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Abstract

Background: Cluster heatmaps are commonly used in biology and related fields to reveal hierarchical clusters
in data matrices. This visualization technique has high data density and reveal clusters better than unordered
heatmaps alone. However, cluster heatmaps have known issues making them both time consuming to use and
prone to error. We hypothesize that visualization techniques without the rigid grid constraint of cluster
heatmaps will perform better at clustering-related tasks.

Results: We developed an approach to “unbox” the heatmap values and embed them directly in the
hierarchical clustering results, allowing us to use standard hierarchical visualization techniques as alternatives
to cluster heatmaps. We then tested our hypothesis by conducting a survey of 45 practitioners to determine
how cluster heatmaps are used, prototyping alternatives to cluster heatmaps using pair analytics with a
computational biologist, and evaluating those alternatives with hour-long interviews of 5 practitioners and an
Amazon Mechanical Turk user study with approximately 200 participants. We found statistically significant
performance di↵erences for most clustering-related tasks, and in the number of perceived visual clusters. Visit
git.io/vw0t3 for our results.

Conclusions: The optimal technique varied by task. However, gapmaps were preferred by the interviewed
practitioners and outperformed or performed as well as cluster heatmaps for clustering-related tasks. Gapmaps
are similar to cluster heatmaps, but relax the heatmap grid constraints by introducing gaps between rows
and/or columns that are not closely clustered. Based on these results, we recommend users adopt gapmaps as
an alternative to cluster heatmaps.

Keywords: Systems Biology / Omics Data; Bioinformatics Visualization; Hierarchy Data; Data Clustering;
Qualitative Evaluation; Quantitative Evaluation

Background
Cluster heatmaps are commonly used in biology and
related fields to reveal hierarchical clusters in data ma-
trices. Heatmaps visualize a data matrix by drawing a
rectangular grid corresponding to rows and columns in
the matrix, and coloring the cells by their values in the
data matrix. In their most basic form, heatmaps have
been used for over a century [1]. In addition to col-
oring cells, cluster heatmaps reorder the rows and/or
columns of the matrix based on the results of hier-
archical clustering. The hierarchical structure used to
reorder the matrix is often displayed as dendrograms in
the margins. Cluster heatmaps have high data density,
allowing them to compact large amounts of informa-
tion into a small space [2].
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Applications
Cluster heatmaps continue to find widespread applica-
tion in biology [3–9]. They are most commonly used to
visualize gene expression data across samples and con-
ditions as measured by microarray or RNA-seq exper-
iments. When applied to a correlation matrix, cluster
heatmaps are particularly helpful at identifying groups
of correlated samples or genes. These groups are re-
vealed as block structures along the diagonal and can
identify outliers, tissue subtypes, and novel gene path-
ways [10].
There are other applications of cluster heatmaps

within biology beyond gene expression. Consider ma-
chine learning models trained on data where rows are
samples and columns are predictors of a dependent
variable such as a phenotype. Here, cluster heatmaps
of correlation matrices are particularly helpful for iden-
tifying blocks of highly correlated samples that violate
the independent and identically distributed (IID) as-
sumptions made by most machine learning algorithms.
They can also identify blocks of redundant predictors
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that may reduce predictive performance, increase com-
putation time, or introduce collinearities that interfere
with certain modeling techniques.
Finally, cluster heatmaps can help visualize the rela-

tionships between top predictive features, particularly
when using estimates such as ensemble feature impor-
tances that lack a “directionality” that is more tradi-
tionally found in the positive or negative sign of linear
model coe�cients. If the relevance of a single feature
to the positive or negative class is known, other fea-
tures in the same block structure are likely relevant to
the same class. Such applications are useful for inter-
preting “black-box” machine learning models, even for
symmetric matrices of relatively small size.

Shortcomings
Cluster heatmaps have several shortcomings [2, 11].
The Gestalt principles of proximity and similarity help
define what clusters are visible in a heatmap; clusters
are formed by cells that are close in proximity and visu-
ally similar in color [12]. However, the grid structure of
the heatmap constrains how proximity may be used—
we are limited to reordering the rows and columns of
the heatmap. Thus, clusters may be perceived di↵er-
ently in the heatmap versus the dendrogram.
Flipping the right and left children in the dendro-

gram has no impact on the underlying data matrix or
hierarchy, but has a major impact on how clusters are
perceived in the heatmap. An optimal ordering can
be found based on di↵erent metrics to place the most
relevant rows or columns next to each other [13–15].
Even in that case, when clusters are formed close to
the root of the dendrogram, cells that are not closely
clustered must still be placed adjacent in the heatmap
due to the rigid grid structure. Rows or columns that
are closely clustered can also end up non-adjacent in
large clusters.
To compensate, users must reference the dendro-

grams in the margins to be certain that visible clus-
ters in the heatmap match the hierarchical clustering
depicted in the dendrograms. It can be fatiguing and
error-prone to shift focus back and forth between ele-
ments. These problems are particularly acute for large
datasets where cluster heatmaps have even greater po-
tential as a tool for data analysis.

Alternatives
This work examines several standard hierarchical vi-
sualization techniques as alternatives to cluster heat-
maps, as depicted in Figure 1. Heer et al. [22] provides
an excellent description of these techniques.
To review, cluster heatmaps visualize a hierarchically

clustered data matrix using a reordered heatmap with
dendrograms in the margin. Gapmaps [11, 16] are a

recent variant of cluster heatmaps that encode the
distance between the clusters as gaps between rows
and/or columns. Both of these are juxtaposed tech-
niques [23], combining heatmaps with dendrograms.
Dendrograms are a form of node-link diagram, where

all of the leaf nodes are placed at the same level in the
visualization. For traditional Cartesian dendrograms,
this usually means the root node is at the top of the
visualization and leaf nodes are found at the bottom.
In a radial dendrogram, which uses polar instead of
Cartesian coordinates, the root is in the center of a
circle and the leaf nodes are arranged along the outer-
most ring. For small datasets, radial layouts tend to
use space more compactly than Cartesian layouts that
often require considerable horizontal space [22].
Most node-link diagrams only di↵er in how the node

