the organs.
The right image draws the viewer’s attention to a region of interest focused on the right
kidney which is enhanced (Rheingans and Ebert 2001). The bottom left image shows a
stipple-style rendering of a foot with the bones and the skinaround it being emphasized.
In particular, the joints are accentuated and draw the attention in a manner similar to an
illustrator (Luet al. 2002). The bottom right image shows a representation of the head of
the Visible Human dataset where the features on the head are highlighted using curvature-
based enhancements (Kindlmannet al. 2003).
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such as ViSTA FlowLib were developed to visualize flows in virtual environments (Schirski

et al. 2003).

FIG. 2.2. This figure shows features from four timesteps of the turbulent vortex data that
was used for feature extraction and tracking (Silver and Wang 1996).

Other than feature tracking and visualization, research intime-varying data visualiza-

tion focuses on using compression (Shenet al. 1999), (Foutet al. 2005), (Westermann

1995) and optimized data structures and algorithms (Suttonand Hansen 1999), (Wilhelms

and Gelder 1990), to manage data efficiently. Recent advances in graphics hardware have

also been leveraged to interactively visualize time-varying data (Lumet al. 2001). Cluster-

based visualization over a distributed network has been developed to visualize huge time-

varying datasets and to utilize the capabilities of CPU as well as GPU of each component

in the system (Strengertet al. 2005), (Ma and Camp 2000). Research in the field of visu-

alizing distributed datasets tackled the problem of visualizing prohibitively large datasets

(Silver and Kusurkar 2000).
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2.2 Illustrative visualization of positionally variant data

Traditional visualization techniques though are limited at conveying information to a

user. As the datasets get bigger, using smart techniques to convey the information contained

within the data becomes more important. Illustrative visualization techniques generate vi-

sualizations that can provide insight to the users into their data. They can highlight features

of interest and draw the viewer’s attention to those interesting features. Such techniques

are invaluable for visualizing large datasets where the size of the dataset could cause an

expert to inadvertently miss crucial features using standard visualization techniques.

Stompelet al. (2002) have applied non-photorealistic rendering techniques to time

varying data visualization. They used techniques such as gradient, silhouette, and depth

enhancement to provide more spatial and temporal cues. Figure 2.3 shows a comparison

of a standard volume rendering of a CFD simulation on the leftand an enhanced version

on the right that accentuates internal structures using gradient, silhouette as well as depth-

based enhancements. Chronovolumes (Woodring and Shen 2003) was a novel technique

developed to visualize time-varying data by using principles from art and photography. The

ability to depict change as well as the overall motion was explored using their photography-

based techniques. Svakhineet al. (2005) have extended volume illustration techniques

(Rheingans and Ebert 2001) for time-varying data and have applied Schlieren photography

and shadowgraphy from the field of photography to convey change over time. Figure 2.4

shows an example of an illustrative visualization of the temperature variation in a convec-

tion dataset. A specific temperature isocontour is shown with other temperature regions

shown as sketches around it.

Other than the photography-inspired work by Svakhineet al. (2005) there is no work

in the field of providing temporal context to the viewer regarding previous timesteps or pro-

viding information regarding the timesteps in a certain interval around the current timestep

being visualized. Even in the case of photography-inspiredvisualizations, new visualiza-

tions are generated to provide temporal context (Svakhineet al. 2005). An expert evalua-
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FIG. 2.3. This figure shows volume rendered images of a CFD simulation. The left image
shows a standard volume rendering image and the right image shows a temporal domain
enhanced version (Lumet al. 2001).

tion of such photography-inspired techniques will help identify its true value in the scien-

tific visualization domain.

Conveying temporal context using illustration-inspired cues in a non-disruptive man-

ner can be invaluable. A visual representation of the current timestep augmented by

illustration-inspired techniques can not only provide context regarding a particular feature’s

movement, but can also help the viewer visually track features in feature-rich time-varying

data. There is a need for investigating the illustration literature to identify effective, eas-

ily comprehensible techniques that can be applied to generate effective visualizations of

time-varying data. An evaluation of the strengths and weaknesses of such techniques can

provide insight into the effectiveness of such techniques and provide guidelines regarding

the types of techniques to be used for various kinds of time-varying datasets.

2.2.1 Illustrative visualization of paths

Our work deals with augmenting time-varying data visualizations with cues inspired

from illustrations and comics. One of the techniques is calledspeedlineswhere we mimic

the depiction of the direction of motion of a three-dimensional feature from an illustrator’s

point of view. To mimic an illustrator’s depiction of the direction of motion, we generate
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FIG. 2.4. An illustrative visualization of the temperature variation in a convection dataset.
The image shows a specific temperature region rendered as a thin boundary volume and
other temperature regions shown as sketches around it. (Svakhineet al. 2005)

a simplifiedrepresentation of the actual path taken by a feature of interest. There has been

a significant amount of work in the field of automatically generating simplified representa-

tions of large data. In our case, the data is in the form of the path traversed by a feature. In

this subsection, we discuss relevant work in the field of pathsimplification.

Simplification can be defined as the process of generating a low-detail representation

of a high-detail dataset where the salient characteristicsfrom the high-detail representation

are preserved in the low-detail representation. Early workin the field of level-of-detail tech-

niques for computer graphics was done by Clark (1976), Funkhouser and Sequin (1993)

and Hoppe (1996). There has been some research in the use of visual perception-based

knowledge to generate simplified representations of complex models (Luebke and Hallen

2001), (Cohenet al. 1998).

Cartographers have been using simplification to generate simplified maps of regions

(Robinson and Sale 1969). They frequently vary the simplification parameters of a map

based on the function of the map. Research in the field of generating easy-to-use, task-

based representations of maps has provided guidelines for the needs as well as benefits of
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using such simplified representations (Tversky 1992). The Douglas-Peucker algorithm was

one of the first algorithms to generate a simplified representation of a path or loop given a

large number of points as input (Douglas and Peucker 1973).

In the field of computer graphics, there has been some seminalwork in the field of

generating simplified representations of curves, polygons, paths and maps. Chan and Chin

(1996) discussed early ideas to produce a simplified representation of polygonal curves.

Agarwal et al. (2000) developed efficient algorithms for simplifying curves and paths.

Agrawala and Stolte (2001) were the first to propose a unique solution to the problem

of generating comprehensive and easy-to-use route maps. Figure 2.5 shows one such vi-

sualization of driving directions generated by their system taking into account the lay-

out, design and comprehensibility constraints. Researchers have also developed graphics

hardware-based algorithms to efficiently perform view-dependent generalization of maps

in an interactive map visualization system (Mustafaet al. 2001).

The major limitation of all these techniques, though, is their inability to generate task-

based visualizations for paths. Simplifying path data to generate a simplified representation

which contains fewer points is useful for storage and rendering purposes, but it is not as

useful for visualization purposes if the simplification does not take into account features

along the path. Inadvertently, a path simplification algorithm could eliminate a crucial

feature and may lead to an incorrect interpretation of data.

There is definitely a need for identifying regions of motion that are interesting from

an application domain point of view and ensuring that they are preserved even in simplified

representations of the data.

2.3 Hurricane Visualization

We applied our novel illustration-inspired techniques to the field of hurricanes. The

field of hurricanes not only presented us with large amounts of multi-attribute time-varying

data but also with visualization challenges regarding effective representations to convey the

time-varying nature of the hurricane for investigative purposes. The direction of motion,
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FIG. 2.5. This is an image of a novel technique to visually represent driving directions data.
Easy-to-use driving directions with context information were generated and simple cogni-
tive cues were provided to the user. The user study conductedconfirmed the effectiveness
of their clutter-free visualization of driving directions(Agrawala and Stolte 2001).

the rate of change of intensity of a hurricane, the presence of certain phenomena such

asmesovorticesor vertical wind shearand their effects on a hurricane were important to

domain experts. We investigated the use of illustration-inspired techniques in the field of

hurricane visualization. In this section, we discuss some of the previous work done in the

field of visualizing hurricanes.

Research in hurricane simulation and visualization has typically been conducted using

supercomputers running simulations of hurricanes for days. One of the first such simula-

tions involved the visualization of hurricane Diana that struck the coast of North Carolina

in 1984. The visualization was conducted over a massively parallel IBM supercomputer

where the model used 552 processors for two days and produced100GB of output data

(Davis and Bosart 2001), (Davis and Bosart 2002). The research focused more on studying

the hurricane simulations and obtaining more information regarding the processes behind
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hurricane evolution.

FIG. 2.6. This image shows a standard two-dimensional visualization of isocontour data
for cloud water data in hurricane Katrina. The visualization shows information only at a
particular altitude from the sea surface and is limited at providing structural information
for the entire hurricane.

Weather and climate researchers use a combination of tools that produce one- and two-

dimensional visualizations of their data. The Grids Analysis and Display System (GrADS)

(COLA 1988) developed at the Center for Ocean, Land and Atmosphere Studies (COLA)

is one such 2D visualization tool widely used by atmosphericphysicists and weather re-

searchers to explore and study their data. A commercial package widely used by the mete-

orological community is IDL (Bowman 2005). It is mainly usedfor its data processing and

statistical analysis capabilities but the newer versions feature some basic three-dimensional

graphics functionality. Vis5D (Hibbard and Santek 1990) and VisAD (Hibbard 1998) (the

java version of Vis5D) are some of the most popular applications amongst weather re-
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searchers.

Hurricane visualization has been a topic of interest for thelast few years because of the

immense destruction that has been caused by hurricanes. At the IEEE Visualization 2004

contest, Hurricane Isabel data was made available as part ofthe contest (Kuoet al. 2004).

Researchers adopted approaches based on immersive visualization (Gruchalla and Mar-

bach 2004), multithreaded OpenGL-based glyph visualization (Johnson and Burns 2004),

interactive brushing in data views (Doleischet al. 2004), anisotropic diffusion for visual-

izing vector fields (Helgeland and Elboth 2005), variants ofvolume rendering techniques

(Jianget al. 2004) and texture advection techniques for flow visualization (Schafhitzelet

al. 2004). These techniques, though effective in visualizing certain aspects of the hurri-

cane, were limited in their ability to show internal structural details of a particular timestep

as well as to convey the temporal nature of the hurricane.

Woodring and Shen (2006) as well as Sauberet al. (2006) discussed new techniques

to visualize multi-attribute data and used the multi-attribute hurricane datasets as an exam-

ple. Their work discussed novel ways to provide insight to domain experts by highlighting

attribute correlations between various attributes (such as temperature, pressure, and vor-

ticity) in a single timestep. Such systems that can help experts find correlations between

multiple attributes can be of immense use to domain experts.

Similar to traditional visualization techniques for time-varying data, the hurricane vi-

sualization tools and techniques generate visualizationsthat merely provide a visual repre-

sentation of the underlying data without considering the need to highlight, accentuate and

emphasize important features in these large multi-attribute datasets. Providing temporal

context to increase the understanding of the origin of the storm and the direction of mo-

tion in which the hurricane is moving is crucial. Within a single timestep, identifying and

accentuating structural features is also of immense use to hurricane experts. An in-depth

study evaluating the effectiveness of such techniques fromthe point of view of domain

experts can be very valuable.

Analysis of the data being visualized reveals crucial structural and temporal character-
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istics that can be used to produce insightful visualizations as well as to annotate visualiza-

tions to be more informative. Illustrators distill the characteristic features of their subject

and produce illustrations that capture those details, abstracting out irrelevant information.

Through techniques that have been inspired by such insightful illustrations, we produce

meaningful and expressive visualizations of hurricanes for investigation purposes.

2.4 Visualization of value variant data

Value variant data is time-varying data in which a certain attribute is changing over

time such as global temperature measured over a time interval or infant mortality in the na-

tion over the last eight years and so on. In most cases, the data is spatially two-dimensional

and varies over time. Such data is called2D+t data and can be visualized using a variety

of techniques.

Visualizing such time-varying data is traditionally done by generating a snapshot for

each timestep based on a color scale and viewing all the snapshots simultaneously. In

such cases, it is extremely easy for a user or even a well trained expert to miss increas-

ing/decreasing patterns as well as interesting variationsin values of the attribute being

visualized. In some cases, animation of the snapshots can beused as an alternative but

there are always cases of inattentional blindness where ourvisual system misses important

features due to other irrelevant distractions that cause the viewer to lose focus or attention.

Figure 2.7 shows a visual representation of infant mortality in the nation over a five-

year period from 1998 to 2002. The snapshots of the data are limited in their ability to

convey interesting patterns in the data. Questions such as which state consistently has

the highest infant mortality in the country over the five yearperiod requires the viewer to

closely examine each of the images. Using the color scale andthe visual ability, a viewer

can finally find the answer. The question though is not whethersuch a straightforward ques-

tion can be answered, but whether more interesting patternsin the data can automatically

emerge by using such simple techniques.
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FIG. 2.7. These set of image depict the infant mortality in the entire country over a period
of five years from 1998-2002. The color scale provided can be used to understand the
data. Identification of clear, interesting patterns and unusual behavior in the data cannot be
clearly seen by looking at these snapshots.Data credits: US Centers for Disease Control
and Prevention, National Center for Health Statistics.

2.5 Art-inspired visualization of value variant data

Since traditional snapshot/animation-based techniques seem limited in conveying pat-

terns and visualizing change in attributes, we investigated novel techniques from the field

of art, in particular from the field of pointillistic painting as invented by Seurat.

Non-traditional computer graphics has led to interesting imagery in the form of sketch-

style images (Winkenbach and Salesin 1994) and painting-style images (Hertzmann 1998)

given a photograph/scene as an input. Researchers have developed systems that generate

painterly rendering (Haeberli 1990), (Litwinowicz 1997) as well as animation in a painterly

style (Meier 1996). Hertzmann developed a system to generate painterly rendered images

given an input photograph in various styles such as impressionism, expressionism, pointil-

lism and colorist wash (Hertzmann 1998).

Researchers in data visualization have identified the strengths of the medium and ap-

plied it to visualize various kinds of data. Laidlawet al. (1998) used concepts from painting

to visualize tensor fields in diffusion tensor imaging. Theyused oil painting concepts such

as layering and encoding information in the brush direction, stroke frequency and satura-
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FIG. 2.8. The top left image depicts the painterly visualization of a mouse spinal cord
where meaning was associated with attributes of painting such as layering, brush stroke
direction, color saturation and so on (Laidlawet al. 1998). The right image depicts a multi-
attribute painterly visualization which depicts the mean conditions in the month of August.
In this case too, multiple brush attributes such as brush size, color, direction, coarseness
and so on were used to encode information regarding the multiple attributes such as rainfall,
temperature, wind speed and so on into the visualization (Healey 2001). The bottom image
is a visualization for the month of January for southwest Canada. Aesthetic concepts were
included to generate visually pleasing results that would also convey useful information to
a viewer. (Tateosianet al. 2007).

tion. Figure 2.8 shows an example of a mouse spinal cord visualization using their painterly

rendering techniques. They later extended their method to visualize incompressible flows

with multiple values (Kirbyet al. 1999). In this work, they leveraged the concept of multi-

ple layers in a painting to convey the values of multiple attributes in a visualization.

Healey (2001) investigated the use of the painterly medium for effective visualizations

of multidimensional datasets. The idea was to map attributes to painterly parameters such

as the path of a brush stroke, its length and the density of theplaced brush strokes in a
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FIG. 2.9. The left image shows a visualization of multi-valued vector data being visual-
ized using line integral convolution (LIC). The multi-valued vector data is visualized with
separate colors allowing for visual blending instead of coloring it with a resultant/blended
color (Urnesset al. 2003). The right image shows a nanoparticle visualization where the
structure is shown through the use of pointillism (Saunderset al. 2005).

region. In addition, the amount of paint at the beginning of each stroke and a coarseness

factor was also mapped to attributes. Perceptual characteristics such as perceptual bal-

ance, distinguishability and flexibility of colors were used in addition to the brush stroke

attributes. They further extended their work in perceptual-based painterly rendering that al-

lowed their system to incorporate perceptual knowledge foreffective visualization (Healey

et al. 2004). The top right image in Figure 2.8 shows a visualization of climate conditions

using the painterly paradigm. The visualization depicts the mean conditions for the month

of August for the United States. They conducted a rich set of user studies to evaluate their

system on paintings as well as multidimensional weather data. The user study results in-

dicated that users preferred the non-photorealistic visualizations better than the standard

visualizations. Such user studies indicate the strength ofsuch media and enforce the need

for visualization researchers to continue investigating art-based techniques for visualization

purposes. Recently, Tateosianet al. (2007) have further extended the painterly concept by

incorporating artistic concepts such as interpretationalcomplexity (IC), indication and de-
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tail (ID), and visual complexity (VC) into the process of generating a visualization. The

bottom image in Figure 2.8 shows a visualization of conditions in January over the south-

west Canadian region where temperature, pressure, wind speeds, precipitation and other

attributes of weather are mapped to brush, color and other painting related attributes.

Urnesset al. (2003) discussed the concept of sampling and color mixing for

visualizing 2D vector distributions. To visualize multi-valued flow data, they ap-

plied the pointillism-based principle of visual mixing of colors as opposed to using a

blended/resultant color in the visualization. The left image in Figure 2.9 shows an ex-

ample of a visualization using LIC being depicted using distinct colors instead of blending

the colors. Later, Saunderset al. (2005) applied concepts from pointillism for visualiz-

ing nanoparticles in formation. They used pointillism to better visualize distribution of

nanoparticles in space. They augmented their techniques byusing glyphs with more in-

formation regarding the nanoparticles. The right image in Figure 2.9 shows an example of

nanoparticles being visualized using the pointillism paradigm. The figure clearly shows the

structural distribution of the nanoparticles and allows users to understand the nanoparticle

formation process better.



Chapter 3

ILLUSTRATION-INSPIRED TECHNIQUES FOR

VISUALIZING TIME-VARYING DATA

Visualization of time-varying data has been a challenging problem due to the nature

and the size of the datasets. The naı̈ve approach to visualizing time-varying data is to render

the three-dimensional volume at each individual time step using standard volume rendering

techniques (Cabralet al. 1994). This technique relies heavily on the user’s ability to

identify and track regions of interest over time. At the sametime, the number of snapshots

generated can be quite high (100-3000), requiring considerable effort for the user to track

features. To reduce this effort, we draw inspiration from the illustration literature to enable

us to convey change over time more succinctly.Time-varying dataare three-dimensional

snapshots of a process captured at regular time intervals. Domains such as computational

fluid dynamics, weather forecasting, and medical scans (ultrasound) generate time-varying

data.

Time-varying data visualization generally consists of three steps. First, the dataset

must be analyzed to identify interesting features.Featuresare regions of interest depending

on the scientific domain. Feature extraction can be done manually where a user selects

features, semi-automatically (where an algorithm identifies features which are validated by

a user), or automatically identifying features by analyzing different time steps.

The second step in visualizing these datasets isfeature tracking. The extracted features

(from different time steps) are tracked over the time steps.Feature tracking requires the

28
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FIG. 3.1. This illustration depicts the motion of a bird in flightwith the abstract path
traversed by the bird and intermediate position indications (MacCurdy 1954).

ability to identify the features and correlate them over time.

The third step is visualizing this tracked information along with the actual time-

varying data. The visualization conveys the change over time in the underlying data. The

feature extraction and feature tracking approach is fairlycommon in time-varying dataset

visualization (Silver and Wang 1996).

Generally, identifying and visualizing features over timeis a particularly hard task,

even for the well-trained eye. The problems are numerous, ranging from the large number

of time steps that are rendered to the ability of the user/viewer to identify and visually track

a particular feature of interest. There is always the problem of occlusion of the feature of

interest by another uninteresting feature. The problem would be further complicated by

issues such as the large number of features in each time step.

Pylyshyn (Pylyshyn 2003), it was found that observers can track a maximum of five

independently moving objects at the same time, as shown in the schematic in Figure 3.2. As

the speed of the moving objects and the number of objects increases, the performance of the

observers dropped considerably. The results of this experiment are particularly significant

because they imply that even a trained domain expert will most probably not be able to

visually track more than five features over time. It is not uncommon to have 10-20 features

in a particular dataset and the experimental results above clearly state that it is impossible

for the human visual system to track their paths over time.

Illustrations are able to convey information easily, drawing the viewer’s attention to
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FIG. 3.2. A schematic depicting the multiple object tracking experiment conducted by
Pylyshyn. The subject is first shown eight identical objects(panel 1) and then a subset
of four are briefly highlighted (panel 2). After that the objects start moving in a random
manner (panel 3) and once they stop, the subject is asked to identify the objects that were
designated earlier as targets. They found that users were successfully able to track no more
than five features over time (Pylyshyn 2003).

the important details and abstracting out the irrelevant details. Illustrators have used nu-

merous techniques to depict change over time in a single image (McCloud 1994).

Leonardo Da Vinci in his treatise on the the flight of birds (MacCurdy 1954) writes

“The lines of the movements made by birds as they rise are of two kinds, one which is

always spiral in the manner of a screw, and the other is rectilinear and curved. That bird

will rise up to a height which by means of a circular movement in the shape of a screw

makes its reflex movement against the coming of the wind and against the flight of this

wind, turning always upon its right or left side.” To illustrate this effect, he drew the

illustration reproduced in Figure 3.1 that depicts the motion of the bird in flight. The

illustration conveys the motion to the viewer by using linesto approximate the path taken

by the bird to ascend into the sky. The lines do not connect exact positions of the bird as it

took flight, but show an abstract representation that captures the motion in a simple, easy-

to-understand manner. Illustrators tend to rely more on abstraction than accuracy when

conveying change over time.

The problem of efficiently and succinctly displaying a minimal set of images that con-



31

veys information about the interactions within a time-varying dataset is still unsolved. We

have identified a few techniques from the illustration literature and apply them to depict

change over time in time-varying datasets.Speedlinesare one such technique which fol-

lows features and draws the user’s attention to regions of interest. A group of speedlines

together form flow ribbons that convey change of a feature over time more succinctly. Re-

searchers in the field of visualization have used opacity-based techniques to draw the user’s

attention to a particular feature in a visualization (Silver and Wang 1996). We extend this

technique to vary the opacity of features as they transform over time. Opacity-based tech-

niques can be used in conjunction with speedlines to convey positional change better.

3.1 Approach

We first preprocess the time steps to analyze them and identify features of interest. In

the second step, the identified features are correlated between each time step to facilitate

tracking. In order to track a feature, we calculate the centroid of the feature and track it over

time. Since the centroid of a feature can fall outside the feature, we also track the extreme

points of the volume at each time step to provide us with more information for tracking.

The centroid and the extreme points are used by our techniques to convey the direction of

motion of the feature over time.

3.1.1 Feature identification

We have used feature-extracted data from the Rutgers data repository (Fernandez and

Silver 1998). Every voxel in each time step has an identifier that indicates the flow feature

at every time step, making it possible to track a particular set of flow features.

In this process of enhancing the rendering to draw the user’sattention to regions of

interest, we first need to identify features of interest, which we shall callillustration features

to avoid confusion with actual three-dimensional featuresin the data.

In the preprocessing step, we analyze the time-varying dataset to identify flow fea-

tures that are most actively moving (unstable), mostly stable as well as significantly larger
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compared to its surrounding features. This preprocessing allows us to target a certain class

of flow features (stable/unstable) that facilitate more effective visualizations.

We define a quantity called thetemporal variation. Temporal variation of a feature is

defined as a quantity that measures the amount of change that afeature undergoes over time.

We used thecoefficient of variation (COV), a statistical measure of the standard deviation

of a variable. The coefficient of variation has been used for transfer function generation in

time-varying data (Jankun-Kelly and Ma 2001), for accelerating volume animation (Shen

and Johnson 1994) and for accelerating the rendering of time-varying data using TSP trees

(Shenet al. 1999), (Ellsworthet al. 2000).

The COV for a data value is given by:

cv =
σv

ōv

In the above equation,̄ov is the mean of the sampleov,t under consideration overn

time steps.σv is the standard deviation ofov,t from its calculated mean. The COVcv is

calculated by dividing the deviationσv by the overall mean̄ov. A larger COV implies high

variation and less stability and similarly a smaller value implies more stability over time,

implying that it may be a feature of interest (illustration feature). In our case, we chose to

focus on more stable features, identified by low COV values, for visualization purposes.

Temporal variation is computed by comparing consecutive time-steps. For each pair

of consecutive time steps, we compute a gradient volume thatcontains temporal gradients

for each voxel. The temporal COV is then computed for the temporal gradients. Temporal

gradients give a sense of how the voxel density changed over time for a particular voxel.

We use a synthetic dataset to show the efficacy of the techniques and then present

our results on actual CFD data. In Figure 3.3, the feature is moving in a circular manner,

but it is not at all apparent from visualizing the individualtime steps as shown in the fig-

ure. Figure 3.4 shows the snapshots for five consecutive timesteps in the turbulent vortex

dataset (Fernandez and Silver 1998). It is evident from these figures that visually tracking
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a particular feature over time is hard.

FIG. 3.3. This image depicts the motion of a feature in an experimental data set over time.
The direction of motion of this feature is not clear from these snapshots.

FIG. 3.4. These are a set of snapshots from successive time stepsof a volume. As is
evident from looking at the snapshots, it is very hard to correlate and track a particular
feature over different time steps. The problem partly lies in the fact that many features
are very short lived which is why we used the coefficient of variation measure to identify
stable, interesting features (illustration features).

3.1.2 Speedlines

Speedlines can be defined as lines that convey information tothe user about the path

traversed by a particular feature over time. They are basically lines that follow a particular

feature over time. Illustrators have used speedlines to convey motion by altering the char-

acteristics of these lines. The thickness, the line-style,and variation of the opacity are the

types of characteristics that successfully convey the change.

For example, in Figure 3.5 the illustrator has been successful in conveying the motion

of the pitcher’s arm to the viewer (Kawagishiet al. 2003). In particular, the thickness of the

lines is varied to show the direction of motion of the pitcher’s hand. It is also important to

note that the curve tracing the pitcher’s arm is smooth and not irregular. It is an abstraction

of the actual movement of a pitcher’s arm. The motion of the baseball towards the viewer is
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successfully depicted by the speedlines that start out thinto depict the origin of motion, but

later thicken to imply the increased intensity during the release of the ball and then again

start thinning towards the end as it gets closer to the viewer.

FIG. 3.5. This illustration shows the use of speedlines to depict motion of the pitcher in a
single frame. Illustration provided courtesy of Kunio Kondo (Kawagishiet al. 2003).

Illustrators use thicker, denser lines to represent older time instants and lighter, thinner

lines to represent newer time steps. Figure 3.6 shows an illustration with speedlines. The

lines are thicker and darker farther away from the man and they get thinner and lighter as

they approach the man.

FIG. 3.6. This illustration uses speedlines to depict the running motion of the man. The
lines get thinner and lighter as they approach the running man. Illustration provided cour-
tesy of HarperCollins publishers and Scott McCloud (McCloud 1994).

In Figure 3.7 we have identified one feature and conveyed its motion over twelve

timesteps. To convey the notion of time, we have used speedlines. The darker, thicker

regions of the line convey an older time step whereas the lighter, thinner regions of the

speedline depict a more recent time step. Figure 3.7 enablesthe viewer to understand the

rightward motion of a feature. The characteristics of the speedlines are similar to that of

Figure 3.6. The line style is thicker and more opaque in oldertime instants and thinner,

more translucent towards the newer time instants.
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FIG. 3.7. The image shows the use of speedlines to depict motion of the feature in the
experimental dataset through twelve timesteps. The translatory motion of the feature from
left to right is depicted using speedlines. The speedlines get thinner just and translucent as
they get closer to the latest timestep, just as Figure 3.6.

FIG. 3.8. The image depicts change over time in a feature for CFD data. The downward,
rightward motion of the flow feature is conveyed using speedlines.

We applied the speedlines technique to real world data from the computational fluid

dynamics (CFD) domain to depict the direction of motion of a particular feature as can

be seen in Figure 3.8. In this image, the motion of the featureis clearly depicted using

speedlines. The downward, rightward motion of the feature is clearly conveyed to a viewer

looking at this image.

Researchers in the field of CFD simulation use particle traces to visualize the exact

path taken by a feature.Particle tracesconnect trajectories of a particle over time (Gal-

lagher 1994). Particle traces are by definition required to be faithful to the path followed
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FIG. 3.9. This set of images highlights the difference between particle traces and the speed-
lines technique. The leftmost image depicts a particle trace of the feature, the middle and
rightmost image depict its motion using speedlines. In the middle image, we used alternate
points from the path traced by the feature and in the rightmost image we use one out of
four points to generate speedlines.

by the feature. A speedline, on the other hand, is an expression of how an illustrator would

depict the same change. The speedlines approximate the pathtraversed by a feature and

incorporate the smooth, natural strokes of an illustrator to depict the motion of the fea-

ture. Speedlines differ from particle traces in that the line properties such as thickness and

opacity of the speedlines are varied to depict the temporal change.

A streamline, by definition (Gallagher 1994), is a line that is tangential to the in-

stantaneous velocity direction and generally a collectionof streamlines are used to convey

flow. Speedlines, on the other hand, are used to track the motion of a feature over a cer-

tain interval of timesteps. The goal of using speedlines is not to convey flow for the entire

time-varying dataset, but to facilitate tracking a featureof interest. Figure 3.9 illustrates the

difference between using particle traces and speedlines. The leftmost image depicts a parti-

cle trace of the feature, the middle and rightmost image depict its motion using speedlines.

In the middle image, we used alternate points from the path traced by the feature and in the

rightmost image we use one out of four points to generate speedlines. Our speedlines im-

ages are similar to the ones that illustrators would draw to convey the motion of the feature.

The speedlines are smooth and succinctly convey the direction of motion to the viewer.
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3.1.3 Flow Ribbons

Flow ribbons are used extensively by illustrators to show motion. Flow ribbons are

particularly interesting because they occlude underlyingregions to depict change. This

facilitates the depiction of motion over time.

FIG. 3.10. The illustration depicts the motion of the monster’shand using a flow ribbon.
The region near his thighs is occluded and is abstracted using small lines within the flow
ribbon. The small lines convey to the viewer the presence of structure under the flow ribbon.
Illustration provided courtesy of HarperCollins publishers and Scott McCloud (McCloud
1994).

For example, in Figure 3.10, the illustrator has occluded parts of the monster’s legs

to depict the motion of his hand. At the same time, the small line segments, inside the

flow ribbon (near his legs), serve as an abstraction to represent a simplified structure of the

region of the legs occluded by the flow ribbon. Flow ribbons convey morphological change

of the feature as well as the path of motion of the feature fromthe first time step to the

current time step.

To obtain flow ribbons, we identify the centroid and the extremities of a selected fea-

ture in every time step and we use that information to draw theflow ribbons. An important

characteristic for flow ribbons is that they fade into the background and stop short of the

feature. As can be seen in all the figures in Figure 3.11, this effect gives the viewer an

opportunity to mentally complete the diagram by filling in the details. In this process of
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mentally completing the picture, the viewer is convinced ofthe change over time.

FIG. 3.11. This set of images highlights the difference betweenvarious types of flow rib-
bons. In their simplest form, flow ribbons are merely pairs ofspeedlines that convey the
change to the viewer. In the middle figure, the other extreme in which the region under the
flow ribbon is occluded by the ribbon to draw the viewer’s attention to the moving feature
and emphasize its motion. In the rightmost figure, techniques similar to Figure 3.10 were
used to generate the ribbons. Small line segments were used to abstract features occluded
by the flow ribbons.

We define three different types of flow ribbons based on their complexity. Figure

3.11 shows examples for these three types of flow ribbons. Theleftmost image shows

the simplest type of flow ribbons which are the ones in which a pair of speedlines are

considered together to convey change over time. The second type of flow ribbons, as shown

in the middle image in Figure 3.11, are opaque and occlude underlying features. It serves to

draw the user’s attention to the feature of interest. The third type of flow ribbons use small

line segments to abstract the underlying occluded features, as can be seen in the rightmost

image in Figure 3.11.

To obtain the line segments overlapping underlying features, an alpha test followed

by a stencil test in OpenGL is used. The alpha test checks for underlying features and

the stencil test draws the line segments on the underlying feature to provide an abstraction

for that feature. The line segments are dynamically generated as the timestep is being

investigated. In Figure 3.12, the helical motion of the experimental data feature is shown

using flow ribbons. The flow ribbons depict a change of motion along the path of the
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FIG. 3.12. The image shows the helical motion of the experimental data feature using
flow ribbons. Just as in Figure 3.10, the occluded features are abstracted using small line
segments. The flow ribbon gets thinner as they get closer to the newest timestep.

ribbons. As per Figure 3.10, the regions where the flow ribbonoccludes actual data, the

line segments convey an abstract representation of their underlying presence.

We applied the flow ribbons techniques to CFD data to track a feature in Figure 3.13.

The ribbons occlude the underlying feature and provide an abstracted representation of it

by small line segments, similar to Figure 3.10. The motion from the bottom right part of

the figure to the upper left part is shown using flow ribbons.

3.1.4 Opacity modulation

Illustrators have often used techniques where they use a blurred, desaturated image to

depict an older time step whereas a brighter, more detailed image represents a newer time

step.

For this technique, we identify a particular interesting feature and then merge the ren-
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FIG. 3.13. The image depicts random motion of a flow feature usingflow ribbons. The
feature moves from bottom right to upper left corner. The features occluded by the flow
ribbon are abstracted using thin, small lines to represented the underlying features.

FIG. 3.14. This illustration conveys the direction of motion ofthe hand over time. They use
low detail, thin lines for the older instants of time and highdetail, darker lines for the latest
positions of the hand to convey the motion. Illustration provided courtesy of HarperCollins
publishers and Scott McCloud (McCloud 1994).

dering of the snapshots of each timestep into one image. At the same time, we modulate

the opacity of the older timesteps and make them less opaque and dull whereas the newer

timesteps are more opaque and the colors of the newer steps are brighter compared to the

older time steps. This provides insight into the origin of the feature and its path through

multiple timesteps. We found that the opacity-based techniques in conjunction with speed-

lines were a better combination to convey the change over time than opacity-based tech-

niques.

Figure 3.14 conveys the change over multiple timesteps to the viewer. The varying
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line thickness and increasing level of detail conveys the left-to-right motion of the hand.

FIG. 3.15. The image conveys change over time using a combination of the opacity-based
technique with the speedlines based technique. The translatory motion of the feature from
upper left to bottom right is conveyed by the image.

We combined this technique with our speedlines technique toget Figure 3.15. The

older time step is less saturated and dull, whereas the newertime step is brighter and more

well defined compared to the blurred older time steps. This figure conveys the motion of

the feature, from the left upper corner to the right bottom corner, to the viewer using a

combination of the two techniques very effectively. Just aswith the speedlines technique,

the thickness of the older line decreases as the line gets closer to the newer timestep.

3.1.5 Strobe silhouettes

Illustrators have used strobe silhouettes to convey previous positions of an object. As

can be seen in Figure 3.16, the direction of motion of the axe is apparent from the trailing

silhouettes. The strobe silhouettes are increasing in their level of detail as they get closer

to the current position of the object. The oldest time step has the most abstract, low level-

of-detail silhouette. The trailing silhouette effect convincingly conveys the motion of the

axe.

To obtain strobe silhouettes, we precompute a direction-of-motion vector for the fea-
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FIG. 3.16. The image shows strobe silhouettes depicting motionover time. The downward
motion of the axe is conveyed using strobe silhouettes. Illustration provided courtesy of
Kunio Kondo (Kawagishiet al. 2003).

ture. The dot product of the direction-of-motion vector with the gradient vector of the voxel

under consideration, as shown in the equation below, identifies whether that voxel should

be included in the silhouette computation or not. We combinethe silhouettes to get the

strobe silhouette effect.

(∇fn · motionvector) < 0 =⇒ Strobesilhouette

Figure 3.17 for the experimental dataset uses strobe silhouettes to convey a transla-

tion in the horizontal direction to the viewer. The feature starts from the left extreme and

translates to its current position.

FIG. 3.17. The strobe silhouettes technique applied to the experimental data set. The
horizontal motion of the feature from left to right is depicted using the strobe silhouettes
technique.

Figure 3.18 shows the upward motion of the flow features usingstrobe silhouettes.

The direction-of-motion vector facilitates the generation of trailing silhouettes. The bottom

figure is moving upwards and the right part of the top feature is opening up. The direction

of motion and interaction between features is understood bythe viewer due to the use of
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FIG. 3.18. The strobe silhouettes technique applied to flow data. The strobe silhouettes
convey the upward motion of the two features. The direction-of-motion vector enables the
generation of trailing silhouettes.

strobe silhouettes. This image is much more effective at conveying the motion as compared

to the snapshots shown in Figure 3.4.

Strobe silhouettes are extremely effective in conveying the direction of motion to the

viewer because they provide an abstraction of past time steps. The viewer can mentally

recreate the motion with the help of these strobe silhouettes and that helps in conveying

positional change over time to the viewer.

3.2 Multi-feature tracking

We know that all flow features are moving in time-varying data. We have annotated

visualizations of time-varying data containing multiple features with our illustrative cues.

Figure 3.19 shows a visualization where the motion of six feature is conveyed using speed-

lines. The image clearly conveys temporal history for each feature.

Figure 3.18 shows an example of upward motion of two featuresusing strobe silhou-

ettes. Figure 3.20 shows another example where the motion ofthree features in real world

data is conveyed using a combination of techniques. Flow ribbons are used to show the
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FIG. 3.19. The image shows multiple feature tracking using speedlines for a synthetic
dataset with six moving features. In this case, the six features are moving independently of
each other and the addition of illustrative cues provides context regarding the direction of
motion of each feature.

motion of a feature and speedlines are used for the motion of the other two features. Since

flow ribbons occlude underlying flow features, we use flow ribbons to depict the motion of

higher priority features and speedlines are used for lower priority flow features. The cen-

tral feature is moving leftwards and its motion is shown using a flow ribbon. The topmost

feature’s rightward motion and the bottommost feature’s leftward motion is shown using

speedlines.

3.3 Discussion

The suitability of these techniques is highly dependent on the type of motion the fea-

ture undergoes. The strobe silhouettes or the opacity-based techniques are not suitable for

types of motion where the feature re-traces the path it has followed because the silhouettes

will overlap each other making it harder for the viewer to track the feature and disam-

biguate older silhouettes with newer ones. Similarly, for opacity-based techniques an older

timestep will be occluded by newer timesteps and can cause confusion for the viewer. For

such motion, the speed lines or the flow ribbons would be more suitable. Among other

types of motion, the speedlines as well as the flow ribbons techniques would be suitable



45

FIG. 3.20. Multiple feature tracking using flow ribbons for the higher priority flow feature
and speedlines for the lower priority flow features. The central feature’s leftward motion
is represented using a flow ribbon. The rightward motion of the topmost feature and the
leftward motion of the bottommost feature is represented using speedlines.

for twisting motion. Figure 3.12 is a great example that depicts spiral motion of the feature

using flow ribbons.

This brings us to the use of multiple techniques in a single visualization. We have

already seen the combination of speedlines and opacity-based techniques in Figure 3.15.

Figure 3.21 is another example that uses flow ribbons and opacity-based technique to con-

vey change over time. This is the actual motion of the featurewhose snapshots are shown

in Figure 3.3. It is evident that this single image (Figure 3.21) effectively conveys the rota-

tional motion of the feature compared to the five snapshots inFigure 3.3. The combination

of opacity-based techniques and flow ribbons concisely captures the feature’s rotational

motion.
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FIG. 3.21. The rotational motion of the feature in the experimental dataset is conveyed
using a combination of opacity-based techniques and flow ribbons. This figure conveys the
actual motion of the feature whose snapshots are shown in Figure 3.3. This motion is not
at all obvious by looking at the snapshots in Figure 3.3.



Chapter 4

INTENT-BASED SIMPLIFICATION OF PATHS

Simplificationinvolves generating a simplified version of a higher resolution model.

Simplification is increasingly popular in computer graphics, due to the constant need to

provide realism as well as interactivity. For example, in a computer game the participant

cares more about the goal of the game than the detail of the surroundings. From a distance,

a model containing 100K polygons will look indistinguishable from its simplified repre-

sentation that contains 1K polygons. Graphics researchersand game developers leverage

this to improve the speed and interactivity of the game or application. In general,geometric

simplificationinvolves automatically generating a geometric mesh based on the distance of

the viewer from the object (Luebkeet al. 2003). Geometric simplification is also employed

to obtain simplified representations of a mesh to reduce the computational complexity or

increase user’s interactivity. It is primarily driven by the need to simplify due to graphics

hardware limitations or computational limitations. The challenge in geometric simplifica-

tion is maintaining visual fidelity and keeping the process of simplification transparent to

the viewer. High visual fidelity is hard to maintain and researchers have worked on mea-

suring the simplification by comparing rendered images of simplified meshes (Lindstrom

and Turk 2000) or appearance-preserving simplification based on pixel-based comparison

(Cohenet al. 1998).

Cognitive simplification, on the other hand, attacks the problem of generating sim-

plified versions using cognition-based principles. The first step in cognitive simplification

is identifying features that are important from the point ofview of an user. Cognitively

47
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FIG. 4.1. The image above displays increasing simplification ofthe coastline of Sardinia
from left to right. The rightmost image could be used to convey the overall structure of
Sardinia whereas for the purpose of coastal shipping the leftmost detailed map would be
more appropriate (Robinson and Sale 1969).

significant features are different from perceptually significant features. Perceptually sig-

nificant features stimulate the visual senses by their ability to capture attention with their

color, brightness or co-location with other features. Cognitively significant features, on the

other hand, contribute towards the increase of knowledge and assist in the decision mak-

ing process. They are generally task-specific and the presence of a domain-expert may be

required to characterize a cognitively significant feature.

The second step in the cognitive simplification process is the generation of a simplified

representation without losing the identified features. Thesimplification is primarily driven

by human factors such as cognitive bandwidth overload and visual clutter. The simplified

representation retains the salient characteristics of theunderlying features. Ahn and Wohn

(Ahn and Wohn 2004) have applied techniques to generate simplified representations of

motion capture data for scenes with large crowds. They applysimplification techniques

to the motion patterns for each character in a large crowd as well as their character mesh

for real-time rendering of crowds. In such situations, a cognitive simplification approach

would be extremely useful to represent the motion of characters farther away from the
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viewer in an abstract manner and preserving detail for characters closer to the viewer.

Consider a scenario in which motion capture data of a character consists of a path as

shown in blue in Figure 4.2. In an effort to use a naive one-out-of-n simplification, the loop

will be completely eliminated as has been shown in the simplified representation depicted

in red in the figure. Using more sophisticated geometric simplification algorithms can still

not ensure preservation of desired features in a low-level representation. We would like to

generate a simplified representation that preserves features in the data. For example, in the

bottom image in Figure 4.2, the simplified representation, shown in red, preserves the loop

in the path. A cognitive-simplified representation would beable to preserve such features

based on a user defined function or a mask.

FIG. 4.2. The original path is depicted in blue and its simplifiedrepresentation, obtained by
using a simple one-out-of-n simplification algorithm, is shown in red. The bottom image
depicts a feature-preserving representation of the same path using cognitive simplification.

We have applied our path simplification techniques to visualizing the path traversed

by the eye of hurricane Katrina. Information regarding the path that the hurricane is likely

to take is very crucial for planning rescue and evacuation operations. Our cognitive sim-

plification techniques on the path of the hurricane produce path representations that are

easy to use for decision-making purposes. That is primarilydue to their ability to preserve

relevant features even at simplified representations of thepath.
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4.1 Approach

Cognitive simplification is a two step process. The first stepinvolves the specification

of a function that identifies the features that should be preserved in the simplification pro-

cess. We call this function the “simplification function.” This function could be specified

in the form of an equation or could be specified manually in theform of mask per curve

point that specifies the simplification factor individuallyfor each curve point.

The second step consists of performing simplification giventhe simplification func-

tion. Based on the specified simplification function, pointsfrom the original curve get

included into the simplified representation.

4.1.1 Weighted averaging of eliminated points

In the process of simplification, the specified function causes the elimination of cer-

tain control points of the original curve. The points, though eliminated, are a part of the

original curve and contain information related to it that wetry to capture using weighting.

The primary reason for weighting the eliminated points is tocapture the essence of the

eliminated control points. They could be considered as the equivalent of knots in splines

that affect the shape of the curve. Similarly, these eliminated points have weights that affect

the position of the neighboring control points included in the simplified curve.

For example, if pointi-1 and point i are included in the simplified representation but

k points were eliminated in between due to the simplification function, a weighted average

of those eliminated points is performed to affect the pointi. The weighting is Gaussian and

is performed using the following formula.

s(i) =
k

∑

m=0

weight(m) ∗
k − m

k
∗ orig curvei−m (4.1)

weight(m) = weight − (weight ∗
k − m

k
) (4.2)
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The first equation computes the weight for the eliminated points based on their dis-

tance from the current point. The points that are closest to the current pointi, have the

largest weight. The weight decreases rapidly as we go further away from the current point

i under consideration. Equation 2 specifies the weighting function as the eliminated points

from the original curve fromi to i-k affect the current simplified point.