layout is calculated. For example, Reingold-Tilford

trees [24] do not place the leaf nodes at the same level.
Instead, node placement corresponds more directly to
the depth of that node in the tree. There are both rect-
angular/Cartesian and radial/polar versions with simi-
lar properties as dendrograms. Force-directed trees [19]
use an approximation of a physics simulation to calcu-
late node placement, where disconnected nodes repel
each other and connected nodes attract each other.
This results in a compact node-link diagram.
Space-filling techniques are an alternative to node-

link diagrams that attempt to maximize (or fill) the
display space used. Sunbursts [18] are space-filling
adjacency diagrams very similar to radial Reingold-
Tilford trees, except all nodes are represented by
space-filling arcs radiating from the center of the vi-
sualization instead of individual circles. The root is
encoded in the center, inner nodes are represented as
nested arcs radiating away from the center, and leaf
nodes are along the outermost rings of the circle. There
is also a Cartesian variant sometimes referred to as
partition or icicle diagrams.
In addition to space-filling adjacency diagrams, there

are also space-filling enclosure diagrams that use
nested shapes to encode hierarchy. The most common
are treemaps [25], which use nested rectangles to depict
hierarchy and the area of those rectangles to encode
other values. Squarified treemaps [26] attempt to pro-
duce approximately square rectangles. While treemaps
maximize the amount of space given to leaf nodes, the
underlying hierarchy can be di�cult to interpret. Cir-
cle packing [17] represents hierarchy via nested circles
instead of squares, with the outermost circle repre-
senting the root and the innermost nested circles rep-
resenting leaves. The tradeo↵ is less space dedicated to
the leaf nodes, but often results in a clearer depiction
of the hierarchy than treemaps.
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(a) (b) (c) (d) (e)

Figure 1 Alternatives to Cluster Heatmaps. We used these 5 alternatives (in addition to cluster heatmaps) in our final study. All
five alternatives depicted here are for the same dataset. From left to right: (a) gapmap [11, 16] (b) circle packing [17], (c)
sunburst [18], (d) radial dendrogram, and (e) force-directed tree [19]. Leaf nodes are filled to indicate the original value from the
data matrix using the PRGn ColorBrewer scheme [20]. Positive values are green in color, and negative values are purple in color. The
root node, if depicted, is indicated by a black outline. Inner nodes have no fill color and a gray outline. Edge tapering is used to
indicate parent-child relationships in the node-link diagrams [21].

Contributions
We hypothesize that techniques without the rigid grid
constraint of cluster heatmaps will perform better
at clustering-related tasks when visualizing the re-
sults of hierarchical clustering. We test this hypoth-
esis through a series of qualitative and quantitative
user studies:

• Practitioner Survey: We surveyed 45 practitioners
in biology or related fields to understand how they
use cluster heatmaps and determine the scope of
experiments that would be useful to these practi-
tioners.

• Practitioner Interviews: We interviewed 5 prac-
titioners to qualitatively evaluate our prototypes
(see Figure 1) and make adjustments prior to run-
ning a larger scale user study. Practitioners an-
swered questions on each visualization technique
and gave free-form feedback over an hour.

• Mechanical Turk User Study: We finally con-
ducted a between-subject Amazon Mechanical
Turk user study for 6 visualization techniques. We
had approximately 200 participants total, with
over 30 participants per technique.

In addition to the above user studies, our contribu-
tions include the following:

• Data Processing: We embedded the data matrix
directly into the results of hierarchical clustering,
enabling us to use standard hierarchical visualiza-
tion techniques on this data.

• Pair Analytics: We used a pair analytics pat-
tern [27] with a domain expert in computational
biology to identify and prototype alternatives to
cluster heatmaps.

We found that no single technique was optimal for all
tasks. However, gapmaps outperformed or performed
as well as cluster heatmaps for clustering-related tasks.
Given this technique was also preferred by our inter-
viewed practitioners and can support large datasets,

gapmaps are a promising alternative to cluster heat-
maps. We discuss our findings in more detail in the
following sections.

Related Work
Cluster heatmaps are widely used in biological appli-
cations such as genome-wide association studies [3, 7],
genomic segmentation [4], exploring relationships be-
tween environmental variables and microbial commu-
nities [6], identifying patterns between signs and symp-
toms of chest pain [28], and others. Many implementa-
tions exist, including Bioconductor packages in R [29],
the seaborn package in Python [30], stand-alone tools
such as Cytoscape [31], GENE-E [32], Maple Tree,
and Java Treeview [33], and web-based implementa-
tions [34, 35]. Gehlenborg and Wong have discussed
the problems of using cluster heatmaps and discussed
advantages of using gap maps as well as parallel coor-
dinates [11].
Novel tools such as Furby [8, 36], OmicCircos [9],

and QCanvas [5] have been recently presented for vi-
sualizing hierarchical data. Furby is a tool that allows
interactive exploration of hierarchical clusters for bi-
ological applications [8]. They conducted preliminary
evaluations with an expert user and found that for
a force-directed layout, “a stable layout is preferred
over an optimal one which takes longer to be created.”
OmicCircos is a R-package that arranges heatmaps in
a radial layout to visualize patterns [9]. Radial lay-
outs have reduced performance compared to orthogo-
nal layouts [37, 38]. QCanvas allows users to explore
large-scale omics data, but information about its adop-
tion is not reported [5].
Evaluating graph visualizations is important to un-

derstanding the strengths and weaknesses of graph-
ical representations of hierarchical or network struc-
tures. Holten and van Wijk evaluated six di↵erent
representations to reduce visual clutter in directed
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graphs [21]. Stasko et al. evaluated treemaps and sun-
burst representation methods to visualize hierarchical
structures and found that users were faster and more
accurate when using the sunburst representation for
large graphs [18]. Kobsa conducted a user evaluation
that evaluated frequently used tree visualization tech-
niques [39]. Heer and Bostock used Amazon Mechani-
cal Turk to evaluate design aspects such as chart size
and gridline spacing for visual representations [40].
Lee et al. [41] introduced a graph-specific task tax-

onomy that extended Amar and Stasko’s [42] original
task taxonomy. Saket et al. expanded the task taxon-
omy for evaluating graph representations that special-
ize in visualizing groups [43]. Their task taxonomy con-
tained 31 total tasks that belonged to one of four task
groups: group-only tasks, group-node tasks, group-link
tasks, and group-network tasks. The tasks for our ex-
pert interviews and non-expert user study were drawn
from a subset of their tasks.
Diehl et al. evaluated the benefits of radial represen-