In Figure 4.3, the top image depicts the simplified representation in red but without av-

eraging the eliminated points. The bottom image depicts theeffect of weighting eliminated

points on the overall appearance of the simplified curve. In the top image, the eliminated

points do not have any effect on the shape of the curve especially near the three peaks in

the central region of the curve. In the bottom figure though, the simplified representation

with weighting clearly affects the shape of the curve by taking into account the eliminated

points. The overall shape of the curve, in the bottom image, seems to capture the essence

of the original curve better than the simplified representation without the weighting.

FIG. 4.3. The top image depicts the simplified representation inred but without averaging
the eliminated points. The bottom image performs Gaussian weighting on the eliminated
points to take those into consideration to affect the overall appearance of the curve. As can
be seen in the bottom image, the second bump is a little more tapered and the subsequent
bumps too are weighted due to the eliminated points.
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Our simplification functions are based on properties of a curve. We now explore sim-

plification functions that include linearly increasing simplification along the curve, depth-

based simplification, simplification based on region-of-interest and curvature-based func-

tions. We allow the user to specify a simplification functionthat ensures the preservation

of features of interest to the user.

4.1.2 Linearly increasing simplification

Consider a situation where we have information regarding the path traversed by a char-

acter in an animation over time. In such a situation, an animator might be more interested

in preserving details of the path for the newer instants and simplify the path for older time

instants. In such a situation, a linearly decreasing simplification function could be used to

generate feature-preserving simplified representations along the path.

In this method, the simplification factor at the beginning ofthe curve is at a maxi-

mum. This implies that the simplification is maximum for older time instants and linearly

decreases towards the end of the curve where it almost faithful to the original curve. The

simplification function s(i) is given as

s(i) = 1.0 −
i

n
(4.3)

In the above equation,i denotes the index of the current point andn denotes the total

number of points in the original curve. Asi tends ton, the simplification function gets

closer to 0.

Figure 4.4 depicts the original curve in blue and a simplifiedrepresentation in red.

The simplified representation is obtained by linearly increasing the simplification factor as

it approaches the endpoint of the curve. A graph showing the ramp simplification function

is shown below in Figure 4.4. As the simplification factor increases, the simplified repre-

sentation gets less faithful to the original curve. A linearly increasing simplification s(i)
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could be specified as

s(i) =
i

n
(4.4)

FIG. 4.4. The image depicts the original curve in blue and the simplified representation in
red. The ramp simplification function implies increasinglysimplification as we traverse the
curve. The graph depicts the simplification function as the simplification factor increases
towards the end of the curve.

4.1.3 Depth-based simplification

Another scenario from the field of computer animation could consist of a character

running into the distance away from the viewer. In such situations, it would be more ap-
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propriate to preserve information regarding the path traversed by the character when closer

to the viewer and generating a simplified representation relative to its distance from the

viewer. The viewer will notice detail in the path closer to them and the depth-based simpli-

fied representation will provide the necessary cues to convey the direction of motion of the

original path.

In this method, the simplification factor is based on the distance of the points in the

curve from the viewer. The simplification factor is high for points that are farther from the

viewer while those points close to the viewer have a very small simplification factor. This

method preserves detail for features that are closer to the viewer and generates simplified

representations for features that are away from the viewer.The depth-based simplification

function s(i) is given below. Here point.z refers to the viewspace depth of the point under

consideration.

FIG. 4.5. The image depicts the unsimplified curve in blue with its shadow being cast on the
surface below. The simplified representation of the curve isdepicted in red. The shadow
of the simplified curve clearly depicts that points on the curve farther away from the future
are simplified and points closer to the viewer are retained almost faithfully.
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s(i) =
point.z − znear

zfar − znear
(4.5)

In the equation above, the simplification function is definedbased on the distance of

thez-coordinateof the current point from the viewer.Zfar andznearare the distances to

the far and near clipping planes respectively. As the distance of the current point from the

viewer increases, the simplification factor increases and causes more simplification.

In Figure 4.5, the original three dimensional curve is shownin blue and the depth-

based simplified representation is depicted in red. In the orthogonal view, the depth-based

simplification is not apparent, but on closely observing theshadow of the simplified rep-

resentation, the depth-based simplification is obvious. The points closer to the viewer are

retained whereas the points constituting features fartheraway from the viewer are repre-

sented in a simplified manner. The preserved detail in pointsthat are closer to the viewer

allows the user to explore a particular region without beingaffected by the surrounding

visual clutter.

4.1.4 Distance from center of interest

Consider a situation in which a comet is traveling and there is information regarding

its path. Scientists would want to know more about its path information as its proximity

to the earth increases. As the comet’s path gets closer to theearth, every detail would

be crucial whereas in the other regions the comet’s path would not be as important to the

scientists. In such situations, a region of interest (the area surrounding the earth) can be

specified and details of the path in that region can be preserved and the rest of the path may

be simplified.

In this case, the simplification factor increases radially as the distance of the points

on the curve from the center-of-interest increases. Pointsthat are closest to the center of

interest are retained almost faithfully, whereas points constituting features that are farther
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away are represented in a simplified manner.

s(i) =
√

(Pix − COIx)2 + (Piy − COIy)2 + (Piz − COIz)2 (4.6)

In the equation above,Pix stands for the x-component of theith point in the original

curve andCOIx stands for the x-component of the center-of-interest. The same notation

holds for the y- and z-components of the point under consideration and the center of inter-

est. As can be seen from the equation, the simplification factor is larger for points farther

away from the region of interest and smaller for points closer to the center of interest.

FIG. 4.6. The top image depicts the unsimplified curve in blue andthe simplified repre-
sentation in red. The center of interest is marked in the formof a big green point at the
center of the image. A graph depicting the center-of-interest based simplification function
explains the situation better.

In Figure 4.6, we see the unsimplified curve in blue and the simplified representation

in red. The simplified representation is faithful to the curve in the region surrounding the

center of interest due to a small simplification factor, whereas it is highly simplified in

regions farther away from the center of interest. The simplification factor increases with

increase in the distance of the point from the center-of-interest.
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4.1.5 Curvature-based function

In a situation where one is driving along an unknown road, more information and

warning regarding upcoming sharp turns would be helpful to avoid accidents. Naive sim-

plification techniques could completely remove information regarding such a turn which

would be dangerous for the driver. If we have high detail surrounding such regions, it

would help the driver to prepare for the upcoming turn. Such sudden, acute turns could be

identified automatically using curvature at each point in the path. We can preserve detail

around such regions using curvature-based techniques.

The simplification function is computed based on the curvature of the curve at each

point in the original curve. Based on the amount of simplification that is desired, the

minimum threshold for the acceptable curvature is specified. The simplified curve contains

all the points whose curvature is higher than the threshold.

In Figure 4.7, the blue curve depicts the original curve and the simplified representa-

tion of the curve is shown in red. Simplification is performedbased on regions that have

high curvature. Regions of high curvature could be points ofinterest and are therefore pre-

served. The simplified curve is obtained by eliminating points with a low value of curvature

since smaller values of curvature generally imply similarity with straight lines.

4.1.6 Manually specifying a simplification function

There are many situations where a domain expert’s knowledgeand experience are

invaluable. Our system has the ability to incorporate such expertise. In the process of

simplification of a map, a cartographer might want to preserve path details in tourist spots

as more people will visit and use that detail to navigate themselves. The rest of the path

could be simplified more. The cartographer will then specifya mask that preserves path

detail at the tourist spots which will result in a low-level representation with sufficient detail

at specified points.

The features specified by a domain expert will be preserved inthe simplified repre-

sentation and simplification shall be carried out as per the specified simplification function.
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FIG. 4.7. The original curve is depicted in blue and the simplified representation is in red.
High curvature points are preserved in the simplified representation.

As can be seen in Figure 4.8, the original curve is depicted inblue and a simplified

representation of the original curve is depicted in red. Thesimplification is performed

based on the importance mask specified by the user. A graph of the specified simplification

function is shown in the rightmost image. The simplificationfunction can be specified in

the form of a file or the user can draw a graph in another application window. As can be

seen from the image, the simplified regions of the curve correspond to the peaks of the

simplification function graph and the curve is more faithfulto the original in the troughs of

the simplification function.

4.2 Cognitive simplification of hurricane paths

We apply our cognition-based simplification techniques to the visualization of the path

taken by the eye of Hurricane Katrina. Ahurricanecan be defined as a tropical cyclone

with high-speed winds. They blow in a large spiral around thecentral region called theeye

of the hurricane. A hurricane consists of three main parts, theeyewhich is a low pressure

area at the center of the hurricane, theeye wallis the region around the eye with the fastest
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FIG. 4.8. The original curve is depicted in blue and the simplified representation is depicted
in red. The simplified representation is based on the manually specified simplification
function that is shown below in the form of a graph. The simplified curve is more simplified
near the peaks of the simplification function and faithful tothe original near the troughs of
the function.

winds, and therain bandswhich are the bands of thunderstorms circulating outward from

the eye that feed the storm.

Our dataset is a simulation of the hurricane Katrina and contains attributes such as

vertical velocity, relative humidity, temperature, and cloud water. The dataset consists of

70 timesteps, each of which has dimensions 276x288x60. Figure 4.9 shows a screenshot

of the volume rendered image of the 70th timestep. The eye of the hurricane is surrounded

by the eyewall. Some rainbands too can be noticed towards theright side of the image.

We tracked the eye of the hurricane since it is the region withthe highest wind speeds and

representative of the direction of motion of the hurricane.Any other tracking information

for the hurricane’s direction of motion can easily be used inplace of the eye tracking

information used here.

Generally hurricanes form over the ocean and sometimes headtowards land. In a

situation where the hurricane is approaching the land, the information regarding the path

that the hurricane could traverse is of critical importancefor local authorities. The linearly
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FIG. 4.9. The figure depicts a screenshot of the visualization ofthe hurricane Katrina simu-
lation dataset. The cylinder structure towards the left is the eye of the hurricane surrounded
by the eyewall. Some rainbands can be seen towards the right side of the image. The im-
age is a volume rendered image of the cloud water component inthe 70th timestep of the
hurricane dataset.

decreasing simplification function could be used in this case where the simplification factor

reduces to almost zero as the hurricane approaches land.

Figure 4.10 depicts the original path traversed by the hurricane. increased simplifica-

tion as the hurricane approaches the current timestep. The path information contained in

earlier timesteps is simplified to convey the general direction. A simplified representation

using a ramp simplification function is shown in Figure 4.11.

An important measure of the potential damage and coastal flooding possible due to a

hurricane is thecategoryof the hurricane. The category of a hurricane is predominantly

determined by the speeds of the winds within the hurricane. Acategory 5 hurricane can

have wind speeds of 155 mph. Studying the conditions when a hurricane changes its cate-

gory is of great interest to meteorologists. In such situations, being able to visualize high

detail regarding the path of the hurricane based on a category transition is very useful. A

region-of-interest can be specified that will facilitate the study of conditions in these cate-

gory transition areas. For example in Figure 4.12, a center-of-interest is identified around

the center of the path. The figure shows that the detail in thatregion is preserved and the

path is simplified in the surrounding areas. The region closeto the center-of-interest seems

to have large perturbations that might indicate the transformation undergone by the hurri-

cane. The hurricane seems to be heading downward but then theintensity of the hurricane

increases and it starts moving back up. The zigzag pattern isclearly visible in the Figure
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FIG. 4.10. The original path traversed by the eye of Hurricane Katrina

FIG. 4.11. A ramp simplification function with more detail towards the eye of the current
timestep

FIG. 4.12. The center-of-interest simplification function that preserves detail around a
region of interest.

FIG. 4.13. Curvature based simplification that preserves regions of high curvature.
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FIG. 4.14. The top image depicts simplification based on a mask specified by the user.
The graph shows the manually specified simplification function with two peaks.

4.12 after which the hurricane continues moving leftwards and upwards.

High curvature points in a path can specify unexpected change in direction. Visu-

alizing detail in such regions can help the study of the conditions that caused the abrupt

change in direction of the path. In an attempt to identify important features automatically,

the curvature at the points constituting the path could be used. High curvature regions

could be used to capture important events in the path of the hurricane. Such regions could

be preserved whereas the simpler, straighter path of the hurricane could be simplified to

allow effectively visualizing the path of the hurricane. Figure 4.13 depicts the original path

and the simplified path that retains detail in high curvatureregions of the path. Salient

features near the center of the path and towards the end are well captured in the simplified

representation.

A domain expert could specify an importance mask that would indicate regions in

which detail needs to be preserved. Use of such an importancemask is extremely useful

when regions of interest cannot be defined as clearly by specifying a center-of-interest

point discussed earlier. Figure 4.14 depicts such a situation in which a user has specified an

importance mask that contains two peaks. The peaks imply regions where the simplification

factor is highest. On observing the simplified representation, the mask causes the low-
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level representation to be faithful to the original path in the central regions as well as the

endpoints. In the other regions corresponding to the peaks,the simplification is performed

to give a representation as per the specified mask.

Our cognitive simplification techniques shall greatly helpdecision-making by present-

ing more detail regarding the path of the hurricane near heavily inhabited areas, oil rigs and

land, in general. The general direction of the hurricane maybe sufficient when it is far from

the critical areas.

4.3 Semantic simplification of driving directions

Figure 4.15 shows the original path, a naive simplification and two examples of se-

mantic simplification being applied to driving directions.The top image shows the original

path obtained from Google Maps for a location in Seattle, WA to Redmond, WA. The sec-

ond path from the top shows a simplified representation visualization where one out of

eight points from the original path are selected. It simplifies crucial detail near the source

and destination. The third visualization from the top showsa semantic simplification where

detail is preserved towards the destination. This type of visualization can be very useful

since one is sufficiently familiar with getting to the nearest interstate from their own house,

but needs the detail towards the destination. The fourth visualization from the top shows

another example of semantic simplification where the detailalong the path is preserved

near gas stations (indicated by green circles close to the path). Such a visualization can be

useful when one is traveling on a road trip and needs to know where the next gas station is

and some detail around it.

The hurricane path is obtained by automatic tracking of the center of the eye of the

hurricane in every timestep. This provides us with highly detailed information regarding

the path of the hurricane. The driving directions is in the GPX data format that is obtained

from Google Maps driving directions. Our system allows the user to input any source and

destination and converts the data we obtain from Google mapsinto GPX data points along

the path. This data is then used for the path simplification process.
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FIG. 4.15. The top image shows the original path in blue and the simplified paths in red.
The naively simplified representation is shown in the secondvisualization from the top.
Much detail near the source and destination is lost in this representation. The third vi-
sualization shows a semantic simplification where detail near the destination is preserved
whereas the remaining path is simplified. Such a visualization is useful since one is famil-
iar with getting to the nearest freeway from Inez house. The last visualization image shows
a path where detail is preserved near gas stations (shown as green circles near the path).
These visualizations are generated from actual driving directions obtained from Google
Maps.

4.4 Conclusions

We have proposed cognitive simplification techniques to generate simplified feature-

preserving representations of curves. Our techniques can be used to reduce visual clutter

and generate better task-oriented representation of curves and paths. Various simplifica-

tion functions have been introduced that perform varying simplification along a curve to

allow the user to view details in a curve/path as per their needs. We have applied our

techniques to the path visualization of the eye of hurricaneKatrina. We believe that us-

ing our cognitive simplification techniques to simplify paths of the hurricane can facilitate
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easy decision-making. Our cognitive simplification techniques can be used in many other

application domains of computer graphics such as computer animation, motion editing,

non-photorealistic rendering and cartography.



Chapter 5

EVALUATION OF ILLUSTRATION-INSPIRED

TECHNIQUES

This chapter discusses the first of two user evaluations thatwere conducted to exam-

ine the effectiveness of our art-inspired techniques. The goal in this particular study was

to evaluate the effectiveness of our illustration-inspired techniques in aiding the feature

tracking abilities in positionally variant time-varying data visualization. Practitioners use

large panoramas of snapshots taken over time to track a feature or in some cases watch an

animation to help in the task of feature tracking. The aim is to evaluate the benefit the use

our techniques for which we measure user accuracy, time required by the users to complete

a task and user confidence in their answers.

To measure the visual tracking ability of human beings, Pylyshyn (2003) conducted a

user study by showing subjects moving objects over time. Subjects were asked to visually

track these objects as they moved through time. The outcome of the study was that a

human being can successfully track five objects moving at a relatively moderate speed but

as the speed of the moving objects increased, the user’s ability to track the features reduced

drastically. They also found that the user’s ability to track features reduced sharply as they

were asked to track more than five objects.

66
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5.1 Hypothesis

Our testable hypothesis is that illustration-inspired techniques can lead to improved

visual tracking of features as they move over time. Byimprovedvisual tracking, we mean

our techniques will facilitate faster and more accurate visual tracking compared to standard

snapshot-based or animation-based visualization of time-varying data.

5.2 Independent variables

The independent variables for the user study are the two different ways that theposi-

tionally variant time-varying data can be viewed.

They were as follows:

• A panorama of snapshots or a single image augmented with our illustration-inspired

techniques

• An animation depicting the motion of the feature or an animation augmented with

illustration-inspired techniques.

FIG. 5.1. These are a set of snapshots from successive time stepsof a volume. As is evident
from looking at the snapshots, it is very hard to correlate and track a particular feature over
different time steps.

Figures 5.1 and 5.2 show sample images of a panorama of snapshots and an

illustration-inspired visualization of the same data respectively. Inspecting a set of snap-

shots is one of the standard visualization techniques used.As can be seen by looking at this

series of snapshots, it is very hard to identify the direction in which the contained three-

dimensional features are moving. Figure 5.2 shows a sample visualization created using
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FIG. 5.2. An example of an illustration-inspired technique applied to the vortex data. The
strobe silhouettes technique has been applied in this case.Strobe silhouettes convey the
upward motion of the two features.

our techniques. The upward movement of the features is clearly conveyed using our strobe

silhouette techniques.

For evaluating the illustration-inspired techniques, we compared baseline techniques

such as looking at a panorama of snapshots or an animation with visualizations gener-

ated by our techniques. There are primarily two kinds of illustration-inspired techniques.

Speedlines and flow ribbons are similar in nature. Opacity modulation and strobe silhou-

ettes are similar in the way they communicate path positionsof features. We evaluated our

techniques with speedlines and opacity-based techniques as they were representative of the

class of illustration-inspired techniques.

5.3 Procedure

Before we began the formal evaluation process, we ran a pilotexperiment. Pilot stud-

ies always seem to reveal some problems and allowed us to fix them before we began the

entire user study (Martin 2003).
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5.3.1 Subjects

We tested our techniques with 24 subjects who had basic familiarity with using com-

puters. We did not restrict ourselves to any age group or gender. We performed full fac-

torial, within-subjects testing to evaluate our techniques. In order to balance the ordering

effects we tested the subjects with all possible combinations of orderings of trials.

Table 5.1 shows the ordering used for the subjects. Within each category such as

“Snapshots” and so on, we tested the subjects for four different visualization techniques.

The ordering used within each category is provided in Table 5.2. Table 5.3 shows the entire

table for the study enumerating the order in which each user would see each visualization.
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Sub ID Snapshots Augmented Snapshots Animation Augmented Animation

1 1 2s 3 4o
2 1 2s 4 3o
3 1 3s 2 4o
4 1 3s 4 2o
5 1 4s 2 3o
6 1 4s 3 2o
7 2 1s 3 4o
8 2 1s 4 3o
9 2 3s 1 4o
10 2 3s 4 1o
11 2 4s 1 3o
12 2 4s 3 1o
13 3 1o 2 4s
14 3 1o 4 2s
15 3 2o 1 4s
16 3 2o 4 1s
17 3 4o 2 1s
18 3 4o 1 2s
19 4 1o 3 2s
20 4 1o 2 3s
21 4 2o 1 3s
22 4 2o 3 1s
23 4 3o 2 1s
24 4 3o 1 2s

Table 5.1. Ordering for evaluation of our techniques in comparison to standard visualiza-
tion techniques. Heres stands for speedlines ando stands for opacity-based techniques as
discussed in the previous chapter.