tations and found although participants took less time
when using cartesian layouts, the radial layout was
useful for seeing trends in a single dimension [38]. Eye
tracking was used by Burch et al. to evaluate radial,
orthogonal, and traditional tree representations [37].
They found that participants performed poorly when
using radial layouts as compared to both orthogonal
and traditional tree layouts.
Treemaps are one of the most popular technique for

visualizing hierarchical data [26, 44]. Novel techniques
such as circle packing have been used for visualizing hi-
erarchies [17, 45]. Ghoniem et al. compared node-link
and matrix-based representations of graphs for read-
ability [46]. Based on their evaluations, they found that
participants performed poorly on path finding tasks
when using matrix-based representations.
Jianu et al. used eye tracking-based evaluation to

compare recent graph visualization techniques that in-
clude a semantic layer of set membership [47]. The
techniques they evaluated were BubbleSets [48], Line-
Sets [49], and GMaps [50]. BubbleSets and LineSets
performed better than variations of GMaps and tradi-
tional node-link diagrams with colored nodes.

Methods
We now present details regarding how we processed
the data, developed prototypes, and conducted our
qualitative and quantitative user studies. Please see
git.io/vw0t3 for the raw data files from our practitioner
survey and large-scale non-expert user study.

Data Processing
The process of running hierarchical clustering on a
data matrix usually produces two separate but related

datasets: a data matrix that has been reordered based
on the clustering results, and trees representing the hi-
erarchical clustering results. A cluster heatmap visu-
alizes the reordered data matrix with a heatmap and
the trees separately as dendrograms in the margins.
Before exploring alternative visualization techniques

for this data, we “unbox” the reordered data matrix
and embed the cell values directly into the hierarchical
clustering results. This is a key step that allows us to
use standard hierarchical visualization techniques on
the datasets underlying cluster heatmaps. At a high
level, this process replaces leaves in the clustering tree
that represented a row or column from the original
data matrix with nodes for each appropriate cell in-
stead. This results in a unified tree that contains both
the hierarchical clustering results and the individual
cell values from the data matrix. See Figure 2 for an
simplification of this process for symmetric matrices.
The full algorithm works for both symmetric and

asymmetric matrices, and for clustering along one or
both dimensions. We start by extracting the hierar-
chical clustering tree for rows. In that tree, each leaf
currently represents a single row. We then add a copy
of the column tree to each row leaf as a subtree. If the
columns are not clustered (as in the case with sym-
metric matrices), we add one node per column to each
row leaf instead. This gives us our nested clustering
tree. Each leaf in the clustering tree is then resolved
to its associated row and column, and replaced with
the associated cell in the data matrix. Finally, we trim
redundant nodes from the tree. If we have a symmet-
ric correlation matrix, this involves removing the cells
along the diagonal and in the lower triangle. We also
remove unnecessary hierarchy during this step. For ex-
ample, inner nodes with a single child node are re-
placed with that child such that A ! B ! C becomes
A ! C instead. This helps reduce the space require-
ments to visualize this hierarchy later. If we instead
wanted to start with the column tree, we first trans-
pose the matrix and then follow the same algorithm.
We applied this process to training data prepared

for predictive modeling of the gene targets of distal
enhancers in the K562 myelogenous leukemia human
cell line. The original data consists of 399 features de-
rived from chromatin immunoprecipitation followed by
sequencing (ChIP-seq) and methylation assays gen-
erated by the Encyclopedia of DNA Elements (EN-
CODE) project [51]. Specifically, we processed the cor-
relation matrices containing the top 16, 32, 64, 128,
and 256 most important variables, as well as the full
dataset of 399 variables. The processing of this data
was implemented in R to match the existing analysis
being done. We started with the hierarchical clustering
results from the heatmap.2 function in the gplots pack-
age [52], transformed that output with the dplyr and

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Figure 2 Unboxing Approach. Illustrates how the data matrix is “unboxed” and embedded into the hierarchical clustering of a
symmetric matrix. The process is similar for asymmetric matrices, except there are no redundant cells to remove. Top Left: A
standard cluster heatmap of a correlation matrix. Top Middle: The cluster heatmap with non-redundant information highlighted. Top
Right: The cluster heatmap without the redundant information. Bottom Left: Hierarchical clustering of the variables (rows and
columns) from the cluster heatmap, shown as a dendrogram. Bottom Middle: Hierarchical clustering of values (individual cells) and
variables, shown as a dendrogram. Bottom Right: Hierarchical clustering of values and variables, shown as a treemap.

reshape2 packages [53, 54], and exported the unified
tree as a JSON file using the RJSONIO package [55].
We also generated a synthetic asymmetric dataset

using the scikit-learn package in Python [56]. This al-
lows us to control the specific numbers of samples,
features, and clustering structure using an approach
adapted from Guyon [57] for the Neural Information
Processing Systems 2003 variable selection benchmark.
To create evaluation datasets that balance both struc-
ture and noise, we used 4 informative features to gener-
ate both an 8 by 16 dataset (128 cells) and an 32 by 64
dataset (2048 cells). For both synthetic datasets, we re-
ordered the columns of the data matrix using hierarchi-
cal clustering with complete linkage and an Euclidean
distance metric using the SciPy Python package [58].
We applied our transformation using the NetworkX
Python package [59] on the hierarchical clustering of
both rows and columns.
At the end of this process, we had datasets that were

both real and synthetic, symmetric and asymmetric,
and with 100 cells or more. We used these datasets
in our pair analytics development, practitioner inter-
views, and Amazon Mechanical Turk user study.