71

a b c d
a b d c
a c b d
a c d b
a d b c
a d c b
b a c d
b a d c
b c a d
b c d a
b d a c
b d c a
c a b d
c a d b
c b a d
c b d a
c d a b
c d b a
d a b c
d a c b
d b a c
d b c a
d c a b
d c b a

Table 5.2. In each of the four categories mentioned in table 5.1, the subject is shown four
different images/animations. These examples are varied according to the order given above.
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Sub ID Snapshot Augmented Snapshots Animation Augmented Animation

1 1-a 1-b 1-c 1-d 2s-a 2s-b 2s-c 2s-d 3-a 3-b 3-c 3-d 4o-a 4o-b 4o-c 4o-d
2 1-a 1-b 1-d 1-c 2s-a 2s-b 2s-d 2s-c 4-a 4-b 4-d 4-c 3o-a 3o-b 3o-d 3o-c
3 1-a 1-c 1-b 1-d 3s-a 3s-c 3s-b 3s-d 2-a 2-c 2-b 2-d 4o-a 4o-c 4o-b 4o-d
4 1-a 1-c 1-d 1-b 3s-a 3s-c 3s-d 3s-b 4-a 4-c 4-d 4-b 2o-a 2o-c 2o-d 2o-b
5 1-a 1-d 1-b 1-c 4s-a 4s-d 4s-b 4s-c 2-a 2-d 2-b 2-c 3o-a 3o-d 3o-b 3o-c
6 1-a 1-d 1-c 1-b 4s-a 4s-d 4s-c 4s-b 3-a 3-d 3-c 3-b 2o-a 2o-d 2o-c 2o-b
7 2-b 2-a 2-c 2-d 1s-b 1s-a 1s-c 1s-d 3-b 3-a 3-c 3-d 4o-b 4o-a 4o-c 4o-d
8 2-b 2-a 2-d 2-c 1s-b 1s-a 1s-d 1s-c 4-b 4-a 4-d 4-c 3o-b 3o-a 3o-d 3o-c
9 2-b 2-c 2-a 2-d 3s-b 3s-c 3s-a 3s-d 1-b 1-c 1-a 1-d 4o-b 4o-c 4o-a 4o-d
10 2-b 2-c 2-d 2-a 3s-b 3s-c 3s-d 3s-a 4-b 4-c 4-d 4-a 1o-b 1o-c 1o-d 1o-a
11 2-b 2-d 2-a 2-c 4s-b 4s-d 4s-a 4s-c 1-b 1-d 1-a 1-c 3o-b 3o-d 3o-a 3o-c
12 2-b 2-d 2-c 2-a 4s-b 4s-d 4s-c 4s-a 3-b 3-d 3-c 3-a 1o-b 1o-d 1o-c 1o-a
13 3-c 3-a 3-b 3-d 1o-c 1o-a 1o-b 1o-d 2-c 2-a 2-b 2-d 4s-c 4s-a 4s-b 4o-d
14 3-c 3-a 3-d 3-b 1o-c 1o-a 1o-d 1o-b 4-c 4-a 4-d 4-b 2s-c 2s-a 2s-d 2s-b
15 3-c 3-b 3-a 3-d 2o-c 2o-b 2o-a 2o-d 1-c 1-b 1-a 1-d 4s-c 4s-b 4s-a 4s-d
16 3-c 3-b 3-d 3-a 2o-c 2o-b 2o-d 2o-a 4-c 4-b 4-d 4-a 1s-c 1s-b 1s-d 1s-a
17 3-c 3-d 3-a 3-b 4o-c 4o-d 4o-a 4o-b 2-c 2-d 2-a 2-b 1s-c 1s-d 1s-a 1s-b
18 3-c 3-d 3-b 3-a 4o-c 4o-d 4o-b 4o-a 1-c 1-d 1-b 1-a 2s-c 2s-d 2s-b 2s-a
19 4-d 4-a 4-b 4-c 1o-d 1o-a 1o-b 1o-c 3-d 3-a 3-b 3-c 2s-d 2s-a 3s-b 2s-c
20 4-d 4-a 4-c 4-b 1o-d 1o-a 1o-c 1o-b 2-d 2-a 2-c 2-b 3s-d 3s-a 3s-c 3s-b
21 4-d 4-b 4-a 4-c 2o-d 2o-b 2o-a 2o-c 1-d 1-b 1-a 1-c 3s-d 3s-b 3s-a 3s-c
22 4-d 4-b 4-c 4-a 2o-d 2o-b 2o-c 2o-a 3-d 3-b 3-c 3-a 1s-d 1s-b 1s-c 1s-a
23 4-d 4-c 4-a 4-b 3o-d 3o-c 3o-a 3o-b 2-d 2-c 2-a 2-b 1s-d 1s-c 1s-a 1s-b
24 4-d 4-c 4-b 4-a 3o-d 3o-c 3o-b 3o-a 1-d 1-c 1-b 1-a 2s-d 2s-c 2s-b 2s-a

Table 5.3. Complete table enumerating the ordering of visualizations for user evaluation of illustration-inspired techniques.
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5.3.2 Datasets

A mix of synthetic and real world data was used. For initial training purposes, syn-

thetic data is suitable to familiarize the users with the nature of the dataset and tasks that

they will be asked to perform.

Specific characteristics of the datasets that we use for evaluation were:

• Three-dimensional in nature containing three-dimensional features. There should be

at least one feature in the dataset.

• Features have to be trackeda priori to facilitate visualization. This means that our

work does not deal with the actual task of identifying and tracking a feature over

time. Our work focuses on aidingvisual trackingof a feature and does not deal with

automatic feature tracking in time-varying data (Samtaneyet al. 1994), (Silver and

Wang 1996). The paths traversed by the contained features should be available for

visualization purposes.

In order to evaluate our visualization techniques, we developed a few synthetic

datasets that have all the characteristics mentioned above. Since the datasets were gen-

erated by hand, they were very useful for evaluating the strengths and weaknesses of a

visualization technique.

Some synthetic datasets that we used were:

1. Simple linear/circular motion of a feature

2. Multiple features with simple motion paths - linear, circular and spiral

3. Multiple features moving at the same time - with complex motions

The real world data that we used is the Vortex dataset from Rutgers university (Fer-

nandez and Silver 1998). The dataset is a pseudospectral simulation of coherent turbulent

vortex structures with a 128x128x128 resolution (100 time steps). The variable being vi-

sualized is vorticity magnitude. This time-varying dataset has numerous features changing
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over time in the form of splitting into multiple features or multiple features merging into a

single feature.

During the user study, we followed this procedure:

1. Explain the user study to the subject and inform them of what it entails.

2. Obtain consent from the subjects for the user study.

3. Present them with training material and let them familiarize themselves with the task

for some time.

4. Conduct the user study and collect the results after they were done

5. Present a usability questionnaire and get subjective feedback from the subjects.

Questions for this questionnaire are specified in the next section.

5.3.3 Subjective Evaluation

Subjects were requested to fill out a questionnaire where theusability was evaluated.

Their answers were obtained on a scale of 1 (easy/agree) to 9 (hard/disagree). Questions

asked in the questionnaire were as follows:

1. Were the questions asked for each evaluation straightforward?

2. Overall did you think the speedlines techniques helped convey direction better than

standard visualization techniques?

3. Overall did you think the opacity-based techniques helped convey direction better

than standard visualization techniques?

4. Could you perform simple tasks such as tracking a single feature using standard

snapshots/animation-based techniques?

5. Could you perform simple tasks such as tracking a single feature using illustration-

based techniques?
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6. Could you perform hard tasks such as tracking multiple features using standard

snapshots/animation-based techniques?

7. Could you perform hard tasks such as tracking multiple features using illustration-

based techniques?

5.4 Tasks

We primarily ask users to track features as they are moving over time. The reason

for picking such as task is because it is representative of what researchers need to do on a

regular basis as they track vortex tubes in feature data, as they track hurricane features over

time, as they track the energy of jets as they enter a region and so on. Our tasks were simple

enough to test the effectiveness of our techniques with subjects who may not necessarily be

application-domain experts, but at the same time they represent tasks that scientists need to

perform on a regular basis.

The question we asked the user was

Which of these paths seems to best represent the observed direction of motion of the

feature?

The subject was presented with four choices of paths and could pick one of them

according to the perceived motion. This enabled us to test complex motion paths instead of

just simple linear motion of features.

5.5 Dependent variables

We measure the accuracy of the users in performing the task inaddition to the time

required to complete the task. Theuser performance timeis the time required by the user to

read the question, look at the snapshots/animation and thensubmit the answer. Time helps

us analyze whether subjects perform the task faster using our techniques as compared to

standard techniques. Additionally, we measured theconfidenceof the user in their answer.

We also obtain feedback in the form ofsubjective satisfactionwhere we ask subjects to rate
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their experience on a scale of 1-9 (Likert scale).

5.6 Conducting the user study using a web browser

The user study was conducted using a web browser. As we had to show videos to the

subjects, we used Riva Free FLV encoder to encode AVI files into flash files that can be

shown to the viewer in the browser setting. Figure 5.3 is a screenshot of the first screen

shown to the subjects. It gives an overview of the user study to the subjects. After answer-

ing any other questions that the subject might have, we request the consent of the subject

to continue the user study.

FIG. 5.3. A screenshot of the welcome screen that was shown to thesubjects. The subjects
were explained the user study and any other questions were answered before obtaining their
consent.

Figures 5.4 and 5.5 show screenshots of screens that the subjects see. We first ask the
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user a question and depending on the kind of data (snapshots or animation), the user then

observes it and provides an answer. We ask the user to specifythe direction in which a

particular feature is moving. The user then picks one of the given choices and indicates a

confidence level in their answer. We use a Likert scale to measure the confidence that the

subjects have in their answers. The user was asked to select aconfidence level from one

of: Not at all confident, Slightly confident, Confident, Highly Confident, and Completely

confident.

FIG. 5.4. A screenshot of a sample screen that is shown to the subjects. The subjects were
shown images and were asked to indicate the direction of motion of a particular feature
moving over time. They were also requested to give their confidence level in their answer.
This helps us identify how confident the subjects were with their answers using standard as
well as our illustration-inspired techniques.

5.7 Results

To analyze the effectiveness of our techniques we analyzed the results of the user

study using statistical techniques. In order to obtain a quantitative comparison of our tech-

niques, we evaluate the accuracy, the time required for subjects to complete a task and

their confidence in their answers. To compare the four different visualization types we

use the statistical testAnalysis of Variance (ANOVA). This test allows us to compare the
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FIG. 5.5. Another screenshot of a sample screen that is shown to the subjects. Here the
subjects were shown an animation and were asked to indicate the direction of motion of
a particular feature moving over time. They were also requested to indicate their level of
confidence level in their answer.

accuracy, timings and confidence obtained from the four groups (snapshots, augmented

snapshots, animations and augmented animations). The testbegins with a null hypothesis

that the use of illustration-inspired techniques providesno speedup in completing tasks, no

improvement in accuracy and that the users feel equally confident in their answers for all

techniques. The statistical measure of significancep evaluates the probability of the result

agreeing with the null hypothesis. For values ofp < 0.05, the null hypothesis is rejected

and it implies that the use of illustration-inspired techniques makes a difference.

The first metric that was used to evaluate our techniques was the user accuracy. Based

on the number of correct answers per user per technique, we calculate the accuracy per

visualization technique. The means and standard deviationare listed in Table 5.4. Figure

5.6 shows a graph showing the same data. A comparison of the snapshots technique with

the snapshots technique augmented with our techniques shows that the subjects got more

answers correct using the augmented snapshots. Similarly,in the case of animations com-

pared to augmented animations, the subjects were more accurate when using augmented
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Type of visualization Mean Standard Deviation
Snapshots 76.851 15.14

Augmented Snapshots 91.67 13.87
Animations 91.67 12.01

Augmented Animations 97.22 10.59

Table 5.4. This table shows the mean and standard deviation of the accuracy of the users.
Users completed tasks with the most accuracy in the case of augmented animations.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 6181.0 3 2060.0 12.02

error 1.78E+04 104 171.4
total 2.40E+04 107

Table 5.5. This table shows the result of performing the ANOVA test on the accuracy per
user. The probability of this results, assuming the null hypothesis, is less than 0.0001. This
implies that the result is extremely significant and the nullhypothesis that the illustration-
inspired techniques do not increase the accuracy in completing a task, is rejected.

animations, as can be seen in Figure 5.6. The temporal context that the illustration-inspired

techniques provide seem to help users complete the task moreaccurately. Amongst all

the four techniques, the augmented animations techniques seems to provide users with the

most useful information to correctly complete the task.

Analyzing the accuracy results using the ANOVA test provides results shown in Table

5.7. The results show that the variation between the four different visualization techniques

is high. The probabilityp of this result assuming the null hypothesis is less than 0.0001.

This implies that the result isextremely significantand that the null hypothesis is rejected.

This proves that the use of illustration-inspired techniques increases the user accuracy for

visual tracking of features.

Additionally, we measured the time required by the subject to complete each task

per visualization technique. Table 5.6 shows the mean and standard deviation for all the

four visualization techniques. Figure 5.7 shows a graphical representation of the timing

results. The subjects required more time when viewing snapshots as compared to the other

three cases. Animations augmented with our techniques helped subjects answer questions

faster than just animations. Overall, even though loading an animation took more time,
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FIG. 5.6. This graph shows accuracy results for all the questions asked evaluating the
illustration-inspired techniques. The results were grouped according to the categories of
questions asked. The categories from left to right as Snapshots, Augmented Snapshots,
Animations and Augmented Animations respectively. The user accuracy for Augmented
Snapshots is better than Snapshots and similarly the accuracy is better for Augmented An-
imations as compared to Animations.

Type of visualization Mean 95% confidence interval Standard Deviation
Snapshots 54.822 47.85-61.80 31.9

Augmented Snapshots 22.696 15.72-29.67 11.2
Animations 33.411 26.44-40.38 10.3

Augmented Animations 26.248 19.27-33.22 9.22

Table 5.6. This table shows the mean, 95% confidence intervals around the mean as well
as standard deviation for the timings results.

animations seemed to give the user a better understanding ofthe time-varying nature of the

data to complete tasks.

The time required to complete a task in each of the four cases was analyzed using

ANOVA. Table 5.7 shows the result of the ANOVA test on the timing data. The value of

p computed using ANOVA was less than 0.0001 which implied thatthe null hypothesis

was rejected. The value ofp implies that the result isextremely significantaccording to

the ANOVA test and implies that the use of illustration-inspired techniques clearly helped

users complete tasks faster than with just snapshots or animations.
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FIG. 5.7. This graph shows the amount of time required by the subjects to complete the task
using all the four techniques. Users took more time to complete a task using snapshots as
compared to all the other techniques. Users also took more time to answer questions using
animations as compared to animations augmented with illustration-inspired techniques. In-
spite of the fact that the users had to wait for the animation to load, they were able to answer
questions faster for animations and augmented animations as compared to plain snapshots.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 1.6779E+04 3 5593.0 16.75

error 3.4724E+04 104 333.9
total 5.1503E+04 107

Table 5.7. This table shows the result of performing the ANOVA test on the time required
by the users to complete a task using all the techniques. The probability of this results,
assuming the null hypothesis, is less than 0.0001. This implies that the result is extremely
significant and the null hypothesis that the illustration-inspired techniques do not increase
the accuracy in completing a task, is rejected.
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Type of visualization Mean 95% confidence interval Standard Deviation
Snapshots 3.6389 3.418-3.860 1.28

Augmented Snapshots 4.0278 3.807-4.249 1.11
Animations 3.7407 3.520-3.962 1.40

Augmented Animations 4.4907 4.270-4.712 0.803

Table 5.8. This table shows the mean, 95% confidence intervals around the mean as well
as standard deviation for the confidence results.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 40.23 3 13.41 5.806

error 988.5 104 2.310
total 1029.0 107

Table 5.9. This table shows the result of performing the ANOVA test on the confidence per
user. The probability of this results, assuming the null hypothesis, is less than 0.0007. This
implies that the result is statistically significant and thenull hypothesis that the illustration-
inspired techniques does not increase the confidence of the subjects in their answers, is
rejected.

In addition to the user accuracy and the time required by the subjects, we requested

the subjects to specify a confidence level for each question.Table 5.8 shows the mean

and standard deviation of the confidence obtained for each technique. The confidence was

higher in both augmented snapshots and augmented animations as can be seen in Figure

5.8. The subjects had least confidence in their answers for the plain snapshots and low

confidence for the plain animations.

Table 5.7 shows the results of performing the ANOVA test on user confidence per

question. Analyzing the confidence that the subjects had in their results, we found that

subjects were more confident in the correctness of their answers when using illustration-

inspired techniques. The value ofp from the ANOVA test obtained wasp < 0.0007 which

according to the ANOVA test is anextremely significantresult and rejects the null hypoth-

esis that the users feel equally confident with and without illustration-inspired techniques.

Our techniques clearly instill more confidence in the users in both the augmented snapshots

and augmented animations.



83

FIG. 5.8. The users were asked to specify their confidence in their answers. This graph
shows a representation of the overall confidence that the users had in their answers. As can
be seen, users were more confident about their answers for theaugmented snapshots and
animated animations as compared to plain snapshots or animations.
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5.8 Discussion

Based on the analysis of the user study, we can say that our illustration-inspired tech-

niques help users track features in three-dimensional datafaster and with more accuracy.

The use of illustrative cues seemed to provide temporal context that allowed users to visu-

alize multiple features

For synthetic datasets, the users were much more accurate and fast for all the four vi-

sualization techniques. In the case of real world data, users were less accurate without the

illustration-inspired techniques as can be seen in Figure 5.9. The illustration-inspired tech-

niques when applied to real-world datasets clearly aided the user in accurately identifying

the direction of motion of the features.

FIG. 5.9. In this graph, the accuracy of the users for synthetic data versus real world data is
compared. As can be seen, the accuracy for synthetic data is high for both with and with-
out illustration-inspired techniques. The accuracy for real world data without illustration-
inspired techniques is very low whereas the use of illustration-inspired techniques when
applied to real world data has boosted the accuracy of the users.

Amongst the four techniques, the subjects preferred the animations with illustration-

inspired techniques the most. This could have been due to thefact that the illustration-
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inspired techniques augmented animations without distracting the viewer from the main

aim of the viewing the time-varying phenomenon. The illustrative cues provide important

cues to the viewer in a non-invasive manner and clearly helpsusers complete tasks more

accurately and faster than the other techniques. The ability to complete the task correctly

with the use of illustration-inspired techniques seems to have provided the users confidence

regarding the correctness of their answers.

Our subjective evaluation gave us feedback regarding the users’ preferences for the

various techniques. Almost all the users thought that both the speedlines and the opacity-

based techniques helped convey direction better than only snapshots or only animations.

Amongst the two techniques, the users indicated through their answers that they preferred

the speedlines technique more than the opacity-based techniques. From discussions with

domain experts, we think this might be due to misinterpretation of older timesteps actually

being data for the current timestep. The amount of opacity variation from one timestep to

another needs to be investigated further to avoid such confusion.

They also said that it was easier to perform simple tasks suchas tracking a single

feature of interest using our illustration-inspired techniques. Tracking multiple features of

interest using snapshots was found to be very hard and they preferred the use of illustration-

inspired techniques for multi-feature tracking as compared to snapshots or animations.



Chapter 6

CASE STUDY: EFFECTIVE VISUALIZATION OF

HURRICANES USING ILLUSTRATION-INSPIRED

TECHNIQUES

New visualization techniques are of limited use if not applied to multiple application

domains. The use of the developed visualization techniquescan be better understood after

applying them to specific application domains. Experts fromthose domains provide critical

insight into the true value of the techniques and suggest specific scenarios when those

techniques can make it easy for them to perform a specific task.

In our case, we applied our illustration-inspired techniques to the field of hurricanes.

Through a domain expert, we not only had access to hurricane datasets but were also able

to generate visualizations of value to researchers in the field of atmospheric physics. Visu-

alizations generated by using our illustration-inspired techniques in the field of hurricanes,

were evaluated by domain experts to provide us with feedbackregarding the use of those

techniques. They saw value in the techniques and preferred them in most cases over stan-

dard two-dimensional visualizations that they currently use.

6.1 Introduction

Accurate forecasts of the tracks and intensification of hurricanes are crucial in order

to minimize loss of life and to plan evacuation strategies. The categoryof a hurricane

86
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is an important measure of the potential damage and coastal flooding. The category of

a hurricane, as defined by the Saffir-Simpson scale, is predominantly determined by the

sustained wind speeds and the minimum central pressure of the hurricane. Figure 6.1 shows

a table that specifies how the category of a hurricane is identified based on its sustained

wind speeds. The category ranges from 1 (74-95 mph) to the most intense category 5

(greater than 155 mph).

FIG. 6.1. The Saffir-Simpson Scale for category assignment to a hurricane.

Certain structural features of hurricanes, and their evolution in time, give information

about the dynamical processes involved in the intensification or dissipation of a hurricane.

Common representations are two-dimensional visualizations that allow the user to visual-

ize the data only at a particular height/level in the data (COLA 1988). This may prevent

the user from being able to correlate features on that level with surrounding spatial features

or features in adjacent timesteps. This significantly limits the user’s ability to explore the

data for further investigation and discovery. Three-dimensional visualization systems can

provide an overview of the spatial structure of a phenomenonsuch as a hurricane (Hibbard

and Santek 1990), (Hibbard 1998). Such systems are great forvisualizing the overall struc-

ture using standard visualization techniques such as isosurfacing, volume rendering and

iso-contouring. All these techniques are limited by the fact that they may occlude inter-
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nal structural details and are not able to provide temporal context to experts investigating

hurricanes.

The process of understanding spatial relationships between hurricane features in a

single timestep and temporal relationships within the time-varying data is one of the main

challenges in this application domain. Specific challengesdeal with the identification and

visualization of the vertical wind shear and visualizationof the formation and evolution of

mesovortices in the hurricane. The hurricane is embedded inthe larger scale global wind

field. Vertical wind shearis when the magnitude and direction of the winds surrounding

the hurricane vary across the height of the hurricane. This causes the storm to lose ver-

tical coherence. A sufficiently strong vertical wind shear will lead to the weakening of a

storm. The region surrounding the eye of the hurricane, called theeyewall, is crucial and

visualization of attributes in that region immensely helpsin the process of understanding

and correlating the scientific models to the observed structure in the hurricane.

The use of illustration-inspired techniques, such as volume illustration techniques

(Rheingans and Ebert 2001), stippling techniques (Luet al. 2002), importance driven

volume visualization (Violaet al. 2005), exploratory volume visualization (Bruckner and

Gröller 2006), (Correaet al. 2006) and flow illustration techniques (Joshi and Rheingans

2005), (Svakhineet al. 2005), have resulted in informative visualizations that facilitate the

effective visualization of structural data and the abilityto more effectively convey the tem-

poral nature of time-varying data. We use techniques from this field of research to visually

investigate and understand the structural and temporal changes in a hurricane.

Drawing from our respective expertise in visualization andatmospheric physics, we

approached the application domain based on the questions wewere attempting to answer.

To answer questions related to a single timestep such as identification and quantification

of the vertical wind shear, we used techniques to accentuatehurricane features in a single

timestep. In order to answer questions regarding the time evolution process of the hur-

ricane, we used illustration-inspired techniques to display the change in attribute values

when the hurricane changes its category. The visualizationof temporal information in a
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single image provides useful semantic information about the rate of intensification of the

hurricane.

To evaluate the value of the visualizations that we have generated, we invited experts

and practitioners in the field of hurricane research to give us critical feedback. We presented

them with a set of images that contained two-dimensional, three-dimensional visualizations

generated by tools that they were more familiar with, as wellas visualizations generated

using our illustration-inspired techniques. Experts mostly preferred our visualizations over

those generated from their standard tools to visualize the hurricanes.

6.2 Application Domain

A hurricane is another name for a tropical cyclone, a vertically coherent vortex of

rapidly swirling air with a low pressure core that forms in the tropical Atlantic and Eastern

Pacific oceans. Warm moist air over the tropical oceans spirals inward at the sea surface

and ascends in theeyewall, the cloudy region of maximum winds surrounding the cloud-

free eyewhere the air is descending on average. The air flow is outwardat the top of the

hurricane, and the cloudy spiral arms are therainbands.

The inward spiraling air gathers up moisture, and as it rises, water vapor condenses

into clouds and rain with an accompanying release of latent heat. Latent heat of condensa-

tion, the energy source for the storm, leads to further vertical motion which accelerates the

winds viavortex tube stretching. Ultimately then, the fuel for the hurricane engine resides

in the warm surface layer of the tropical ocean (NOAA 1999).

Hurricanes form from thunderstorm clusters in environments that have four specific

characteristics. The following conditions have to be met for the formation of a hurricane.

• The sea-surface temperature must equal or exceed about27◦ C (81◦ F)

• The surface layer of warm water in the ocean must be sufficiently deep, typically

about 60 meters or more
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• The winds in the atmosphere must not change substantially with height (weak vertical

wind shear).

• The location must be at least five degrees north or south of theequator

While forecasts of hurricane track have improved in recent years, accurate prediction

of hurricane intensity change has proved elusive. Increases in the spatial and temporal

resolution of both satellite observations and NWP models have revealed numerous small

scale, turbulent flow features that may play an important role in determining hurricane

intensity, although the exact mechanisms are not known (Montgomeryet al. 2002). Among

these aremesovortices, small scale and intense vortices in the eye and eyewall.

Mesovortices in the eyewall are thought to be associated with strong vertical motion in

so-calledhot towers, and the rising eyewall motion may in fact be largely concentrated in

these regions (Braunet al. 2006). Other effects of eyewall instabilities include radial trans-

port of warm, buoyant air from the eye to the eyewall, or transport of angular momentum

from the eyewall to the eye which is thought to be important inintensification (Montgomery

et al. 2002). In addition to their possible role in intensity change, mesovortices may lead

to significant increases in damage to coastal areas, due to their high tornado-like winds.

Vertical wind shear has been known to cause dissipation in a hurricane and is closely

observed by meteorologists during the evolution of a hurricane. Current methods used by

meteorologists to observe wind shear consist of looking at animations of satellite data of

the movement of cloud features. A recent analysis of the hurricane Bonnie simulation used

here (Braunet al. 2006) suggests that wind shear, convection, and mesovortexformation

are linked, and one of the objectives here is to develop methods that allow this connection

to be seen clearly in three dimensions.

The goals specific to the application domain were varied fromgenerating images for

educational and outreach purposes to generating insightful visualizations to facilitate explo-

ration and attain a better understanding of the internal workings of a hurricane. Identifying

basic structural features such as the eye, the eyewall, the rainbands and mesovortices was

crucial to the domain. In addition to that, studying the evolutionary process of the hurricane
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as it starts from a disorganized cluster of clouds and intensifies to a category 5 hurricane

was crucial to the overall understanding of the phenomenon.

The hurricane visualizations presented here are based on model simulations of hur-

ricane Bonnie (August 1998), hurricane Isabel (September 2003), and hurricane Katrina

(August 2005). The data for hurricane Bonnie was obtained from a MM5 model simula-

tion, with 2 km spatial resolution and 3 minute temporal resolution for 6 hours (Braunet al.

2006). The data for hurricane Isabel was produced by the Weather Research and Forecast

(WRF) model, courtesy of NCAR, and the U.S. National ScienceFoundation (NSF), and

was the same data used for the IEEE Visualization 2004 contest (Kuoet al. 2004). The hur-

ricane Katrina simulation was obtained by running the National Center for Environmental

Prediction’s Eta numerical weather prediction model, run at 10 km horizontal resolution

and a 1 hour temporal resolution for 72 hours, with 60 vertical levels. The variables con-

tained in our dataset are Cloud water [kg/kg], Geopotentialheight [gpm], Mean sea level

pressure (Eta model) [Pa], Relative humidity [%], Temperature [K], u wind [m/s], v wind

[m/s] and Pressure vertical velocity [Pa/s].

The current tools that application domain experts use are time-tested and effective but

limited due to their two-dimensional nature (COLA 1988). Two-dimensional visualization

was effective in visualizing contour plots of a single level, but exploring the three dimen-

sional structure of the hurricane was not possible. Similarly, the change in value of an

attribute from one timestep to the next or over an interval could not be directly observed.

6.3 Approach

Current hurricane visualization tools facilitate the exploration of dynamic structures

using a combination of isosurfacing, volume rendering, andvector visualization to visual-

ize the attributes in the hurricane. These techniques can fail to convey internal hurricane

structures, especially in the eyewall region. The hurricane structures around the eye con-

tain crucial information that can be used to predict changesin the intensity of the hurri-

cane. When a simultaneous change in humidity and vertical velocity over a small interval
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of timesteps is observed, it is generally followed by a change in intensity of the hurricane.

Visualizing such change is key to being able to predict hurricane intensification.

Illustration has been proven to be highly effective at conveying instructional informa-

tion in the form of textbooks, charts and, in the case of meteorology, weather forecasts.

Illustrators have also been able to convey internal structural details without completely re-

moving external information (Hodges 1989), (Wood 1994). They can convey motion to a

reader using very few frames using illustration cues. Theirability to convey information

effectively and succinctly, their ability to draw our attention to certain regions, and their

ability to convey motion highly influenced our choice of techniques for this application

domain.

Visualizing hurricanes in an illustrative style provides crucial morphological and tem-

poral information that is not always apparent from standardvisualization techniques. We

apply illustration-based techniques such as boundary enhancement and silhouette enhance-

ment to accentuate internal features in the underlying data. We found that the silhouette

enhancement algorithm also helps in the identification of vertical wind shear in a hurricane.

Illustrative visualization was useful in investigating vortex rollup and mesovortex forma-

tions. Such phenomena are believed to cause dissipation in ahurricane and so their investi-

gation proves crucial. We convey temporal change in the databy applying our illustration-

inspired techniques such as speedlines, strobe silhouettes and opacity-based techniques to

convey the temporal nature of the storm.

6.4 Understanding spatial distributions

Visualizing the morphology of a single timestep is criticalto the overall understanding

of the phenomenon. A visual representation of each timestepcan be obtained by visualizing

the various scalar quantities such as cloud water, humidity, and temperature. Currently

used tools provide a two-dimensional visualization of an attribute such as humidity at a

certain level (height) from the sea level, as shown in Figure6.2. The three-dimensional

structure of the hurricane cannot be visualized and understood using this method. We
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FIG. 6.2. This figure shows a two-dimensional visualization of humidity in a single level
in hurricane Katrina being visualized using isocontours.

generated a volume rendered representation of the hurricane to provide a three-dimensional

representation of the hurricane.

Traditional raycasting-based visualization tends to limit the visualization of internal

structures of the hurricane due to the obscuration of voxelsfarther from the eye by voxels

closer to the eye. Volume illustration techniques were inspired by illustrations that capture

and accentuate key features de-emphasizing uninterestingregions (Rheingans and Ebert

2001). These techniques generate expressive visualizations of scientific data by using data

dependent characteristics such as the gradient magnitude and direction. One of the tech-

niques identifies the boundaries between features in the dataset by identifying regions of

large gradients and accentuating these identified boundaries. Another technique identifies

the silhouette of the structural features in the data and accentuates it. This helps identify

internal features such as the eyewall, surrounding rainbands, and other features that are

significant for exploratory and investigative purposes.

The humidity attribute is particularly useful for domain experts to visualize the evo-

lution and transformation of the storm. Figure 6.3 shows a set of examples where our
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FIG. 6.3. The left image depicts a standard volume rendered image of humidity for timestep
71. The central image depicts the boundary enhanced versionof the same image with the
eye, eyewall and the rainbands being seen. The right image depicts the silhouette enhanced
version with clearer depiction of the features.

techniques generated more insightful images than standardvisualization techniques. The

left image depicts a standard volume rendered image of the humidity attribute with lighting.

The eye is located towards the top left of the image. The middle image show a visualization

where the boundary enhancement technique has been applied to enhance feature bound-

aries. The boundary enhancement technique enhances the boundaries of the rainbands and

the eyewall. The right image is of a visualization generatedusing the silhouette enhance-

ment technique where the eyewall and the rainbands are accentuated while the unimportant

detail is removed. The width of the eyewall as well as the structure of the rainbands can be

most clearly seen in this visualization.

6.4.1 Investigating vertical wind shear

Visualizing the hurricane using knowledge about the intensification and dissipation

of hurricanes produces more effective and informative visualizations. It is known that the

presence ofvertical wind shearleads to hurricane weakening and dissipation. Vertical wind

shear is the difference in the wind speed and direction between the upper and lower atmo-

sphere. If there is large vertical shear the hurricane cannot form and hold itself vertically

which eventually leads to its dissipation.
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FIG. 6.4. This image depicts the silhouette of the wind speeds and a cross sectional view
of the same time step. The top row shows a completely formed circular silhouette that
indicates no vertical wind shear as can be verified from the right cross sectional view. The
bottom row shows a light, barely visible silhouette that indicates high vertical wind shear.
The cross sectional view confirms the presence of high vertical wind shear in the hurricane
at that timestep.

To identify such vertical wind shear, a top-down view to compute silhouettes is most

suitable. The silhouette computation considers voxels whose gradient is perpendicular to

the view vector. This is ideal for identifying vertical windshear as a strong, crisp, well

defined silhouette would imply less vertical wind shear and ablurred, diffused silhouette

would indicate the presence of a large vertical wind shear. In this manner, not only can the

presence of vertical wind shear be identified, but it can be quantified by the strength and

crispness of the observed silhouette. The equation to produce this silhouette enhancement

for the investigation of vertical wind shear is

os = ov(ksc + kss(1 − abs(∇fn · V ))kse)

whereov is the original opacity of the voxel,∇fn is the gradient of the current volume

sample andV is the view vector,os is final silhouette enhanced opacity of the voxel,ksc

controls the scaling of the non-silhouette regions, kss controls the amount of silhouette

enhancement and kse controls the sharpness of the silhouette curve.
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In order to validate our vertical wind shear identification,we generated visualizations

to investigate the shear in a particular timestep based on its silhouette enhanced image.

Figure 6.4 shows the results. The left column depicts the silhouette enhanced image for

timestep 7 and timestep 46. The middle column shows a cross sectional view of the wind

speeds volume. The lower image shows the vertical shear towards the right in the hurri-

cane. The right column contains the transfer functions usedto generate the cross sectional

visualizations. The top image in the left column shows a strong, well defined silhouette

that correlates with the strong vertical coherence of the hurricane that can be seen in the

top image in the middle column. On the other hand, the lower silhouette image is blurred

and can barely be seen. This correlates with the large amountof rightward vertical wind

shear that can be seen in the lower image in the middle column.

6.4.2 Investigating the structure of mesovortices

Theoretical studies have shown that a rapidly spinning column of fluid becomes un-

stable and wavelike perturbations will grow. In Figure 6.5,which is an illustrative visual-

ization of cloud water in hurricane Katrina, we can see this type of instability showing a

nearly vertically aligned wave having an altitude dependent amplitude in the cloud water

field. Due to this instability, some cloud water can break offfrom the main eyewall. This

image shows a depiction of the hurricane eyewall just beforethe hook shaped cloud breaks

off from the hurricane. These instabilities in the eye of thehurricane are clearly associ-

ated with regions of strong upward motion (upwelling). Rapidly rising air stretches in the

vertical direction and vorticity is spun up by vortex tube stretching. The basic principle

is conservation of angular momentum, an example being a spinning skater who draws in

her arms and spins up. To investigate this instability further, we visualized the vorticity

attribute in conjunction with the upward (vertical) velocity.

The top image in Figure 6.6 is a volume rendered image of the vorticity and verti-

cal velocity fields of the first time step of hurricane Bonnie.In this image, the vertical

wind velocity is rendered in red and the positive vorticity is rendered in green. Dark red
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FIG. 6.5. The left image was generated using the boundary enhancement technique on the
cloud liquid water attribute of the 53rd timestep. The rightimage shows a closer look at
the hook in an illustrative style.

regions are regions of strong positive vertical velocity and green represents regions where

the positive (counterclockwise) vorticity is large. The technique emphasizes regions that

are vertically aligned. The outer band of green in the northern part of the eyewall coincides

with strong upwelling. The vorticity changes sign in the upper part of the storm, thus the

restriction to positive vorticity enables us to focus on thelower portion of the storm where

release of latent heat leads to rising of warm, buoyant air. The bottom image in Figure 6.6

is an illustration-style rendering of the same positive vorticity. The illustrative visualization

shows that the two green vorticity rings in the top image are actually observed at different

levels and can be seen as a ledge.

The top image in Figure 6.6 also shows mesovortices which canseen as localized

patches of high vorticity (green) around the outer vorticity ring. Those vorticity regions are

co-located with high vertical velocity regions which confirms the theory regarding strong

upward convection (upwelling) in regions of high vorticity. Rapidly rising air (signified by

high vertical velocity) stretches in the vertical direction and vorticity is spun up by vortex

tube stretching. This process is similar to the flowing of water from a bathtub into the drain.

The illustration-inspired image provides depth cues that avolume rendered image
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FIG. 6.6. The top image is a volume rendered image of the vorticity, rendered in green, and
vertical velocity, rendered in red, of the first time of hurricane Bonnie. Dark red regions are
regions of strong positive vertical velocity and the brightgreen regions are high positive
vorticity regions. The bottom image depicts an illustration-style rendered image of the
same positive vorticity. It provides a three-dimensional representation that clarifies that the
double green rings visible in the left image are actually observed at different levels in the
data.
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FIG. 6.7. Time sequence showing various stages of vortex rollup. The left column shows
a series of volume rendered snapshots of the 13th, 26th, 30thand 33rd timestep. The right
column shows a illustration-style visualization of the corresponding timesteps. The illus-
trative images greatly help in an increased understanding of the three-dimensional nature
of the vortex rollup.
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with lighting cannot provide. The illustration-stylized image facilitates the visualization

of mesovortices and allows the viewer to visualize the varied depths at which these vortex

structures occur. Such illustrative images help us investigate and understand the interac-

tions between the vorticity at different levels.

A spinning ring of fluid is known to become unstable when the radial wind shear

becomes sufficiently large (Drazin and Reid 1981). In this case, the vortex ring rolls up

into localized vortices as can be seen clearly in Figure 6.8.This process again leads to

mesovortices, but unlike the vortex stretching mechanism discussed earlier, it does not

necessarily involve vertical motion. Figure 6.7 is a time sequence showing various stage

of a vortex rollup. The left column shows a volume rendered images of the vorticity in a

top-down view. The images in the left column are the 13th, 26th, 30th and 33rd timestep

of the vorticity respectively.

FIG. 6.8. These images show snapshots from three different timesteps of vorticity in
hurricane Bonnie. They show the vortex rollup phenomenon clearly.

This view allows us to look more carefully at the characteristics of mesovortex forma-

tion in the lowest part of the storm. The first image in the leftcolumn shows that the vortex

has developed a wavelike perturbation which increases in amplitude subsequently. Vortex

rollup begins in the subsequent image and continues in the 3rd image from the top. In the

last image in the left column, the eyewall vorticity has become concentrated into four or
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FIG. 6.9. This image shows the positive vorticity rendered in green and vertical velocity
rendered in green for the 33rd time step corresponding to thelast row in Figure 6.7. The
image shows that the mesovortices formed near the bottom of the hurricane are not cor-
related with strong vertical velocity as there is almost no vertical velocity in the strong
positive vorticity regions shown in green.

five mesovortices. Figure 6.9 shows that the mesovortices formed near the bottom of the

hurricane are not correlated with strong vertical velocity.

The illustration style of the same sequence, shown in the right column in Figure 6.7,

gives a clearer view of the complex 3D nature of vortex rollup. This view shows the ver-

tical alignment of the eyewall mesovortices, and shows the intricate nature of the vortex

dynamics occurring in the eyewall. The illustrative style helps the viewer to understand

that the vortex rollup is a three-dimensional phenomenon and does not occur only at the

lower level.

6.5 Understanding and exploring the time-varying nature ofa hurricane

Visualizing a snapshot of each timestep individually limits the ability to get an un-

derstanding of the trends and transformations that the hurricane undergoes. For such time-

varying datasets, visualizing volume rendered snapshots of each timestep or viewing an

animation of rendered images of each timestep may be of limited use. These snapshots or

animations may not convey change in structure and position of the contained features in

the time-varying dataset.
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We have used illustration-based principles to visualize the change undergone by the

hurricane. Using these principles, we can convey morphological and temporal changes in

the hurricane using a single image. Opacity-based techniques in combination with speed-

lines and the strobe silhouette techniques convey change over time effectively.

6.5.1 Investigation of the motion of the hurricane center

The translatory motion of the hurricane is accompanied by rotation around its axis.

The direction of motion of the hurricane center is critical to the understanding of wobbling

motion of the hurricane as it progresses along its path. The wobbling motion, also known

as precession, is a key component in the investigation of dissipation due to shear in the

upper levels.

Illustrators use trailing lines to create the effect of motion in still images (McCloud

1994). On observing the properties on these lines, we found that illustrators encode tem-

poral information in them. Our visual system processes these trailing lines as evidence of

the object having been there in the past and having moved to its current state. We call these

trailing linesspeedlinesand have previously shown their use in visualizing time-varying

CFD data (Joshi and Rheingans 2005). We applied the speedlines technique to visualize

hurricane data. Figure 6.10 depicts a visualization of the hurricane with speedlines. The

eye of the hurricane is tracked automatically by identifying the lowest mean sea level pres-

sure and the minimum wind speeds in every timestep. This gives an idea of the track the

hurricane has followed. The path is then offset in a direction perpendicular to the motion

in each direction to obtain speedlines. The hurricane itself is visualized in a pen-and-ink

shaded style to be consistent with the illustrative paradigm of the image. The annotation of

the image with speedlines provides the effect of motion and conveys important information

regarding the upwards curving motion of the hurricane. The speedlines also show a cycloid

motion of the hurricane center due to an overall rotation about the center. This may be

a useful way to depict Rossby modes which involve a precession of the top of the storm

relative to the lower levels.
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FIG. 6.10. This image depicts a pen-and-ink style rendered visualization of timestep 44 of
the hurricane. The annotation of the image with speedlines provides temporal context and
conveys information regarding the upwards curving motion of the hurricane.

6.5.2 Examining the rate of intensification

The speed at which a hurricane intensifies is critical in the overall understanding of

the intensification process. For example, an intensification of a category 2 hurricane to

a category 5 in a few hours could prompt a further investigation into the conditions that

caused such rapid intensification. Studying the rate of intensification is also crucial in

correlating the trends in observed values of attributes of the hurricane.

This problem was approached by using a technique that has been inspired by illus-

trators who use blurring and desaturation for older timesteps and bright, crisp renditions

of newer timesteps (MacCurdy 1954), (McCloud 1994). Such illustrations are generally

used to convey past positions and structure of the features in the current timestep. This

technique provides context to the visualization of the current timestep by providing faded

visualizations of older timesteps that convey change in shape, orientation and position. To

generate a visualization using this technique, certain interesting timesteps are merged into

a single timestep to create a composite volume. The visualization is then created taking
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FIG. 6.11. This image depicts the use of opacity-based techniques to convey the transfor-
mation of a semi-organized cluster of storms into a category5 hurricane. The transforma-
tion from the topmost faded rendition of the hurricane at timestep 10 to the bottommost
rendition is at timestep 71 captures the temporal nature of the evolution.

into consideration the age of each component timestep. Visualizing change over time in a

single image can be achieved using this technique.

Figure 6.11 shows a visualization of the current timestep with the older timesteps

fading out. The oldest timestep (timestep 10) is visible, but the barely organized cluster of

storms can be seen. The subsequent timesteps (timestep 34 and 53) are when the hurricane

seems more organized with an eye and an eyewall. By timestep 71, the hurricane is a full-

blown category 5 hurricane. The evolution of a hurricane from a small organized cluster to

a category 5 hurricane is conveyed from this visualization.

Figure 6.12 contains footprints of the timesteps when the hurricane changes its cate-

gory. This produces a visualization that depicts a snapshotof the hurricane at every step in

the intensification process. This image depicts the intensification of the hurricane from a

category 2 onwards. The last footprint is for the hurricane when it intensifies to a category
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FIG. 6.12. This image depicts the use of opacity-based techniques to convey the intensifi-
cation of the hurricane. The visualization contains a footprint for every category change it
undergoes. The first footprint, on the bottom left of the image, is the change to category 2.
The hurricane intensifies very quickly after that, as per thesubsequent two footprints and
then the last footprint signifies the intensification to category 5.

5 hurricane. The rapid intensification of the hurricane is visible from the image. The hurri-

cane is a category 2 hurricane initially and quickly intensifies in a matter of a few hours to

a category 4 after which it intensifies to a category 5 as indicated by the last footprint.

Some of these techniques can be used in combination to produce more informative

visualizations. For example, Figure 6.13 shows the opacity-based technique being applied

in conjunction with the speedlines techniques to visualizea combination of the 10th, 35th,

53rd and 71st timestep. The change in size, structure and position of the hurricane is

conveyed from the image. The aim of the image is to capture thedownward and rightward

motion of the storm. The structural changes in the hurricaneas it intensifies over 24-hour

periods can be seen by the increasing size of the hurricane. The speedlines technique

provides additional temporal cues to convey change in time.The opacity-based techniques

can also be used to draw the user’s attention to a specific timestep of interest.
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FIG. 6.13. The image depicts the combination of opacity-based techniques and speedlines
to convey the motion of the hurricane. The hurricane moves downwards and starts turning
rightwards. The thickness of the speedlines reduces as it approaches the current timestep.
The image depicts the visualization of time steps 10, 35, 53 and 71 of the cloud water quan-
tity. The growth in size of the hurricane along with the internal structure of the hurricane is
visible.

6.5.3 Investigating the temporal and structural change in size of the hurricane

Visualizing past positions of the storm can be useful in conveying the direction in

which the hurricane is progressing. Illustrators have usedtrailing silhouettes to depict

past positions as well as the direction of motion of an objectover time (McCloud 1994),

(Kawagishiet al. 2003). Trailing silhouettes have been effectively used to convey past posi-

tions and the general direction of the feature in a time-varying dataset (Joshi and Rheingans

2005).

We use the strobe silhouettes technique to depict the direction of motion as well as

past positions of the hurricane in a single image without cluttering the visualization. The

direction-of-motion vector is calculated based on the change in position of the eye of the

hurricane and is used to compute the strobe silhouettes.

Figure 6.14 shows the past positions of three such timestepsalong with an illustra-
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FIG. 6.14. This image depicts the strobe silhouettes techniquebeing applied to the hurri-
cane dataset. The cloud water quantity for timestep 71 is visualized in an illustrative style
with trailing silhouettes for timestep 10, 35 and 53 being depicted in the image.

tive rendition of the final 71st timestep of the cloud water quantity. The past positions of

timesteps 10, 35 and 53 are depicted by trailing silhouettes. The strobe silhouettes tech-

nique is particularly effective in conveying the past positions of the hurricane along with

visualizing the current timestep in full detail. This provides temporal context as well as

conveys information regarding the change in size of the storm. The downward direction,

increase in size of the hurricane and origin of the storm is conveyed effectively in Figure

6.14 using strobe silhouettes.

6.6 Expert Evaluation

In addition, we evaluate our techniques with seven expert users from the application

domain who provide us with subject feedback regarding the usability of our techniques.

As has been mentioned by Kosaraet al. (2003), “the input of application domain experts

is worth its weight in gold”. We wanted to evaluate the benefitof our techniques in the
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application domain of hurricane visualization, which was our primary domain of focus.