Pair Analytics
We used the pair analytics pattern [27] to iteratively
develop and evaluate alternative visualization tech-

niques to cluster heatmaps. This involved rapidly de-
ploying prototypes and collecting feedback from a com-
putational biologist at the Gladstone Institutes, who
used the prototypes on the transformed ENCODE
datasets to gain insights. This dataset was part of an
active research project at that time.
We started with hierarchical visualization techniques

capable of encoding the same data as a cluster heat-
map. We focused on those techniques that had existing
implementations in R [60] or Cytoscape [31]—two of
the most used tools from our practitioner survey. We
also wanted a mix of juxtaposed techniques [23], space-
filling techniques, and node-link diagrams. We identi-
fied several possible alternatives based on this crite-
ria: cluster heatmaps [1], gapmaps [11, 16], squarified
treemaps [25, 26], partitions/icicles, sunbursts [18], cir-
cle packing [17], rectangular and circular dendrograms,
rectangular and circular Reingold-Tilford trees [24],
and force-directed trees [19].
We implemented our prototypes in D3 v3.0 [61] us-

ing the default implementations provided where pos-
sible. The prototypes supported both symmetric and
asymmetric matrices, flexible dataset sizes, clustering
along one or both dimensions, and limited interactivity
via mouseover tooltips with row and column informa-
tion for each node and the ability to make any tooltip
“sticky” to serve as an annotation for important cells.
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Based on the feedback from our domain expert and
the minimum “useful” dataset size from our practi-
tioner survey, we eliminated techniques that could not
support datasets with at least 100 cells within 500
by 500 pixels. This would ensure that the visualiza-
tion and question text would fit on most computer
screens without scrolling for our large scale user study
later. As a result, most rectangular/Cartesian layouts
like Reingold-Tilford trees that traditionally take up
a large amount of horizontal space were eliminated
in favor of circular/polar/radial layouts that are more
compact for small datasets [22].
Surprisingly, this also eliminated the space-filling

treemap technique but not the space-filling circle pack-
ing technique. We found that the default squari-
fied treemap algorithm could not consistently produce
treemaps such that each leaf was large enough to in-
teract with. Indeed, the algorithm is known to work
poorly for balanced trees and when each leaf has equal
size [26]. The domain expert also noted the importance
of being able to determine which node was the parent
versus child in the node-link diagrams. As a result, we
used edge tapering to indicate parent-child relation-
ships in the node-link diagrams [21]. The source node
is indicated by a thick edge that tapers to a narrow
point at the target node. We also made other minor
modifications based on feedback.
At the end of this pair analytics process, we identified

6 techniques for further user testing: cluster heatmap,
gapmap, radial dendrogram, force-directed tree, sun-
burst, and circle packing. See Figure 3 for examples of
our implementations.

Practitioner Survey
The practitioner survey consisted of 15 questions, and
was designed to take between 5 and 10 minutes to com-
plete. Respondents had to be 18 years or older and
have basic familiarity with cluster heatmaps to partic-
ipate. We included questions on the background and
experience of the practitioners, which visual elements
they looked for in cluster heatmaps, the languages and
tools they used to create and/or explore cluster heat-
maps, and the types and sizes of data they typically
visualized using cluster heatmaps.
We used an anonymous Google Form to collect re-

sponses over a 1 week period. To disseminate the form,
we emailed the form to specific individuals and re-
search labs that we knew had experience with cluster
heatmaps and encouraged participants to forward the
survey to others with relevant experience.
We had 48 total participants. There were 3 responses

that did not pass the qualification checks and were
filtered out of our remaining analysis. This left a to-
tal of 45 participants with valid responses. The over-
whelming majority of practitioners held a doctorate

degree, encountered heatmaps at least weekly, and had
5 years or more experience with cluster heatmaps. Ar-
eas of study included biology (e.g. cancer, developmen-
tal, molecular), genomics and genetics, and interdis-
ciplinary fields such as biochemistry, biophysics, and
bioinformatics.
We manually cleaned the long-form responses. This

involved standardizing the text for the area of study,
languages, tools, and dataset sizes entered by the users.
For example, entries like “Java TreeView” and “Java
tree view” were standardized to the text “Java Tree-
View” instead. Both the original and cleaned responses
are available at git.io/vw0t3 online.

Practitioner Interviews
We collected responses from 5 academic biostatisti-
cians at the Gladstone Institutes. Three had PhDs, one
was nearing completion of a PhD, and one had a Mas-
ter’s degree. Each participant had at least 5 years of
experience using cluster heatmaps and primarily used
the R language.
Interviews were conducted on-site to maximize famil-

iarity. Participants were allowed to use their preferred
web browser. Three participants accepted a $20 hono-
rarium for an hour of their time, and two declined.
Participants evaluated 6 clustering techniques over

the course of an hour. For each technique, they an-
swered 4 questions to familiarize themselves with a
particular technique via static images of the technique
applied to an 8 by 16 synthetic dataset. These pre-
liminary questions had correct answers, and the users
were told the correct answer so that later answers were
based on a better understanding of the technique.
They were then asked for free-form answers to sub-

jective questions utilizing interactive plots of 8 by 16
and 32 by 64 synthetic datasets. These included “How
many distinct clusters do you see in this visualiza-
tion?,” “How would you summarize this dataset us-
ing this visualization?,” “Identify an interesting clus-
ter and describe why it is interesting,” and “Did you
find this visualization easy to interpret?” They were
also asked about perceived advantages and disadvan-
tages of each technique, and to rank and describe their
3 favorite techniques at the end.

Mechanical Turk User Study
We created a single Amazon Mechanical Turk Human
Intelligence Task (HIT) with a maximum of 200 work-
ers to test the accuracy and e�ciency of our visualiza-
tion prototypes. Amazon Mechanical Turk provides ac-
cess to a diverse pool of participants with a wide range
of age, ethnicity, and socio-economic status [40, 62].
Each worker was compensated $3.00 for completing
the survey. Workers were not compensated for incom-
plete surveys. The maximum time limit was set to 20

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Figure 3 Mechanical Turk Example. Shows example images presented to Amazon Mechanical Turk participants for question 15 (see
Table 1 for details). The question asked, “Which two of the highlighted elements are more closely clustered?” The correct answer is
the pair K and S, since these clusters connect at a lower depth in the tree than cluster C.

minutes based on our pilots, although this was too
short for a small subset of participants.
Participants were randomly redirected from Amazon

Mechanical Turk to one of our six technique-specific
surveys in Qualtrics. A total of 284 participants from
Amazon Mechanical Turk completed our intake survey
to confirm they were 18 years or older, but only 199
participants finished one of the technique-specific sur-
veys. Between 32 to 34 users finished each technique
survey. Examples of the surveys as well as the original
and cleaned responses are at git.io/vw0t3 online.

Turk Study Design

We chose a between-subjects design such that each
user participated in a single technique-specific survey,
and users could not participate in multiple surveys. All
of the technique-specific surveys had the same struc-
ture, questions, answers, order, and used the same
datasets, but had di↵erent static images specific to the
technique. All images had a maximum size of 500 by
500 pixels. Each survey began with basic tree defini-
tions, and a brief description on how to interpret the
visualization. This information was accessible in every
question by clicking a “Toggle Help” button.
Each survey included three task sets, which were al-

ways presented in the same order. Each task set in-
cluded 2 training questions and 3 to 5 timed questions.

Participants were notified before training began, and
were asked to focus on accuracy. If an incorrect an-
swer was selected during training, a hint would show
up above the “Next” button. Participants were also
notified before the timing questions began, and asked
to focus on both accuracy and e�ciency for those ques-
tions. All questions were always presented in the same
order and used forced-choice input via radio buttons
or sliders. Participants had to select an answer to move
to the next question, but could select “Unsure” if they
were unable to answer a question. We collected browser
information, timing information, and click information
for all questions.

We began with questions that would help the partic-
ipants understand how to interpret the visualization.
The first task set focused on basics, including inter-
preting node color and the height of the tree. The sec-
ond task set focused on hierarchy, including interpret-
ing node distance from the root and whether nodes
were siblings. Finally, the third task set focused on in-
terpreting clusters. See Figure 3 for an example clus-
tering question from our study. Table 1 lists all of the
questions asked for each task. Using the group level
task taxonomy for graphs, our tasks fall under group-
only (e.g. questions 3, 4), group-node (e.g. questions

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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8, 9, 10), and group-network tasks (e.g. questions 13,
14, 15) [43].
The maximum time limit and fixed compensation

amount were the only mechanisms in place to ensure
e�cient responses. We also used participants with the
“Masters” distinction, which requires those partici-
pants to consistently complete work with a high degree
of accuracy. We did not implement any other formal
engagement checks.

Turk Study Analysis

Incomplete surveys were not included in our analysis.
We used the pandas package in Python [63] to combine
survey responses and calculate the score for every re-
sponse. We used the dplyr package in R for the remain-
ing analysis [53]. We discarded all training questions
and filtered out missing responses.
We filtered out spammers (whom want to complete

the survey as quickly as possible) by removing partic-
ipants with low-quality response patterns, responses
completed too quickly for the user to actually partici-
pate in the task [62], and responses from participants
that may have left open the survey for extended pe-
riods of time. First, we removed 3 participants that
always selected the same choices. We then plotted the
distribution of time it took to answer each question,
and found the values ranged from 0 to 582 seconds. We
conservatively chose to filter out a small number of re-
sponses that fell outside the 0.01 and 0.99 quantiles,
which removed responses that took less than 3.8 sec-
onds and greater than 74.3 seconds. The average time
after filtering was 16 seconds per question. We did not
run any additional analysis on the timing data.
We tested for statistically significant di↵erences be-

tween techniques using ANOVA in R on logistic re-
gression models for binary dependent variables such
as score, and linear models for continuous dependent
variables such as absolute error and raw value. We also
ran a Kruskal-Wallis test since our data is not normally
distributed. We ran these tests per question by tech-
nique. Both tests agreed on which questions had sig-
nificant di↵erences between techniques, although the
exact level of significance di↵ered slightly. These tests
found statistically significant di↵erences in the average
scores of questions 13, 14, and 16, and in the values of
question 17. We report the results from the Kruskal-
Wallis test in Table 1.
Since the goal of task sets 1 and 2 was to familiarize

the participants with the technique, we focused the re-
maining of our analysis on the clustering-related ques-
tions in task set 3. We performed a post-hoc analysis
using Tukey’s HSD test for the scores of questions 13
through 16, and the value of question 17. The results
of this analysis are provided in Table 2.

Results
We conducted several qualitative and quantitative
studies to test whether hierarchical visualization tech-
niques without the rigid grid constraint of cluster heat-
maps perform better at clustering-related tasks. We
discuss these results next.

Practitioner Survey
We conducted a survey of 45 practitioners in biol-
ogy, genetics, and other related fields to learn more
about how cluster heatmaps are used and determine
the scope of experiments that would be useful to these
practitioners. Visit git.io/vw0t3 for the survey results.

Survey Results

We asked participants rate how often they viewed dif-
ferent visual elements in cluster heatmaps and used
symmetric versus asymmetric matrices on a scale of 1
(never) to 5 (always). We then looked at the average re-
sponse value. Practitioners most frequently looked for
blocks of cells or bands of rows and/or columns in the
heatmap (avg = 4.6, 4.4 respectively). Practitioners
also frequently looked for clusters in the dendrograms
in the margins (avg = 4.1). Practitioners looked at
the overview provided by the dendrogram and heat-
map with less frequency (avg = 3.7, 3.8 respectively).
Most practitioners did not frequently look at the values
of individual cells in the heatmap (avg = 2.6). They
visualized both symmetric and asymmetric matrices
with similar frequency (avg = 3.7, 3.3).
We also looked at how many responses reported us-

ing di↵erent tools. The practitioners primarily used
R (90%) and Cytoscape (80%) to generate cluster
heatmaps. The dataset sizes reported varied widely.
The median sizes ranged from approximately 100 to
250,000 cells (10 by 10 or 100 by 1,000), but the
variance was large. Some practitioners worked with
datasets having 30,000 rows and/or columns.