Our users were

• Jeff Halverson, Associate Director of the Joint Center for Earth Systems Technology.

• Scott Braun, Research meteorologist at NASA’s Goddard Space Flight Center.

• Julio Bachmeister, Associate Research Scientist at the Goddard Earth Sciences and

Technology Center (GEST)

• Bill Olsen, Research Associate Professor at the Joint Center for Earth Systems Tech-

nology.

• Lynn Sparling, Associate professor of physics at UMBC and a UMBC affiliate mem-

ber of JCET.

• Hai Zhang, Postdoctoral researcher in the Physics Department at UMBC

• Samuel Trahan, Graduate Student in the Physics Department at UMBC.

For this purpose, we created a website which contained images generated from visu-

alization packages that the experts use on a regular basis such as GrADS (COLA 1988) as

well as our illustration-inspired visualizations. The website is at

http://www.cs.umbc.edu/˜alark1/hurricane_study.php.

Figure 6.15 shows a screenshot of the first page of the websiteof the expert evaluation.

6.6.1 Procedure

The procedure for this expert evaluation was:

• Explain the purpose of the expert evaluation to the domain experts.

• Get their information for the expert evaluation.

• Conduct the expert evaluation.
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FIG. 6.15. A screenshot of the first page of the online expert evaluation conducted to
conduct an expert evaluation of our techniques.

6.6.2 Datasets

For this expert evaluation, two hurricane datasets were used. The first dataset was

a simulation ofHurricane Katrinawhich was provided by Dr. Hai Zhang, Dr. Miodrag

Rancic and Dr. Lynn Sparling at UMBC. The dataset was 276x288x60 in size with 72

timesteps simulated at 1 hour intervals and had values for total precipitation, cloud water,

geopotential height, mean sea level pressure, relative humidity, temperature, u wind, v wind

and pressure vertical velocity.

The second dataset was a simulation ofHurricane Bonniewhich was obtained from

Dr. Scott Braun at NASA. The dataset was 250x250x27 in size with 120 timesteps at

3-minute intervals and had values for radar reflectivity, vertical velocity, temperature, po-

tential temperature, divergence, u wind, v wind, vorticityand pressure.
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6.6.3 Expert feedback

We found that the experts preferred our illustration-inspired techniques over standard

visualization techniques in most cases. The experts found our visualization techniques to

be very useful for examining hurricane structure, three-dimensional mesovortex formation

and visualization of current timestep with context. For example, Figure 6.5 was preferred,

over 2D isocontour (Figure 6.18) and the 3D volume renderingimages(Figure 6.16), by all

the experts for the ability to clearly visualize the internal structure of the hurricanes. One

expert says “This is an exceptionally effective portrayal of the cloud water field. Here we

can see a wave perturbation in the eyewall that has an altitude dependent amplitude. This

type of visualization has a lot of potential for investigating the dynamics in the hurricane

inner core.” The illustrative visualization in Figure 6.5 was found to be more suited for

answer questions regarding the internal structure of a single timestep in a hurricane. Figure

6.18 was useful for answering other hurricane related questions which we discuss later.

FIG. 6.16. This image shows a volume rendering of the cloud waterquantity in hurricane
Katrina.

Experts preferred the illustrative pen-and-ink style visualization in the right column to

the standard volume rendered vorticity images in the left column in Figure 6.7. The abil-

ity to clearly visualize the three dimensionality of the hurricane in the illustration-inspired
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FIG. 6.17. This image shows four snapshots of cloud water being rendered in hurricane
Katrina at four different timesteps. The direction of motion is not easily apparent by just
looking at this set of images.

visualizations helped understand the structural details of the hurricane. One expert writes

“The illustration-based technique on the right is radicallydifferent from anything currently

used in hurricane research. The cases here show vortex rollup in 3D .. this is a very promis-

ing new way to look at hurricane inner core structures and dynamics.” Using the illustrative

visualization, the hurricane experts were able to answer questions regarding the presence

and structure of mesovortices and further investigate the vortex rollup phenomenon.

The simple illustrative techniques such as boundary and silhouette enhancements

shown in Figure 6.3 were preferred over standard volume rendering techniques. The abil-

ity of the illustrative images to clearly shows features such as eyewall and rainbands was

appealing to them. Based on Figure 6.4, one expert notes value in using silhouette enhance-

ment and writes “This is very useful for looking at the effects of vertical wind shear on the

hurricane structure.” This helped hurricane experts answer questions regardingthe effect

of vertical wind shear on the dissipation and eventual disintegration of a hurricane.

Figure 6.12 was liked by all the six experts one of whom wrote “This is a great way

to visually track the motion of the storm.” Another expert writes “The figure might be

very useful in a study of category change in response to topography etc. during landfall,

wind shear or sea surface temperatures.”Figure 6.11 and 6.13 were both preferred to

looking at snapshots of each timestep individually or viewing a panorama of constituent

timesteps as shown in Figure 6.17. They liked the fact that both the storm motion and the

structural evolution could be clearly seen in both the images. Figure 6.10 was found to
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be effective and the illustrative style found to be novel. The visualizations helped them

answer questions regarding the direction of motion of the hurricane, regarding the rate of

intensification of the hurricane as well as the evolution of the hurricane at various stages

along its track.

For Figure 6.6, an expert wrote“This is an effective way of showing the correlation;

this particular plot shows that a region of strong, vertically coherent vorticity marks the

inner region of upwelling. The problem here is that we cannottell if the green annular

features are displaced in the vertical or if we are seeing secondary eyewall formation. The

illustrative visualization helps clarify that by showing that the features are accruing at two

different vertical levels.” The visualization helps experts correlate the vorticity and the

vertical velocity variables in the data and led to them finding that the two vorticity rings in

the hurricane occur at different altitudes.

In some cases, the traditional 2D visualization techniqueswere preferred. We suspect

that this might be due to the familiarity with a particular tool or due to their training in using

a particular 2D visualization technique. For example, in particular the integration concept

of volume rendering was confusing to the experts, since their training in interpreting 2D

visualizations led them to interpret the values as being that of the topmost level. Experts

prefer to investigate the values at particular levels separately and so visualizing a composite

image seemed unintuitive to them. Despite the fact that volume rendering images were less

preferred, our illustrative representations such as the boundary and silhouette enhanced

visualizations, shown in Figure 6.3, were liked due to the fact that they enabled them to

look at three-dimensional features such as the rainbands, the structure of which is not as

clearly visible in 2D visualizations. Figure 6.18 shows an example of a 2D visualization

technique (isocontours) being used to visualize a single level in the hurricane. An expert

mentioned that such an image can reveal the 2D structure in the eyewall clearly but the 3D

structure cannot be seen.

Figure 6.19 shows another example of wind vector visualization in a single level. They

preferred visualizing the wind quantity in this manner thanvisualizing just the windspeeds
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FIG. 6.18. This image depicts a 2D visualization showing isocontours for cloud water in
hurricane Katrina at a single level.
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FIG. 6.19. This image depicts a 2D visualization showing hedgehogs for visualizing wind
vectors in hurricane Katrina at a single level.

in three-dimensions. Visualizing hedgehogs in this manner, even though at a single two-

dimensional level helped them visualize both the magnitudeand direction of the winds.

They like the fact that it showed the wind structure at a single level nicely. In such cases,

we believe that texture-advection techniques introduced by Schafhitzel et al. (Schafhitzel

et al. 2004) could be easily adapted for three-dimensional visualization of wind vectors.



Chapter 7

POINTILLISM-BASED VISUALIZATION OF

ATTRIBUTE CHANGE IN TIME-VARYING DATA

Standard visualization techniques for time-varying data (such as snapshots or ani-

mations) are limited at conveying temporal information to the viewer. Time-varying data

invariably contains multiple attributes, such as temperature, rainfall and so on, at each lo-

cation in space. The complexity of viewing and understanding the data is increased by the

fact that these attributes are constantly changing over time. A domain scientist would like

to get a better understanding of the nature of change that a particular attribute is undergo-

ing over time. Our discussions with domain experts led us to arealization that they need

to understand the change in attribute value in a particular region in their data. For exam-

ple, in our application domain of hurricanes our collaborators would like to understand the

changes a hurricane is undergoing as it intensifies. Variousattributes in a hurricane such

as humidity and windspeed are of interest to them and specifically particular regions in the

hurricane that are undergoing change in values. Existing approaches either produce snap-

shots of each timestep or an animation requiring them to be able to understand the changes

the hurricane is undergoing over time.

Alternatively, the change can be visualized by computing the difference in values

and then visualizing the computed difference. The limitations of these approaches is that

they are not able to capture the intermediate values and provide a comprehensive unifying

picture that conveys attribute change over the time interval.

115
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We develop a novel visualization technique that conveys theattribute change in a

single image as well as convey intermediate values in the specified time interval to allow

the user to visualize trends in the data. We investigated thefield of illustrations and art in

general to look for a solution.

Pointillism is a technique in painterly rendering where the artist paints by placing

brush strokes in the form of points on the canvas. The brush strokes form a cohesive

picture when looked at from a distance, but on looking closely appear to be a seemingly

incoherent collection of brush strokes. This painting style was pioneered by Seurat and

Signac around the 1890’s. The most famous examples of the pointillist painting can been

seen in the “Sunday Afternoon on the Island of La Grande Jatte” and “La Parade de Cirque”

as shown in Figure 7.1 where the paintings look beautiful from a distance, but on close

inspection reveal an intricate composition of brush strokes as can be seen in Figure 7.2.

Seurat incorporated color theory and color mixing, as proposed by Rood et al. (Rood 1879),

into his paintings (Kemp 1990). Instead of the common practice of physically mixing colors

on a palette, Seurat applied the color mixing theory by placing brush strokes close to each

other to facilitate a visual “mixing of colors”. It can be clearly seen in the closeup of the

man in Figure 7.2, where warm colored brush strokes are placed over the underpainting of

the man’s head. The effect on looking at the entire painting is of a soft light being reflected

onto the man’s head. The ability of the human eye to visually mix the colors to obtain

a certain effect is quite significant and we use it for the purpose of visualizing attribute

change in time varying data.

In our approach, we use the pointillism paradigm to convey visual change in attribute

values over time. Instead of computing the change over an interval of time, we sample

each timestep in the interval and visually represent the data using a pointillistic painterly

style. We use various attributes of painterly rendering such as brush size, brush color and

saturation to convey change visually. This provides a visual representation of the attribute

distribution in space and time. In the subsequent timesteps, brush strokes are placed on the

canvas in a non-overlapping manner, to mimic pointillisticpainting.
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FIG. 7.1. “La Parade de Cirque”, Georges Seurat, 1888. Note thatthe painting is made of
multiple small closely placed brush strokes.

We demonstrate our results with synthetic data as well as real world data such as global

rainfall, infant mortality (CDC 2002), US presidential elections per county (PurpleAmer-

ica 2004), and hurricane simulations over a time interval. The results clearly show the

efficacy of our techniques in being able to convey these changes and visualizing interesting

patterns using the pointillism style of painting. We conducted a user study to evaluate the

effectiveness of our techniques. The user evaluation results showed that users were able

to conduct tasks faster and more accurately using our technique as compared to traditional

snapshots/animations based techniques.

7.1 Approach

We use pointillism-inspired techniques, as introduced andused by Seurat in his paint-

ings, where brush strokes of various colors are placed on thecanvas relying on the viewer’s

ability to blend them visually. In the visualization literature, Urness et al. (2003) have

proved the effectiveness of such techniques where they use the “visual blending” paradigm
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FIG. 7.2. Detail of “La Parade de Cirque”, Georges Seurat, 1888 clearly depicts the detail
and arrangement of strokes. For example, in the background as well as on his suit there are
brush strokes that almost seem random to the viewer at this level of detail, but on looking
at Figure 7.1, it visually blends to produce a visually appealing painting.

for visualizing flow.

We generate a painterly rendering in the pointillistic style where values are represented

in the form of colored brush strokes on the canvas. The current timestep being visualized

is given highest priority and is rendered using the largest brush size. An older timestep is

visualized with a smaller brush stroke and a desaturated brush color.

We create the pointillistic visualization over the specified interval by sampling inter-

mediate timesteps. We use the contribution of the values in each sampled timestep to paint

the canvas with brush strokes. Older timesteps are represented with smaller, desaturated

brush strokes.

We consider a simple synthetic dataset as shown in Figure 7.3to explain our technique

clearly. Figure 7.3 shows an example where five snapshots in time. The colors represent
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values of an attribute changing over time. The images in conjunction with the color scale

convey an increasing trend in the data over time (timestep 1 to timestep 5).

FIG. 7.3. This image depicts a simple synthetic dataset where the five images represent
values of an attribute that change over time. The increasingtrend is apparent by visualizing
the data in conjunction with the color scale.

7.1.1 Sampling

Our pointillistic visualization paradigm allows us a unique sampling strategy where

we specifically sample each timestep over the interval and visualize it with a brush stroke

on the canvas. This ensures that intermediate values over the time interval are visualized.

Regions of homogeneity, regions of constant increase or decrease now become visually

apparent and allow an application domain expert to quickly identify regions that they would

like to investigate further. Additionally, a viewer can noweasily identify patterns such as an

increase followed by a decrease, as well as a decrease followed by an increase in attribute

values. Figure 7.4 shows a depiction of the sampling strategy that we use to visualize the

data.

7.1.2 Brush selection

Pointillistic brush strokes are not perfect circles. Previously, the pointillistic painting

style has been represented in the form of circular or point sized brush strokes (Hertzmann
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FIG. 7.4. This schematic describes our brush selection, color selection and brush placement
approach. The brush size decreases as the temporal distanceof the selected timestep from
the current timestep increases. As can be seen in the figure, the red brush stroke is the
smallest in size since its timestep (time = 1) is farthest from the current timestep (time
= 5). The color of the brush stroke is selected based on a clamped rainbow color scale.
The saturation of the stroke color is decreased depending onthe temporal distance of the
selected timestep from the current timestep. Since the firsttimestep (time = 1) is farthest
from the current timestep (time=5) being visualized, the red brush stroke color is much
more desaturated/faded. The stroke placement algorithm identifies a location on the canvas
that is not occupied and then places a stroke there and marks that location as occupied.

1998), (Saunderset al. 2005). We experimented with using circular brush strokes, but

found the results to be too regular, as can be seen in the left image in Figure 7.7. Closely

observing pointillistic paintings by Seurat, such as Figure 7.1, validate our observation that

brush strokes are not perfect circular points.

In order to provide a painterly feel to the created visualization, we painted pointillist-

style brush strokes on a canvas. These point brush strokes were then scanned in and used

as alpha textures for the strokes being rendered on the screen. Figure 7.6 shows the sixteen

brush strokes that we painted, scanned, and used in our painterly rendering process. The

right image in Figure 7.7 shows a painterly visualization that looks much more organic and

has a true pointillistic feel to it.
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FIG. 7.5. This image shows a pointillistic visualization of thesynthetic example described
in Figure 7.3 and Figure 7.4. The brush strokes representingthe current timestep are biggest
and brightest as compared to brush strokes representing older timesteps. The clamped
rainbow color scale shown here helps the viewer understand the increasing trend in the
time-varying data. We later introduce a better color legendthat allows the viewer to more
easily visualize patterns in the data.

In order to simulate a painterly rendering style, we use a uniformly distributed prob-

ability density function to pick one of the sixteen texturesas we place the brush stroke on

the canvas.

7.1.3 Color selection

The color selection process for each brush stroke was based on the attribute value as

well the age or the temporal distance of the current timestepfrom the first timestep in the

interval.

One of the main aims of our painterly visualization technique was to allow the viewer

to be able to visualize the current timestep data with valuesfrom older timestep. To ensure

that the older timesteps do not dominate the visualization,we reduce the saturation of the

identified color by a factor that is inversely proportional to the temporal distance from the

current timestep. Instead of using the complete rainbow color scale, we use a truncated
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FIG. 7.6. The painted brush strokes used as textures for the generation of a realistic
painterly visualization.

FIG. 7.7. The left image depicts a visualization in the pointillistic style with circular brush
strokes. The right image shows a painterly visualization using scanned brush strokes from
Figure 7.6. The organic, hand-drawn look is clearly obtained in the right image.

rainbow color map to avoid misinterpretation due to a wrap around. We used the rainbow

color map as it can represent a large spectrum of values in thevisualization. We are aware of

the limitations of the rainbow color map (Rogowitz and Treinish 1998) and are investigating

other more suitable colormaps for our painterly visualization.

We use the Hue-Saturation-Value (HSV) color space to pick a color for our brush

stroke. The truncated rainbow color scale is used with the maximum hue value clamped at

300. The value at a particular point in the 2D space is used to lookup the brush color in the

HSV color space.

Saturation is given by
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Saturation =
1.0

dk

wheredk stands for the temporal distance of the current timestep from the newest

timestep.

We again refer to Figure 7.4 where older timesteps are represented with a more faded,

desaturated brush stroke while newer timesteps are represented with brighter brush strokes.

The final visualization as shown in Figure 7.5 shows the complete visualization with all the

brush strokes. The faded brush color as well as brush stroke size helps the viewer differen-

tiate brush strokes representing older timesteps from those representing newer timesteps.

7.1.4 Stroke placement

We observed that in pointillistic rendering the brush strokes do not overlap much. In

particular, observe closely the detail in Figure 7.2. We incorporated the limited-overlapping

of brush strokes into our system. Brush strokes are placed close to or in between brush

strokes already on the canvas.

To create the pointillistic visualization, we randomly identify a location on the canvas

and check whether a brush stroke is already placed there. If there is no brush stroke there,

we use a uniformly distributed probability density function to pick a timestep. Based on the

identified timestep, a brush size and brush color is calculated. The color for the brush stroke

is obtained by using the attribute value at the location in that timestep. The color selection

process is used to select a color for the brush stroke. After placing a brush stroke on the

canvas, we mark the region on the canvas as occupied to ensuregenerally non-overlapping

brush strokes in the final painterly visualization. To keep atrack of the current state of the

canvas, we maintain a canvas data structure that contains the locations and extent of each

brush stroke as well as which regions of the canvas are empty.This enables the algorithm to

decide whether a new brush stroke can be placed without considerable overlap with another
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FIG. 7.8. The image depicts a synthetic time-varying dataset visualized using pointillis-
tic techniques with information from five timesteps. The synthetic data was created to
highlight the possible variations in time-varying data. The values in the alphabet “V” are
monotonically decreasing, in “I” are constant, in “S” decrease and then increase back to the
same value as in the first timestep, in “0” the values increaseand then decrease back to the
value in the first timestep and those in “7” are monotonicallyincreasing. These variations
can be followed by using the colormap provided along with thevisualization.

brush stroke already on the canvas.

We show some examples in Figure 7.8 for synthetic data. This dataset was particu-

larly created to demonstrate the strengths of our techniques. The intensity of alphabet “V”

is constantly decreasing over time, the intensity of the alphabet “I” is constant over the

interval, the intensity of the alphabet “S” decreases and then increases back to the intensity

of the first timestep, the intensity of the number “0” increases and then decreases to the

intensity of the first timestep and the intensity of the number “7” is increasing constantly

over the interval.

The alphabet “V” contains five distinct colors, the bright green maps to the initial

value from the newest timestep and is depicted using the biggest brush size and the most

saturated color. The other colors visible are lighter shades of green, orange and a light

shade of red. On close examination of Figure 7.8, all these brush strokes can clearly be

identified and mapping them to the scalar values conveys the decreasing intensity of the

alphabet “V” over time. Similarly, since the values for the alphabet “I” are constant over

the interval, the only color visible is green in various brush sizes and various saturated

levels. On close observation of the remaining alphabets andnumbers in the visualization,
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the decrease and subsequent increase in intensity values of“S”, increase and decrease of

values in “0” and constant increasing trend in “7” are clearly visible.

We experimented with using a layering based approach where we would first paint the

current timestep using the largest brush size and then fill inthe “gaps” with smaller brush

strokes for older timesteps, but the painterly representation would be largely dominated by

the current timestep and any correlation with previous timesteps would be almost impos-

sible using that representation. The left image in Figure 7.9 shows a result where the first

layer has the biggest brush strokes as well as the highest number of brush strokes while the

other brush strokes for previous timesteps can barely be seen. There are 2033 strokes for

the current timestep and 359, 234, 207 and 175 for the other subsequent timesteps. Thus,

a uniformly weighted probability distribution function works better and obtains an equal

contribution from each timestep in the interval. The right image in Figure 7.9 shows a

uniformly distributed weighting applied to each brush size.

FIG. 7.9. The image shows the effect of using a large brush strokelayer followed by placing
brush strokes in gaps that remain after the first layer. In such a process, the first layer covers
a large part of the painting and a very small fraction of the painting is then painted by brush
strokes representing subsequent timesteps. The current timestep is represented by 2033
brush strokes, while the subsequent four timesteps are represented using 359, 234, 207 and
175 brush strokes respectively.
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7.1.5 Stroke Size/Saturation Legend

Generally a legend is provided with a visualization to understand the values in the

visualization. To effectively understand the painterly visualization and analyze the trends in

the data, using a standard colormap, as shown in Figure 7.3, is not sufficient. We generate a

stroke size/saturation legend, as in Figure 7.10 where the stroke sizes and saturation values

used in the visualization can be mapped to attribute values and assist the user in identifying

the timestep to which that stroke belongs.

FIG. 7.10. Stroke size/saturation legend depicting the decreasing stroke size and saturation
as we traverse downwards and stroke hue values increasing aswe move rightwards.

In the process of interacting with the painterly visualization, the user may be interested

in examining certain regions of interest in more detail. As in an actual pointillistic painting

where the brush strokes seem larger as one gets closer to the painting, so do our brush

strokes get larger as the user zooms into the area of interest. In order to continue to provide

effective visualization, our legend automatically resizes to show the larger brush strokes as

can be seen in Figure 7.23.

7.2 Results

We applied our techniques to synthetic data as well as real world data. The synthetic

data was chosen to particularly highlight the strengths of our techniques. We then show

some examples of our pointillism-based techniques being applied to infant mortality data

per state for the entire country over an eight year period, USpresidential elections results

per county from 1960-2004 and for hurricane data from hurricane Katrina and Isabel.
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7.2.1 Synthetic data

We show examples of the various trends that can be seen using our techniques. Figure

7.11 shows two such example trends that can be identified by using the color scale below.

The left image shows an increasing trend as can be seen by small, light red brush strokes,

medium-sized yellow brush strokes followed by big green andbright blue brush strokes.