Survey Conclusions

We used the survey to make the simplifications nec-
essary for a large scale non-expert user study while
obtaining results that would still apply to expert prac-
titioners.
Our first observation is that most practitioners are

looking for adjacent blocks of rows and/or columns,
confirming the importance of proximity in interpret-
ing the hierarchical clustering results. Most practi-
tioners also frequently reference the dendrograms of
the cluster heatmap—further motivating our focus on
hierarchical visualization techniques that are able to
show the same information without the strict grid con-
straints of cluster heatmaps.
Additionally, most practitioners use R packages to

generate static cluster heatmaps. This motivates our

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Type Task # Question Text Nodes Type mean �2 df p-value

Training 1 1 Is the highlighted cluster mostly positive or mostly negative? Clusters N/A
Training 1 2 What is the height of the tree? N/A N/A
Timed 1 3 Which of the highlighted elements has the highest value? Leaves Score 0.380 4.578 5 4.695 E-01
Timed 1 4 Is the highlighted cluster mostly positive or mostly negative? Clusters Score 0.661 14.650 5 1.197 E-02 ⇤
Timed 1 5 What is the height of the tree? N/A Error 3.083 23.278 5 2.987 E-04 ⇤⇤⇤

Training 2 6 Which of the highlighted elements is furthest away from the root? Leaves N/A
Training 2 7 Which of the highlighted elements are siblings? Leaves N/A
Timed 2 8 Which of the highlighted elements is furthest away from the root? Leaves Score 0.605 63.540 5 2.250 E-12 ⇤⇤⇤
Timed 2 9 Which of the highlighted elements is furthest away from the root? Clusters Score 0.732 14.705 5 1.170 E-02 ⇤
Timed 2 10 Which of the highlighted elements are siblings? Clusters Score 0.864 21.662 5 6.070 E-04 ⇤⇤⇤

Training 3 11 Which two of the highlighted elements are more closely clustered? Clusters N/A
Training 3 12 How many visually distinct clusters do you see in this visualization? N/A N/A
Timed 3 13 Which two of the highlighted elements are more closely clustered? Siblings Score 0.738 29.499 5 1.850 E-05 ⇤⇤⇤
Timed 3 14 Which two of the highlighted elements are more closely clustered? Leaves Score 0.275 12.775 5 2.558 E-02 ⇤
Timed 3 15 Which two of the highlighted elements are more closely clustered? Clusters Score 0.352 9.539 5 8.941 E-02 ·
Timed 3 16 Which of the highlighted elements is least similar to its neighbors? Clusters Score 0.283 13.726 5 1.745 E-02 ⇤
Timed 3 17 How many visually distinct clusters do you see in this visualization? N/A Value 8.794 31.138 5 8.796 E-06 ⇤⇤⇤

Table 1 Mechanical Turk User Study Analysis. Shows the type of question (training or timed), the task set, question number and text, the node type of the choices (leaf nodes,
sibling nodes, or cluster nodes), the value type (score, absolute error, or raw value), overall average, and results (�2-test statistic, degrees of freedom, and p-value) from the
per-question Kruskal-Wallis tests by technique.See Figures 4 and 5 for the distribution of values for these questions broken down by technique.

Q13 Q14 Q15 Q16 Q17

Technique Pairs est err t p est err t p est err t p est err t p est err t p

Cluster Heatmap, Gapmap 1.056 0.542 1.949 0.361 -0.274 0.503 -0.546 0.994 -0.186 0.497 -0.374 0.999 0.916 0.531 1.726 0.511 3.121 0.945 3.303 0.014 ⇤
Cluster Heatmap, Circle Packing -0.065 0.504 -0.128 1.000 0.657 0.525 1.252 0.808 0.658 0.512 1.286 0.792 0.405 0.601 0.675 0.984 -3.745 0.960 -3.901 0.002 ⇤⇤
Cluster Heatmap, Sunburst 2.708 0.811 3.338 0.010 ⇤ -1.191 0.571 -2.086 0.290 -1.159 0.537 -2.160 0.256 -0.292 0.579 -0.504 0.996 0.205 0.952 0.215 1.000
Cluster Heatmap, Radial Dendrogram 2.269 0.702 3.232 0.015 ⇤ -2.032 0.698 -2.912 0.041 ⇤ -1.159 0.537 -2.160 0.256 -0.965 0.662 -1.457 0.688 3.003 0.960 3.128 0.025 ⇤
Cluster Heatmap, Force Directed Tree 1.504 0.573 2.623 0.087 · -0.903 0.533 -1.694 0.530 -1.041 0.524 -1.989 0.348 0.550 0.529 1.040 0.903 3.455 0.938 3.683 0.004 ⇤⇤
Gapmap, Circle Packing 0.992 0.546 1.817 0.443 0.383 0.538 0.711 0.980 0.473 0.516 0.916 0.942 1.322 0.581 2.275 0.202 -0.624 0.960 -0.650 0.987
Gapmap, Sunburst 1.652 0.838 1.972 0.347 -0.916 0.583 -1.571 0.612 -0.973 0.541 -1.801 0.464 -1.208 0.559 -2.163 0.252 -2.917 0.952 -3.063 0.030 ⇤
Gapmap, Radial Dendrogram 1.213 0.732 1.656 0.550 -1.758 0.708 -2.483 0.126 -0.973 0.541 -1.801 0.464 -1.881 0.644 -2.921 0.040 ⇤ -0.118 0.960 -0.123 1.000
Gapmap, Force Directed Tree -0.448 0.610 -0.734 0.977 0.629 0.546 1.151 0.857 0.856 0.528 1.622 0.583 0.366 0.506 0.724 0.979 -0.333 0.938 -0.355 0.999
Circle Packing, Sunburst 2.644 0.814 3.248 0.014 ⇤ -0.533 0.603 -0.885 0.949 -0.501 0.555 -0.903 0.946 0.113 0.625 0.181 1.000 -3.540 0.967 -3.660 0.004 ⇤⇤
Circle Packing, Radial Dendrogram 2.204 0.705 3.127 0.021 ⇤ -1.375 0.724 -1.899 0.397 -0.501 0.555 -0.903 0.946 -0.560 0.703 -0.796 0.968 -0.742 0.975 -0.761 0.974
Circle Packing, Force Directed Tree 1.440 0.577 2.495 0.119 -0.246 0.567 -0.433 0.998 -0.383 0.542 -0.707 0.981 0.956 0.579 1.650 0.561 -0.290 0.953 -0.305 1.000
Sunburst, Radial Dendrogram 0.439 0.949 0.463 0.997 0.842 0.758 1.110 0.875 0.000 0.577 0.000 1.000 0.673 0.685 0.983 0.922 -2.798 0.967 -2.893 0.048 ⇤
Sunburst, Force Directed Tree 1.204 0.859 1.402 0.716 -0.288 0.610 -0.472 0.997 -0.118 0.565 -0.208 1.000 -0.842 0.557 -1.513 0.653 -3.250 0.945 -3.438 0.009 ⇤⇤
Force Directed Tree, Radial Dendrogram 0.765 0.756 1.011 0.910 -1.129 0.730 -1.547 0.628 -0.118 0.565 -0.208 1.000 -1.515 0.642 -2.359 0.169 -0.452 0.953 -0.474 0.997

Table 2 Mechanical Turk Post Hoc Analysis. Shows the significance results (estimate, standard error, t-value, and p-value) from running a post-hoc analysis using Tukey’s HSD test
on clustering-related questions. There are several statistically significant di↵erences in means for questions 13 and 17. The di↵erences between the best and worst performers in
questions 14 and 16 are also significant.
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decision not to develop prototypes with robust inter-
activity until we have identified the most promising
alternative techniques. We also decided to focus on
those techniques available in the tools frequently used
by practitioners to increase the potential for wide-scale
adoption. Finally, we conclude that our datasets must
have at least 100 cells or more to be useful for practi-
tioners. However, the matrices may be either symmet-
ric or asymmetric.

Practitioner Interviews
After conducting the practitioner survey, we used pair
analytics to develop several visualization alternatives
to cluster heatmaps. We conducted 1 hour interviews
with 5 academic biostatisticians to pilot these alterna-
tives, and used their feedback to inform the design of
our Amazon Mechanical Turk study.

Interview Results

Participants were shown several synthetic asymmetric
matrices and asked their preferences. They preferred
traditional cluster heatmaps as well as gapmaps, with
no clear third preference. Gapmaps were preferred by
all but one participant, who found the spacing distract-
ing when quickly scanning for patterns and anticipated
the gaps would interfere with the metadata commonly
plotted along the axes.
Other alternates were heavily criticized for losing the

row structure of asymmetric matrices. This structure
is especially important to determine which cells be-
long to the same sample. Practitioners found this loss
of information so disorienting that it outweighed any
advantages they identified in other techniques. Non-
heatmaps were also criticized for their “architectural”
or “design” qualities, related to a preference against
visualizations that are popular but are often perceived
as overly complex (e.g. the “ridiculogram” [64, 65]).
Rather than refer to the hierarchy illustrated by an

unfamiliar visualization technique, practitioners were
prone to use color to infer the hierarchy. One prac-
titioner also pointed out the poor use of white as a
background color in our prototypes.
Finally, practitioners also noted that cluster heat-

maps often encode the linkage distance between clus-
ters by varying the level height in the dendrograms.
Our prototype instead used equal height for each level.

Interview Conclusions

This study confirmed a heavy practitioner preference
towards familiar techniques, namely cluster heatmaps
and gapmaps. While alternate techniques were seen as
helpful for certain tasks, their advantages did not out-
weigh their unfamiliarity and the loss of row/column
information. Based on these results, we proceeded with

a larger scale non-expert user study to quantitatively
compare these techniques. We made several minor
modifications to our prototypes including the use of
a black background.
However, we were unable to encode linkage dis-

tance between clusters for every alternative technique.
The interviewed practitioners also only evaluated these
techniques for asymmetric matrices—which was their
primary use case. Correlation matrices are symmetric
and rely less on row and column information, and the
loss of this context may be less of an issue. We revisit
these issues in the Discussion section.

Mechanical Turk User Study
We conducted an Amazon Mechanical Turk user
study with approximately 200 participants to evaluate
how well di↵erent visualization techniques perform at
clustering-related tasks. See Table 1 for a summary of
the questions. Visit git.io/vw0t3 for the raw results.

Turk Study Results

We tested for statistically significant di↵erences in ac-
curacy across techniques. See the Methods section for
details on our analysis, and Tables 1 and 2 for the re-
sults of this analysis. We found statistically significant
di↵erences in the average scores for clustering-related
questions. These results are illustrated in Figure 4.
Question 13 and 14 asked participants to estimate

which pair of nodes were more closely clustered. Ques-
tion 13 included two leaf nodes that were siblings, and
question 14 did not. Our analysis showed that cluster
heatmaps performed statistically significantly worse
than most other techniques in question 13. The results
were mixed for question 14; the only statistically sig-
nificant finding was that cluster heatmaps performed
better than radial dendrograms.
Question 15 asked users to estimate which pair of

inner cluster nodes were more closely clustered. The
di↵erences were barely statistically significant, and no
significance was found in our post-hoc analysis. Ques-
tion 16 asked participants to determine which pair of
nodes were least similar to their neighbors. Gapmaps
outperform radial dendrograms, but none of the other
di↵erences were statistically significant.
We also compared whether the scores (including er-

ror bars) for questions 13 through 16 were better than
random. Participants could choose between four val-
ues for those questions, but one of those values was an
“unsure” option. Removing the “unsure” option from
consideration, random performance is 1 out of 3. For
question 13, the performance was better than random
for all techniques. For question 14, performance was
only better than random for cluster heatmap, with
gapmap and circle packing falling on the threshold. For

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Q13 − Close Siblings Q14 − Close Leaves Q15 − Close Clusters Q16 − Least Similar

Sunburst

Radial Dendrogram

Gapmap

Force Directed Tree

Cluster Heatmap

Circle Packing

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 4 Mechanical Turk Average Scores. Shows the distribution of scores for clustering-related questions. The circle and black
bar indicate the average score and standard error for each technique. The dotted line indicates random performance (not including
the “Unsure” option). Our analysis shows that cluster heatmaps perform worse on average on question 13 than sunbursts, radial
dendrograms, and force directed trees. Cluster heatmaps perform better on average than radial dendrograms in question 14.
Question 15 did not have statistically significant di↵erences in our post-hoc analysis. Gapmap performed better than radial
dendrograms in question 16. Performance is worse than random for certain techniques in questions 14, 15, and 16—indicating their
di�culty. However, there is at least one technique for each of these questions where the performance is better than random. See
Table 1 and Table 2 for more details.