The right image in the figure shows a decreasing trend which can be identified by observing

small light blue brush strokes, medium sized green strokes and bigger orange and red brush

strokes. The color legend allows us to identify the decreasing trend

FIG. 7.11. This set of images shows some possible trends that canbe clearly visualized
using the scale shown below. The top left image shows an increasing trend as can be seen
by the small, faded red brush strokes and large, bright blue and green strokes in the center.
The top right image shows a decreasing trend where older values are represented by small,
light blue brush strokes and new values are represented by big, bright red brush strokes.

Our techniques can convey three other trends in a dataset. Figure 7.12 shows examples

for those trends. The left image shows an increase in values followed by a decrease. The
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FIG. 7.12. This set of images shows some more possible trends that can be clearly visual-
ized using the scale shown below. The left image shows an increase followed by a decrease
as can be seen by small yellow strokes, medium sized violet brush strokes and big green
brush stroke. The middle image in the second row shows another increase followed by
decrease. The third image in the second row shows various shades and sizes of blue brush
strokes which implies that the value stays constant over time.

increasing trend can be seen by the fact that the smallest brush stroke is light yellow in

color, followed by light blue brush strokes and medium-sized violet brush strokes. The

subsequent decrease is conveyed using a brighter bigger blue brush stroke followed by the

biggest green brush stroke. In this manner, an increase followed by decrease pattern can

be identified. The second image from the left shows a decreasefollowed by an increasing

trend in a single image. The decrease is conveyed by the smallviolet, light blue, light

yellowish green brush strokes. The subsequent increase is conveyed by the bigger green

brush stroke and the biggest bright, blue stroke. The third image shows various shades and

sizes of blue brush strokes. This implies that the value doesnot change over time. The lack

of variability conveys the constancy over time.
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7.2.2 Infant mortality

We applied our techniques to infant mortality data for the United States collected over

eight years from 1995-2002. The infant mortality data was obtained from the US Centers

for Disease Control and Prevention, National Center for Health Statistics.

Figure 7.13 shows five sample snapshots of the data in time depicting the infant mor-

tality over a five year period from 1998-2002 based on the color scale shown.

The problem with visualizing such snapshots is that any kindof interesting trends,

variability, unusual patterns or consistently minimum/maximum values cannot be easily

identified. For example, in Figure 7.13 one requires considerable effort to identify the state

which consistently has the maximum infant mortality rate over the five year time interval

shown here.

FIG. 7.13. These set of image depict the infant mortality in the entire country over a period
of five years from 1998-2002. The color scale provided can be used to understand the
data. Identification of clear, interesting patterns and unusual behavior in the data cannot be
clearly seen by looking at these snapshots.Data credits: US Centers for Disease Control
and Prevention, National Center for Health Statistics.

In contrast, Figure 7.14 shows a pointillistic visualization that shows an overview of

the data over the five-year period from 1998-2002. The visualization can help us answer

questions like which state consistently has the highest infant mortality over the interval or

which state has the least infant mortality over the interval.

As with visualization techniques, more interesting patterns can be found by interacting
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FIG. 7.14. This image shows a pointillistic visualization of the entire nation showing infant
mortality over the time interval from 1998-2002. The visualization can clearly shows that
states such as California, Utah and most of the Northeast have a very low infant mortality
rate. On the other hand, states like Mississippi jump out as consistently having the highest
infant mortality rate in the nation. Figure 7.15 shows a closer look at Mississippi. Other
interesting patterns can be observed by zooming into a region.

with the data. In line with the painting paradigm, we can get “closer” to the visualization to

investigate patterns/trends better. Figure 7.15 shows onesuch example where the state of

Mississippi clearly shows maximum infant mortality according to the color scale shown on

the right side of the image. Alabama seems to have had a high infant mortality in the past,

but the value has dropped lately as can be seen by bright, bluebrush strokes in comparison

to faded, violet brush strokes.

Another interesting pattern in the form of a spike can be observed in the state of

Alaska. Figure 7.16 shows a visualization of Alaska where wecan see big greenish blue

brush strokes followed by the biggest brush stroke in red. This conveys that there was spike

in data values in 2001 (represented by the greenish blue brush strokes). The value in 2002

dropped again as is shown by the red brush strokes.

Figure 7.17 shows an closeup example of North Dakota, South Dakota and Minnesota

being visualized using our technique. Minnesota clearly seems to have low infant mortality

rates with some intermediate moderate values as shown by faded yellow brush strokes.
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FIG. 7.15. This image depicts a visualization of southeastern region. The state of Missis-
sippi’s consistently high infant mortality rate over the five year period from 1998-2002 is
apparent from this visualization.

FIG. 7.16. This image depicts a visualization of Alaska in the pointillistic style. The values
are generally low as can be seen by small orange, yellow brushstrokes but a spike can be
clearly seen in the form of bluish green brush strokes. The values are again back to a lower
value followed by red brush strokes.
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North Dakota’s infant mortality seems to be falling as can beseen by bigger yellow brush

strokes in contrast with older blue brush strokes of variousshades. South Dakota on the

other hand seems to have had higher values (light blue brush strokes) followed by a drop

(bigger faded red brush strokes) and then an increase (even bigger green brush strokes).

FIG. 7.17. This image depicts a visualization of southeastern region. The state of Missis-
sippi’s consistently high infant mortality rate over the five year period from 1998-2002 is
apparent from this visualization.

7.2.3 US Presidential election results

We applied our techniques to data from US Presidential election results from 1960-

2004 collected at a county level. Figure 7.18 shows a snapshot of the elections from 2004

where red stands for Republican and blue stands for Democrat. Visualizing only the snap-

shots from a single election year is again limited at showingsome interesting patterns in

the data over time.

Figure 7.19 shows an example of our pointillistic visualization highlighting patterns

in the underlying time varying data. The top row shows three snapshots depicting results

from 1988, 1992, 1996, the second row shows snapshots from 2000 and 2004. The pointil-

listic visualization clearly highlights an interesting pattern such as the fact that a section in
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FIG. 7.18. This image shows a visual representation of US Votingresults per county.

southwestern Texas which consistently voted Democrat overthe entire interval. There are

some regions in Colorado too that consistently voted Democrat over the last five elections.

Figure 7.20 shows snapshots for the elections held in 1960, 1964 and 1968 in the top

row. The bottom image shows a pointillistic visualization of the data. The variations in the

southeast are clearly visible in a single image as compared to visualizing every snapshot.

The variation can be explained by the surge in popularity of the Dixiecrats in the southern

region. The variation is particularly high, since in 1960 the Dixiecrats won a large part

of the Mississippi counties and then a major resurgence in 1968 saw them winning large

parts of the south before they merged with the Republican party for the 1972 elections. The

variation in the region is clearly conveyed in a single visualization using our technique.

7.2.4 Hurricane visualization

In the hurricane visualization domain, the major challengein the process of studying

hurricanes is the change that a hurricane undergoes within acertain time interval. Our

collaborators in the Atmospheric Physics department wouldlike to study the changes in

attribute values such as the change in the value of humidity between multiple timesteps
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FIG. 7.19. This image shows a visual representation of US Votingresults per county. The
top two rows show county results from 1988, 1992 and 1996, 2000 and 2004. The pointil-
listic visualization clearly shows interesting patterns such as the fact that

or the change in wind speeds between subsequent timesteps. For example, the three left

images in Figure 7.21 show three timesteps of the humidity attribute in a hurricane. The

change in humidity values is not apparent by looking at thesesnapshots. There is clearly a

change in humidity values but specific regions are not clear.Using standard visualization

techniques, one can find the difference between the intervaland use a color mapping to

convey the change, as in the rightmost image in Figure 7.21. It only manages to capture

the overall change but does not capture the values that were attained in the intermittent
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FIG. 7.20. This image shows a visual representation of US Votingresults per county. The
top row shows snapshots of election results from 1960, 1964 and 1968. The pointillistic
visualization clearly shows variation in the southeasternregion.

timesteps and hence, does not give a complete representation of the variation in attribute

values that the hurricane has undergone in the interval.

We applied our technique to various attributes of a hurricane such as humidity and

wind speeds. Figure 7.22 depicts three various painterly visualizations that were created

using our system. The leftmost image depicts a single timestep depicted in a painterly style.

The middle image depicts three timesteps with decreasing brush size as well as saturation

and the third image depicts five timesteps with decreasing brush sizes and saturation. The

rightmost image shows the size/saturation legend for the visualizations.

The third image from the left shows the final painterly visualization with five timesteps

of humidity varying over a 15 hour time interval. The sampling frequency for the interme-
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FIG. 7.21. Visualization of a 2D slice of the humidity attributein a hurricane. The images
from left to right show the humidity attribute at timestep 29, timestep 35, timestep 41 and
the computed difference in humidity between timestep 29 andtimestep 41.

FIG. 7.22. Three different visualizations with different timeintervals. The left image
depicts humidity over a single timestep which explains the constant brush size used in the
image. The second image depicts humidity over three timesteps where smaller, desaturated
brush strokes can now be seen interspersed with bigger brushstrokes. The third image from
the left depicts humidity over five timesteps and shows more variation in the form of older,
desaturated brush strokes. The rightmost image shows a legend that depicts brush size and
saturation values for viewers to correlated brush colors with value and timesteps.

diate brush strokes is every three hours. The trend to note inthis case is that the older

humidity values are much lower, as depicted by various shades of desaturated, small blue

and green brush strokes on the right of the eye of the hurricane which is moving leftward.

The current timestep has higher humidity as depicted by the purple, violet and dark blue

large brush strokes. Homogeneity in the values towards the lower right region of the hur-

ricane can be seen in the form of smaller, desaturated brush strokes. When viewed from a

distance the overall visualization conveys information regarding the humidity distribution

over the interval and a zoomed in view of the data can give the user details regarding the

humidity values of older timesteps.
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The leftmost image in Figure 7.22 seems denser than others toits right. This is due

to the fact that the brush strokes are all of the same size and saturation, as humidity val-

ues from a single timestep are being visualization. We introduce information from older

timesteps in the form of smaller, desaturated brush strokesthat compete for the canvas.

The effect seems more diffused as we look at the second and third image from the left

in Figure 7.22 and the contribution of older timesteps becomes apparent in the painterly

visualization.

FIG. 7.23. Painterly visualization of wind speeds at differentlevels of zooming. The top
row shows the humidity attribute and a corresponding legend. The image depicts large
wind speeds and change around the eye. On zooming in further,the second row depicts
further diversity around the eye and the corresponding legend helps identify values and
variation over the interval. Further zooming into the eye conveys to the user the fact that
the eye contains the highest speed winds in the dataset as is depicted by the violet and dark
blue brush strokes.

Figure 7.23 visualizes the changes in wind speeds over a 20 hour interval, sampled

every four hours for the painterly visualization. Here we investigate regions surrounding
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the eye of the hurricane and inspect them further by zooming into the region of interest.

Notice how the legend is regenerated to match the size of the brush strokes being drawn on

the canvas.

As is expected that the change in wind speeds in and around theeye is much higher

than farther away from the eye. In the lower left corner of thehurricane various brush

strokes colored with various shades of red depict smaller values and homogeneity in wind

speed in those regions. On zooming into the hurricane visualization, as shown in the right

image in Figure 7.23 one can see the high windspeed values depicted by violet brush strokes

in and around the eye of the hurricane.

The trend to notice in this visualization, is the wind speed values in older timesteps are

higher in the lower right regions and the upward leftward motion of the hurricane causes

bright yellow brush strokes to be placed in the lower right region of the image. There are

small, faded green strokes among large bright yellowish orange brush strokes in that region.

The wind speed values in the eye of the hurricane are high evenin older timesteps as can be

seen in desaturated, smaller purple, violet brush strokes around the right side of the zoomed

in image around the center.

7.3 Discussion

We believe that our techniques for encoding temporal attribute change produce an

aesthetically pleasing visualization of the underlying data. The ability to show variations

in time-varying data such as an increase followed by a decrease and vice versa, along

with visualizing monotonic increase and decrease in a single visualization are clearly the

strengths of the technique. The “visual blending” concept works well to allow viewers to

view the visualization from a distance to get an overview. Ithelps identify regions of change

as well as trends in the data and facilitates easy investigation of those regions by zooming

into those regions. The automatically updated legend greatly helps in the understanding of

the generated pointillistic visualization.

As can be expected, the amount of information that can be usefully represented will
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decrease as the number of timesteps being considered increases due to the limited amount

of space on the canvas. We have found the number of timesteps that can be sampled and

effectively visualized to be around five. We believe that there is an upper bound for the

number of timesteps that can be visualized to effectively show change over a time interval.

FIG. 7.24. The image depicts a closeup of humidity when the minimum brush size is 2. The
smallest brush strokes can barely be seen due to its size and desaturation especially around
the center and towards the bottom where there are faded blue brush strokes of size 2. For
a meaningful visualization, the minimum brush size must be clearly visible and allow a
viewer to correlate values with the legend. The brush sizes in the legend for minimum
brush size = 4 are already small.

One of the limitations of our algorithm is the range of brush sizes that can be effec-

tively used. Using a brush size larger than 10 ends up cluttering the canvas. Using the

smallest brush size of 2 is not useful as we found that users cannot identify the desatu-

rated brush strokes at that size. This can be seen in Figure 7.24 which shows the effect of

specifying the minimum brush size as 2.

Our smallest brush stroke size is of size 4 and largest of size8, thus allowing us

to effectively visualize five timesteps. We could visualizemore than five timesteps and

increase our largest brush stroke to size 10, but as mentioned before we run into visual

clutter which may cause information overload.
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Chapter 8

EVALUATION OF POINTILLISM-BASED

TECHNIQUES

This chapter describes the second of two user studies that weconducted to evalu-

ate our art-inspired techniques. In this particular study,we evaluated the effectiveness of

pointillism-based techniques in conveying change in valuevariant time-varying data. To

evaluate the effectiveness we designed a user study that required our subjects to perform

tasks similar to that of a domain expert. User accuracy, timerequired to complete each task

and confidence in their answers were used to evaluate the pointillism-based techniques.

8.1 Hypothesis

Our hypothesis was that the new pointillism-based visualization techniques was more

effective at visualizing trends in time-varying data than standard snapshots and animations

based techniques.

8.2 Independent Variables

The independent variable in our case was the visualization technique. The visual-

ization techniques were used to visualize a mix of syntheticand real-world datasets. The

visualization technique was one of:

• Images - A panorama of snapshots for every timestep in the data. The number of

141
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snapshots used were five.

• Pointillism-based visualization depicting change over time. For this visualization,

the number of timesteps considered to generate the visualization was five.

• Animation showing snapshots at each timestep one after the other. The number of

frames in the animation correspond to the number of timesteps, which was restricted

to five.

FIG. 8.1. Five snapshots showing the global temperature for each decade from 1950 to
2000. Greyscale intensity conveys the magnitude of temperature in regions.

Figure 8.1 shows five snapshots of temperature measured overfifty years. Each snap-

shot represents the temperature over a decade. Figure 8.2 shows a pointillism-based visu-

alization of the same data.

8.3 Procedure

Before we began the formal evaluation process, we ran a pilotexperiment. Pilot stud-

ies always reveal problems and in our case allowed us to fix them before we began the full
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FIG. 8.2. A pointillism-inspired visualization of the global temperature data for the time
interval of 50 years from 1950 to 2000.

user study (Martin 2003).

8.4 Subjects

We tested our techniques with 24 subjects who had basic familiarity with using com-

puters. We did not restrict ourselves to any age group or gender. We performed full fac-

torial, within-subjects testing to evaluate our techniques. In order to balance the ordering

effects, we randomly assigned subjects to trial orders.

Table 8.1 shows the ordering used for the subjects. We presented the subjects with

snapshots, pointillism-based visualizations and animations. The ordering used within each

category is provided in Table 8.2. Table 8.4 shows the entiretable for the study enumerating

the order in which each user would see each visualization.

During the user study, we followed the following procedure

1. Explain the user study to them and inform them of what it entails.

2. Obtain consent from the subjects for the user study.
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Sub ID Snapshot Pointillism Animation Pointillism (Trends)

1 1 2 3 4
2 1 2 4 3
3 1 3 2 4
4 1 3 4 2
5 1 4 2 3
6 1 4 3 2
7 2 1 3 4
8 2 1 4 3
9 2 3 1 4
10 2 3 4 1
11 2 4 1 3
12 2 4 3 1
13 3 1 2 4
14 3 1 4 2
15 3 2 1 4
16 3 2 4 1
17 3 4 2 1
18 3 4 1 2
19 4 1 3 2
20 4 1 2 3
21 4 2 1 3
22 4 2 3 1
23 4 3 2 1
24 4 3 1 2

Table 8.1. Ordering for evaluation of our techniques in comparison to standard
visualization techniques.

3. Present them with training material and let them familiarize themselves with the task

for some time.

4. Conduct the user study and collect the results after they were done

5. Present a usability questionnaire and get subjective feedback from the subjects.

Questions for this questionnaire are specified in the next section.
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a b c d
a b d c
a c b d
a c d b
a d b c
a d c b
b a c d
b a d c
b c a d
b c d a
b d a c
b d c a
c a b d
c a d b
c b a d
c b d a
c d a b
c d b a
d a b c
d a c b
d b a c
d b c a
d c a b
d c b a

Table 8.2. In each of the four categories mentioned in table 8.1, the subject was shown four
different images or animations. These examples too were varied according to the order
given above.
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ID Snapshot Pointillism Animation Trends

1 1-a 1-b 1-c 1-d 2-a 2-b 2-c 2-d 3-a 3-b 3-c 3-d 4-a 4-b 4-c 4-d
2 1-a 1-b 1-d 1-c 2-a 2-b 2-d 2-c 4-a 4-b 4-d 4-c 3-a 3-b 3-d 3-c
3 1-a 1-c 1-b 1-d 3-a 3-c 3-b 3-d 2-a 2-c 2-b 2-d 4-a 4-c 4-b 4-d
4 1-a 1-c 1-d 1-b 3-a 3-c 3-d 3-b 4-a 4-c 4-d 4-b 2-a 2-c 2-d 2-b
5 1-a 1-d 1-b 1-c 4-a 4-d 4-b 4-c 2-a 2-d 2-b 2-c 3-a 3-d 3-b 3-c
6 1-a 1-d 1-c 1-b 4-a 4-d 4-c 4-b 3-a 3-d 3-c 3-b 2-a 2-d 2-c 2-b
7 2-b 2-a 2-c 2-d 1-b 1-a 1-c 1-d 3-b 3-a 3-c 3-d 4-b 4-a 4-c 4-d
8 2-b 2-a 2-d 2-c 1-b 1-a 1-d 1-c 4-b 4-a 4-d 4-c 3-b 3-a 3-d 3-c
9 2-b 2-c 2-a 2-d 3-b 3-c 3-a 3-d 1-b 1-c 1-a 1-d 4-b 4-c 4-a 4-d
10 2-b 2-c 2-d 2-a 3-b 3-c 3-d 3-a 4-b 4-c 4-d 4-a 1-b 1-c 1-d 1-a
11 2-b 2-d 2-a 2-c 4-b 4-d 4-a 4-c 1-b 1-d 1-a 1-c 3-b 3-d 3-a 3-c
12 2-b 2-d 2-c 2-a 4-b 4-d 4-c 4-a 3-b 3-d 3-c 3-a 1-b 1-d 1-c 1-a
13 3-c 3-a 3-b 3-d 1-c 1-a 1-b 1-d 2-c 2-a 2-b 2-d 4-c 4-a 4-b 4-d
14 3-c 3-a 3-d 3-b 1-c 1-a 1-d 1-b 4-c 4-a 4-d 4-b 2-c 2-a 2-d 2-b
15 3-c 3-b 3-a 3-d 2-c 2-b 2-a 2-d 1-c 1-b 1-a 1-d 4-c 4-b 4-a 4-d
16 3-c 3-b 3-d 3-a 2-c 2-b 2-d 2-a 4-c 4-b 4-d 4-a 1-c 1-b 1-d 1-a
17 3-c 3-d 3-a 3-b 4-c 4-d 4-a 4-b 2-c 2-d 2-a 2-b 1-c 1-d 1-a 1-b
18 3-c 3-d 3-b 3-a 4-c 4-d 4-b 4-a 1-c 1-d 1-b 1-a 2-c 2-d 2-b 2-a
19 4-d 4-a 4-b 4-c 1-d 1-a 1-b 1-c 3-d 3-a 3-b 3-c 2-d 2-a 3-b 2-c
20 4-d 4-a 4-c 4-b 1-d 1-a 1-c 1-b 2-d 2-a 2-c 2-b 3-d 3-a 3-c 3-b
21 4-d 4-b 4-a 4-c 2-d 2-b 2-a 2-c 1-d 1-b 1-a 1-c 3-d 3-b 3-a 3-c
22 4-d 4-b 4-c 4-a 2-d 2-b 2-c 2-a 3-d 3-b 3-c 3-a 1-d 1-b 1-c 1-a
23 4-d 4-c 4-a 4-b 3-d 3-c 3-a 3-b 2-d 2-c 2-a 2-b 1-d 1-c 1-a 1-b
24 4-d 4-c 4-b 4-a 3-d 3-c 3-b 3-a 1-d 1-c 1-b 1-a 2-d 2-c 2-b 2-a

Table 8.3. Complete table for user evaluation of pointillism-based techniques
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8.4.1 Datasets

We evaluate our techniques with a combination of synthetic and real-world data. Syn-

thetic data were generated to contain all the possible trends that can be conveyed using our

techniques. We generated synthetic time-varying datasetsin which the values vary over

time. The datasets were generated to evaluate whether our pointillism-based techniques

were able to show trends over time.

Real-world data was used to test the effectiveness of the techniques and compare it

with standard visualization techniques. We evaluate our techniques on real-world datasets

that we have obtained from various sources.

• Hurricane data obtained from NASA courtesy of Dr. Lynn Sparling and Dr. Scott

Braun.

• Rainfall data for the world for the last 100 years obtained from NOAA’s website

(NASA 2000).

• US Infant mortality per state for the last 10 years from the USCensus bureau (CDC

2002).

• Voting results per county from 1960-2004 for the entire nation (PurpleAmerica

2004).

8.5 Tasks

The tasks were based on the kind of tasks that an application domain scientist would

perform on a regular basis to correlate timestep data. The tasks require a user to identify

variability as well as various temporal trends in a time-varying dataset by examining a

visualization.

The users were asked to perform the task of identifying a trend in a highlighted region

in the dataset. The user was asked to correctly identify whether the trend in the data was
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FIG. 8.3. This set of diagrams represent the kinds of temporal trends that we tested our
techniques. The images from left to right, show an increasing, a decreasing, a constant, a
decrease followed by an increase, an increase followed by a decrease. The subjects were
asked to identify a trend using such diagrams.

increasing, decreasing, increasing and decreasing, decreasing and increasing or constant

over time.