Q17 − Visual Clusters

Sunburst

Radial Dendrogram

Gapmap

Force Directed Tree

Cluster Heatmap

Circle Packing

2 8 14 20

Figure 5 Mechanical Turk Average Clusters. Shows the
distribution of responses to question 17, “How many visually
distinct clusters do you see in this visualization?” The circle
and black bar indicate the mean estimate and standard error
for each technique. Our analysis shows that cluster heatmaps
and sunbursts produce lower estimates on average compared to
the other techniques. See Table 1 and Table 2 for more details.

question 15, the performance of both cluster heatmap
and gapmap were better than random. For question 16,
only gapmap outperformed random, but force directed
tree and cluster heatmap fall on the threshold.
Finally, question 17 asked participants to estimate

the number of clusters from the visualization. This is
a subjective question—there is no single correct an-
swer. We found that cluster heatmaps produced sig-
nificantly lower estimates on average compared to all
other techniques except for sunbursts. See Figure 5 for
details.

Turk Study Conclusions

No single technique consistently ranked best at all
clustering-related tasks. Cluster heatmaps was among
the worst performers for question 13, among the best

performers on questions 14 and 15, and had mediocre
performance for question 16. Radial dendrograms and
sunbursts are among the best performers on ques-
tion 13, but are among the worst performers on
questions 14–16. Force directed trees did moderately
well on questions 13 and 16, but poorly on ques-
tions 14 and 15. The performance of circle packing
was mediocre across all clustering questions.
The results show consistently high performance for

gapmaps, even if not always top ranked. Gapmaps out-
perform cluster heatmaps on question 13, have per-
formance similar to cluster heatmaps on questions 14
and 15, and are pulling ahead of cluster heatmaps on
question 16. Given that this technique can also sup-
port dense datasets and were liked by our practition-
ers, gapmaps have significant promise as an alternative
to cluster heatmaps.
A large caveat, however, is how poor the perfor-

mance is overall. Only question 13 outperformed ran-
dom chance for all techniques. Questions 14 through 16
only had 1 or 2 techniques that clearly outperformed
random chance—indicating the di�culty of these ques-
tions for novice users. It would be interesting to com-
pare these findings with a more expert audience that
could achieve higher scores.

Discussion
Involving practitioners at multiple stages in this
project was critical. Thanks to feedback we received
from practitioners via the survey, the pair analytics
development pattern, and the one-on-one interviews,
we were able to identify several cases where our as-
sumptions did not necessarily hold.
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For example, we anticipated the loss of row and/or
column labels would be an issue for some techniques.
However, we did not anticipate how important the con-
text provided by the grid was for asymmetric matrices.
For example, cells that belong to the same row often
belong to the same sample. Depending on the dimen-
sions being clustered, cells from the same row may
become indistinguishable from those belonging to dif-
ferent rows in many of our alternatives. This is not an
issue when visualizing symmetric correlation matrices
where this context is not as informative, but symmetric
matrices were a smaller subset of many practitioner’s
common use cases. Given this, it is possible that the
techniques that did not include this context may per-
form better in studies focused on symmetric matrices.
Symmetric matrices have other important advan-

tages. Since half the cells are redundant, alternative
techniques can utilize this space to better support
larger datasets. Also, these matrices need only be
clustered along a single dimension. This reduces the
amount of nesting required to illustrate the hierarchy.
There are many other research directions to explore.

There is still room for optimization of our “unbox-
ing” approach to reduce unnecessary levels of nesting.
This is especially important when both the rows and
columns are clustered, which is common for asymmet-
ric matrices.
We focused on techniques practitioners could imme-

diately adopt via existing tools—but customized im-
plementations and novel techniques may produce bet-
ter results. We also used color to encode the value from
the cell across all techniques to keep the encoding con-
sistent with that of cluster heatmaps. However, area
(commonly used in space-filling techniques) is more ef-
fective for encoding quantitative values [66]. Encoding
linkage distance in these techniques is another poten-
tial direction of research.
Interactivity is critical to explore further as well, al-

though it is di�cult to user test interactivity on a large
scale. Even a cluster heatmap is unable to display the
entire dataset at a certain size. This makes critical the
ability to search, sort, filter, and brush. In this inter-
active setting, the ease of navigation with rectangu-
lar layouts may begin to outweigh the compactness of
some circular layouts.
Given these caveats and the results of our qualita-

tive and quantitative studies, gapmaps are a promising
alternative to cluster heatmaps for asymmetric matri-
ces. Symmetric matrices may be suited to additional
alternative techniques and need more study.

Conclusions
Cluster heatmaps have become a staple of biological
and biomedical research since their introduction in the

field over 20 years ago [1], and are clearly a valuable vi-
sualization technique for these practitioners. However,
while cluster heatmaps have high density, they su↵er
from issues caused by their rigid grid layout [2, 11].
Motivated by our own use and reinforced by a se-

ries of qualitative and quantitative user studies, we
used pair analytics with a computational biologist to
develop alternative visualization techniques based on
“unboxing” heatmap cells and embedding them di-
rectly into hierarchical clustering results. By relaxing
the grid constraint of cluster heatmaps, our unboxing
approach aimed to improve performance of tasks where
practitioners commonly shift their attention back and
forth between the cells and the hierarchy. Such tasks
are common for many, but not all, practitioners.
Our study involved practitioners from biology and

related fields at multiple stages in our development
and evaluation process. We surveyed 45 practitioners
to learn how they use cluster heatmaps, and evaluated
our alternatives via hour-long interviews with 5 prac-
titioners and an Amazon Mechanical Turk user study
with 200 participants.
While more study is needed, we found multiple sta-

tistically significant di↵erences in average performance
between several techniques. No single technique con-
sistently ranked best at all clustering-related tasks. For
example, radial dendrograms, force directed trees, and
sunbursts were among the best performers at identi-
fying closely clustered siblings, but performed poorly
for longer-distance relationships. The performance of
circle packing was mediocre for all clustering tasks.
However, gapmaps either outperformed or performed
as well as cluster heatmaps for clustering-related tasks.
Integrating these non-expert large-scale results with

our smaller-scale expert interviews, we conclude that
gapmaps are a promising alternative to cluster heat-
maps for asymmetric matrices, while other hierarchi-
cal techniques may not improve performance enough
to justify their adoption by practitioners for this use
case. However, more exploration is needed for the spe-
cific case of symmetric matrices.
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