The user was shown the following:

• Snapshots of subsequent timesteps - Baseline (standard visualization technique)

• An animation showing the snapshots sequentially - Baseline

• Our pointillism-based visualization of the time-varying data.

The subject were shown small diagrams indicating the possible trend in the specified

region and the subject then picked a trend based on their observation. The time required

to complete the task, accuracy and confidence of the subjectsin their answers were used to

evaluate the visualization techniques.

8.5.1 Evaluation questions

The questions in the user evaluation were based on identifying trends. We asked

questions such as:

• Based on the presented visualization, identify the trend inthe data? Does it seem

to be monotonically increasing, monotonically decreasing, an increase followed by a

subsequent decrease, a decrease followed by a subsequent increase or no change?

• In the shown visualization, identify regions of variability and high change?
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8.5.2 Subjective evaluation

The subject was requested to fill out a questionnaire where the usability was evalu-

ated. Their answers were obtained using a scale from 1 (easy/agree) to 9 (hard/disagree).

Questions asked in the questionnaire were as follows:

1. Were the questions asked for each evaluation straightforward?

2. Was it easier to perform simple tasks such as identifying variability/change using

standard visualization techniques (snapshots and animations)?

3. Was it easy to perform tasks such as identifying trends using standard visualization

techniques (snapshots and animations) ?

4. Could you perform simple tasks such as identifying a single trend using pointillism-

based techniques?

5. Was it easier to perform tasks such as identifying trends using pointillism-based tech-

niques?

6. Did you prefer the pointillism-based techniques over thestandard snapshots/animation

techniques?

8.6 Dependent Variables

We consider theuser performance time, user accuracyandconfidenceto evaluate our

techniques. User performance time is the time required to complete each task. We measure

this for each task in the user study. The other variable that enables effective analysis isuser

accuracy. Based on the answers of the subjects, we can compute whetherthe use of our

techniques helped them answer the questions correctly. We also measured the confidence

of the subjects in their answers. In order to compute theuser subjective satisfaction, we

ask subjects to rate their experience on a scale of 1-9 for a variety of questions.
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8.7 Conducting the user study using a web browser

The user study was conducted using a web browser. As we had to show videos to the

subjects, we used Riva Free FLV encoder (RIVA 2006) to encodeAVI files into flash files

that can be shown to the viewer in the browser setting. Figure8.4 is a screenshot of the first

screen shown to the subjects. It gives an overview of the userstudy to the subjects. After

answering any other questions that the subject had, we obtain the consent of the subject to

continue the user study.

FIG. 8.4. A screenshot of the welcome screen that was shown to thesubjects. The subjects
were explained the user study and any other questions they may have were answered before
obtaining their consent.

Figure 8.5 shows a screenshot of a screen that the subjects saw. The user was asked

to identify a trend or variability in the data using one of thevisualization techniques. The

user then observes it and provides an answer. The user also indicates a confidence level in
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their answer.

FIG. 8.5. A screenshot of a sample screen that is shown to the subjects. The subjects were
shown images and they were asked to indicate the overall change that they can visually
identify in the data. They were also requested to give their confidence level in their answer.

8.8 Results

The ability of the subjects to visualize variability in a region over time as well as the

ability to identify specific temporal trends was evaluated.High Variability implies large

amounts of changes in a region over time whereas low variability implies static values that

do not seem to change over time. Our techniques can convey various temporaltrends. A

temporal trend could be increasing values of rainfall in a region over a given time interval.

To analyze the effectiveness of our techniques we used statistical techniques to ana-

lyze the accuracy, overall time required to complete a task,and the confidence that subjects

had in their answers. The mean and standard deviation of the errors in the answers for

each visualization shown to the subjects was used to determine whether the use of our

techniques helped the subject complete the task more accurately, quickly and with reason-
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able confidence. To compare the three different visualization types we use the statistical

testAnalysis of Variance (ANOVA). This test allows us to compare the accuracy, timings

and confidence obtained from the three groups (snapshots, animations and pointillist tech-

niques). The test begins with a null hypothesis that the use of pointillism-based techniques

provides no speedup in completing tasks, no improvement in accuracy and that the users

feel equally confident in their answers for all techniques. The statistical measure of signifi-

cancep evaluates the probability of the result agreeing with the null hypothesis. For values

of p < 0.05, the null hypothesis is rejected and it implies that the use of pointillism-based

techniques makes a difference.

8.8.1 Variability results and analysis

The ability of the subjects to be able to notice variability in a region over time was

evaluated and analyzed.

Table 8.4 shows the mean and standard deviation for the user accuracy over all users

over all questions under that visualization category. The mean accuracy for the pointillism-

based techniques was higher than that of animations as well as snapshots. Figure 8.6 shows

a graphical representation of the same. It shows that subjects were more accurate when

using the pointillism-based techniques as compared to snapshots or animations. The snap-

shots as well as the animations require the user to correlatechanges and observe a large

region with continuously changing values over time. Our pointillism-based technique pro-

duces a visual representation that obtains contributions from all the intermediate time in-

tervals. It highlights regions of low as well as high variability allowing the subjects to

accurately complete the task.

Table 8.5 shows the result of analyzing the user accuracy using ANOVA. The com-

puted probabilityp of this result assuming the null hypothesis was less than 0.029. This

implies that the result wasstatistically significantand that the null hypothesis was rejected.

The pointillism-based techniques increase the ability of auser to accurately visualize trends

in time-varying data.
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Type of visualization Mean Standard Deviation
Snapshots 75.556 15.967

Animations 81.481 12.346
Pointillism 88.889 25.514

Table 8.4. This table shows the mean and standard deviation of the accuracy of the users.
The pointillism-based technique helped subjects completethe task more accurately.

FIG. 8.6. This graph shows that the overall accuracy of the subjects was higher for
pointillism-based visualization as compared to snapshotsor animations.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 2410. 2 1205.0 3.719

error 2.5274E+04 78 324.0
total 2.7684E+04 80

Table 8.5. This table shows the result of performing the ANOVA test on the accuracy per
user. The probability of this results, assuming the null hypothesis, was less than 0.029.
This implies that the result was statistically significant and the null hypothesis that the
pointillism-based techniques do not increase the accuracyin completing a task, was re-
jected.



154

Type of visualization Mean 95% confidence interval Standard Deviation
Snapshots 102.67 79.36-126.0 92.0

Animations 91.533 68.23-114.8 40.0
Pointillism 65.585 42.28-88.89 32.2

Table 8.6. This table shows the mean, 95% confidence intervals around the mean as well
as standard deviation for the timings results.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 3.2667E+04 2 1.0889E+04 3.316

error 3.4147E+05 78 3283.0
total 3.7414E+05 80

Table 8.7. This table shows the result of performing the ANOVA test on the time required
by the users to complete a task using all the techniques. The probability of this results,
assuming the null hypothesis, was less than 0.023. This implies that the result was statisti-
cally significant and the null hypothesis that the pointillism-based techniques do not affect
the speed of the subjects in completing a task, was rejected.

We also measured and analyzed the time required for subjectsto complete each task.

Table 8.6 shows the mean and standard deviation values for the timings results for the

subjects. Figure 8.7 shows a graphical representation of the timing results. In this case,

the subjects required much less time to complete the task as compared to snapshots as well

as animations. In the case of snapshots, this may be due to thefact that the subjects have

to correlate values and interpret changes using all the snapshots and the color scale. The

animations technique seems to allow users to identify variability faster but not as fast as

pointillism-based techniques. Therefore, not only did thesubject require less time to finish

the task using pointillism-based techniques but also were more accurate as can be seen in

Table 8.4 and in Figure 8.6.

On analyzing the timings over all the users using ANOVA as shown in Table 8.7, we

found that probabilityp of the null hypothesis being true was 0.023. Since the probability

was less than 0.05, the result wasstatistically significant. This implies that the pointillism-

based techniques aid the ability of the subjects in completing the task quickly as compared

to snapshots or animations.

Along with accuracy and time required per user per task, we requested the subjects
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FIG. 8.7. This graph shows the mean time required by subjects to complete the tasks using
snapshots (A), animations (B) and pointillism-based techniques (C). The errors bars show
the 95% confidence interval around the mean. The pointillism-based techniques takes al-
most 35 seconds less compared to snapshots and 25 seconds less as compared to animation.



156

Type of visualization Mean 95% confidence interval Standard Deviation
Snapshots 3.5407 3.228-3.854 0.796

Animations 3.4889 3.176-3.802 0.759
Pointillism 3.711 3.398-4.024 0.890

Table 8.8. This table shows the mean, 95% confidence intervals around the mean as well
as standard deviation for the confidence results.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 8.080 2 2.693 3.663

error 76.47 78 0.7352
total 84.55.0 80

Table 8.9. This table shows the result of performing the ANOVA test on the confidence
per user per answer. The probability of this results, assuming the null hypothesis, was less
than 0.015. This implies that the result is statistically significant and the null hypothesis
that the pointillism-based techniques do not increase the accuracy in completing a task, was
rejected.

to state their confidence in their answers for each question.Table 8.8 shows the mean and

standard deviation in user confidence for all the three visualization techniques. Figure 8.8

shows a graph depicting the confidence. Users were more confident about their answers

for pointillism-based techniques as compared to the snapshots or animations based tech-

niques. The pointillism technique was ideal for visualizing variability in data and a single

representative image can convey low as well as high variability. Our pointillism-based tech-

niques draw the viewer’s attention to regions of high variability and seem to instill more

confidence in the subjects as compared to snapshots or animations.

Performing the ANOVA test on the confidence over all the answers as shown in Table

8.9, the computed probabilityp of the null hypothesis being true was 0.015. Sincep <

0.05, the null hypothesis was rejected and astatistically significantresult was obtained.

This implies that the increased user confidence in pointillism-based techniques was highly

unlikely to have occurred by chance.
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FIG. 8.8. This graph shows the confidence the subjects had in their answers. As per the
graph, the users seem more confident of their answers when using pointillism. They seem
to be more confident of their answers in the case of snapshots as compared to animations.
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Type of visualization Mean Standard Deviation
Snapshots 66.667 34.174

Animations 74.275 22.128
Pointillism 77.875 25.514

Table 8.10. This table shows the mean and standard deviationof the accuracy of the
users when visualizing temporal trends. Subjects seem to bemore accurate when using
the pointillism-based technique as compared to snapshots and only marginally better when
using animations.

8.8.2 Trends results and analysis

The ability of the subjects to visually correlate and identify trends in data was eval-

uated. The accuracy, time required per task per technique and the user confidence was

measured and analyzed.

We analyzed whether the subjects were able to accurately identifying trends in the

time-varying data using our pointillism- based techniquesas compared to snapshots and

animations. Table 8.10 shows the mean and standard deviation in the accuracy of the

subjects. Figure 8.9 shows a graph of the same. The accuracy using pointillism-based

techniques was higher than snapshots and only marginally higher than animations. Users

seem to be able to visualize trends in data well using animations too.

Performing the ANOVA test on the user accuracy over all the users over all the tasks,

we get the results as shown in Table 8.11. The computed probability p of the null hypothesis

being true was 0.024. Sincep < 0.05, the null hypothesis was rejected and astatistically

significant result was obtained. This implies that the pointillism-based technique helps

increase the user accuracy.

Additionally, the time required per user to complete each task per visualization tech-

nique was measured and analyzed. Table 8.12 shows the mean and standard deviation of

the time required for each visualization technique. Figure8.10 shows a graph showing the

mean and the 95% confidence interval around it. The time required for subjects to find

trends was significantly lower than that using snapshots or animations. The ability to visu-

alize values from various timesteps and correlating them ina single image seems to provide
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FIG. 8.9. This graph shows the accuracy of the subjects when completing tasks requiring
them to find temporal trends in the data. Subjects seem to be more accurate when using
pointillism-based techniques as compared to snapshots andanimations.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 3350.2 2 1402.6 2.716

error 3.2154E+04 78 472.2
total 2.9823E+04 80

Table 8.11. This table shows the result of performing the ANOVA test on the user accuracy
per user per answer. The probability of this results, assuming the null hypothesis, was less
than 0.024. This implies that the result was statistically significant and the null hypothesis
that the pointillism-based techniques do not increase the accuracy in completing a task, was
rejected.
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Type of visualization Mean 95% confidence interval Standard Deviation
Snapshots 101.00 74.06-127.9 105

Animations 92.719 65.78-119.7 40.9
Pointillism 61.44 34.20-88.08 45.1

Table 8.12. This table shows the mean, 95% confidence intervals around the mean as well
as standard deviation for the timings results.

Source of variation Sum of squares Degrees of freedom Mean squares F
between 2.3886E+04 2 1.1943E+04 2.416

error 3.8563E+05 78 4944.0
total 4.0952E+05 80

Table 8.13. This table shows the result of performing the ANOVA test on the timing per
user per answer. The probability of this results, assuming the null hypothesis, was less
than 0.046. This implies that the result was statistically significant and the null hypothesis
that the pointillism-based techniques do not increase the speed in completing a task, was
rejected.

subjects with sufficient information to identify trends faster.

The time required per user over all the answers was analyzed using the ANOVA test

as shown in Table 8.13. The computed probabilityp of the null hypothesis being true was

0.046. Sincep < 0.05, the null hypothesis was rejected and astatistically significantresult

was obtained. This implies that the pointillism-based technique helps subjects complete a

task faster.

The user confidence per task was obtained and analyzed. Table8.14 shows the mean

and standard deviation for the confidence that the users had in their answers for identifying

trends. Figure 8.11 shows a graph of the same. The subjects were more confident in their

answers for animations and snapshots as compared to the pointillism-based techniques.

This can be attributed to the fact that the pointillism-based technique was unfamiliar to the

subjects and so even though their answers were correct, as was verified, the subjects were

just less confident as compared to animations and snapshots.

The ANOVA test results for the confidence answers are shown inTable 8.15. The

computed probabilityp of the null hypothesis being true was 0.078. Sincep > 0.05, the null

hypothesis cannot be rejected and so we cannot deduce that a statistically significant result
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FIG. 8.10. This graph shows the confidence the subjects had in their answers. As per the
graph, the users seem more confident of their answers when using pointillism. They seem
to be more confident of their answers in the case of snapshots as compared to animations.

Type of visualization Mean 95% confidence interval Standard Deviation
Snapshots 3.4370 3.119-3.755 0.814

Animations 3.711 3.393-4.030 0.890
Pointillism 3.1926 2.874-3.511 0.786

Table 8.14. This table shows the mean, 95% confidence intervals around the mean as well
as standard deviation for the confidence results.
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FIG. 8.11. This graph shows the confidence the subjects had in their answers. As per the
graph, the users seem more confident of their answers when using animations and snap-
shots than when using pointillism. This could be attributedto the fact that the users were
unfamiliar with the pointillism-based technique as compared to animations and snapshots.
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Source of variation Sum of squares Degrees of freedom Mean squares F
between 3.634 2 1.817 2.631

error 53.87 78 0.6906
total 57.50 80

Table 8.15. This table shows the result of performing the ANOVA test on the confidence per
user per answer. The probability of this results, assuming the null hypothesis, was less than
0.078. This implies that the result was not statistically significant and the null hypothesis
cannot be rejected.

was obtained. The result indicates that the high confidence in snapshots and animations

as compared to the pointillism-based technique could have occurred by chance and no

technique clearly instills more confidence as compared to the other techniques.

8.9 Discussion

Analyzing the results from the user study provided some insights into the effectiveness

of our pointillism-based technique. The aim was to evaluatewhether the technique was

useful in conveying variability in time-varying data and whether it was able to convey

trends in the data.

Particularly, in the case of visualizing variability, our pointillism-based technique may

have worked more effectively as it samples all the timestepsin the time interval to create a

visualization. This ensured that any kind of variability was captured effectively and our hy-

pothesis was validated by the fact that the subjects were able to perform variability-based

tasks more accurately and quickly as compared to snapshots or animations. In the case

of snapshots, it can be explained by the fact that the subjects have to observe each and

every snapshot, correlate the data values in that snapshot with the color legend and then

infer variability or identify a pattern from it. This takes more time than looking at a sin-

gle, comprehensive image. Comparatively in the case of animations, users required less

time than snapshots since our visual system is adept at identifying variability. The fact

that the subjects had to look at the complete animation before they could answer questions

might have affect the time required by the subjects to complete the task. This is naturally
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a disadvantage for animations when visualizing time-varying data over a larger time in-

terval. Considering that our pointillism-based techniquecan effectively visualize only five

timesteps as of now, this problem of viewing time-varying data over a larger interval still

needs to be addressed.

When the users were asked to identify trends in the data usingour pointillism-based

techniques, they performed marginally better than animations and much better than snap-

shots as regards accuracy and speed, but were not as confidentin their answers. This may

be due to the fact that these techniques are new and the users were not sure whether they

were reading the visualizations correctly. This was supported by their answers in the sub-

jective evaluation, where a majority of them said that it wasless straightforward to identify

trends using our pointillism-based techniques. Considering that they thought that it was

harder to identify trends using snapshots and animations implies that the task was hard to

begin with. The fact that their accuracy was reasonably highimplies that they were just not

confident of their correct answers.

In the case of identifying specific trends, the users performance did not vary by the

trend they were asked to identify. Users surprisingly were able to easily identify the harder

trends such as increase followed by decrease as well as decrease followed by an increase.

From our initial experience, identifying more complex trends seemed to be a problem but

over a larger population of the user study, it did not affect the subjects and they did equally

well in identifying complex trends as well as simple monotonically increasing, decreasing

or constant trends.

Our subjective evaluation results implied that the users preferred to use the pointillism-

based techniques over snapshots and animations to visualize the variability. They found

it hard to identify trends in data using snapshots as well as animations. Pointillism-based

technique was found to be hard, but not as hard as the other two. In the final question, where

they were asked whether they preferred the pointillism-based technique over snapshots and

animations, a score of 3.1 was received on a scale of 1 (agree)to 9 (disagree). The accuracy,

timings and confidence along with the subjective evaluationindicates that the users seem
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to benefit from the use of pointillism-based technique in completing tasks for identifying

variability and trends in time-varying data. Visualizing trends in data was also accurately

done even though users had less confidence in their correct answers.



Chapter 9

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have presented novel art-inspiredtechniques to visualize time-

varying data. Using our techniques, application domain users can visualize time-varying

data more effectively.

9.1 Illustrative cues aid visual tracking

Time-varying data visualization using snapshots and animations of snapshots are lim-

ited at conveying change in position as well as change in attribute values. For time-varying

data, where the features are three-dimensional and moving over time, our illustration-

inspired techniques are useful in helping a user to visuallytrack a feature over time.

We have identified and applied our techniques for visualizing time-varying data using our

speedlines, flow ribbons, opacity-modulation and strobe silhouettes techniques to convey

temporal change in feature positions over time.

Our user study helped us evaluate the effectiveness of our techniques in terms of the

accuracy of the users conducting simple tasks, the amount oftime required by the users to

complete the task and confidence in their answers. We found that our techniques helped

subjects complete the task faster, more accurately and theyhad more confidence in their

answers using our techniques. Users preferred the use of speedlines over opacity-based

techniques as in some cases they seemed to misinterpret opacity-based techniques as data

from the same timestep.

166
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In addition to identifying new techniques, we identified a novel intent-based simplifi-

cation techniques for curves and paths. The ability to generate simplified representations

based on the need of the user was novel and can be applied in various domains such as

viewing hurricane paths, driving directions, maps and illustrative visualization of paths in

three-dimensional feature visualization.

9.2 Hurricane investigation through illustrative techniques

The application of illustration-inspired techniques to visualize the time-varying data

from hurricanes Bonnie, Isabel and Katrina led to interesting challenges as well as solu-

tions. Our techniques have facilitated the study of the hurricane and allowed visualization

of internal structures of the hurricane. Our main contribution was to demonstrate the use

of illustration-based techniques, in a domain where 2D traditional visualization techniques

have been used, to help understand the physics behind the phenomenon and assist the in-

vestigation of conditions leading to the intensification ordissipation of a hurricane. The

silhouette computation method helped in the identificationof vertical wind shear which

provides answers to crucial questions concerning the weakening and eventual dissipation

of a hurricane. We provided domain experts with novel visualizations that provided tem-

poral information regarding previous timesteps.

An expert evaluation was conducted to identify the effectiveness of our techniques.

The experts mostly preferred the illustration-inspired techniques over standard visualiza-

tion techniques. Visualizing energy flow through the entirehurricane system and its de-

pendencies on assumptions about the coupling of the storm tothe ocean can be further

investigated to know more about the evolution of a hurricane.

9.3 Visualizing change in attribute values using pointillism

For visualizing changes in value variant time-varying data, we introduced novel

pointillism-inspired techniques. Such changes in value are hard to visualize using stan-
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dard methods and generally end up giving only an idea of overall change. Our technique

uses a unique method of sampling every timestep and using itscontribution in the process

of creating a painterly visualization. We take advantage ofthe color mixing theory initially

proposed by Rood et al. (Rood 1879) and later used by Seurat inhis paintings (Kemp

1990).

We apply our techniques to various domains such as Infant mortality over a period

of eight years, US presidential election results from 1960-2004 for every county, global

rainfall over the 1900-2000 period and the domain of hurricanes.

A user study was conducted to evaluate the ability of our pointillism-based techniques

to convey change (variability) over time as well as visualize trends in the data. The user

study indicated that users were clearly able to visualize variability faster than snapshots and

animations and with increased accuracy. The users were ableto identify specific trends in

the data using our pointillism-based technique faster thansnapshots and animations. The

accuracy was marginally better than animations but the users were less confident of their

correct answers than in the case of animations. This may havebeen due to the fact that the

pointillism-based techniques were new compared to the animations technique which the

users were more familiar with.

9.4 Future Work

There are several directions for future work. In the case of illustration-inspired tech-

niques, identifying novel illustration-based techniquesthat can provide more information

to the viewer could prove greatly useful and could add to the four techniques that have been

introduced here.

In the field of hurricane visualization, many other techniques can be identified by close

collaboration with domain experts. In many cases the solutions to their problems may not

require a novel visualization technique, but it can make a big impact in what the domain

expert can see through the visualization.

In the case of pointillism-based visualizations, users expressed that it was hard to dis-
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tinguish brush strokes and correlate them with those in the palette. A perceptually constant

color scale such as the LAB or LUV color space could be used instead of the HSV color

space being currently used. Perceptually constant color scales may help users identify and

correlate various brush colors more correctly. Using different shapes for each timestep

was another user suggestion that could work since that adds another way for the viewer to

disambiguate closely placed brush strokes that look similar. From a distance all the brush

strokes will blend as long as they are placed close enough.
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