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Abstract—Automakers are increasingly providing connectiv-
ity enhancements for vehicles to download navigational data,
as well as to upload sensor information to the cloud. Generally,
while more data may be better, for the driver on-the-go,
information needs to be displayed in a manner that can be
comprehended rather quickly. One of the major problems
with visualizing route maps is that the amount of information
visualized is always the same regardless of the fact that an
individual may be more familiar with the region or whether an
individual is driving at varying speeds. Research has shown that
complex visualizations with visual clutter can cause cognitive
overload that adversely affects the performance of a user.
Additionally, the attention and interaction abilities of a driver
are significantly compromised in a vehicular environment.

We propose DriveSense, a context-sensitive visualization
system that automatically varies the GPS updates and the
corresponding visualization being displayed to the user based
on the speed of the vehicle as well as the familiarity of the
region that the user is driving in. Based on a user evaluation,
we found that subjects preferred using the automatic visual-
izations of route maps generated by DriveSense than the visual
representations shown by a standard GPS. We also computed
visual clutter for our visualizations at varying speeds and found
that the clutter was significantly less for the routes displayed
by DriveSense for faster speeds as compared to slower speeds.
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I. INTRODUCTION

With the rapid growth of connectivity, automobiles are
becoming one of the greatest portable consumers as well
as producers of data. From the need for navigation and
traffic information, to the emphasis on real-time tracking
of fuel efficiency, ‘big data’ has become an inherent part of
the driving experience. With technological advancements in
navigation systems, large amounts of complex map graphics
can be shown in real time during the drive. Due to their high
visual complexity, a higher cognitive load from the user is
often required to process the information [1]. This cognitive
load often varies according to the context of the driving
conditions. Google Maps [2] attempts to address some of
these challenges to a certain extent by providing navigation
routing, displaying points of interest (POI) in an area and
facilitating interactions such as zooming in and out.

The increased prevalence of interactive touch screen in-
terfaces in cars provides additional challenges in terms of
optimizing safety, usability, and affective response. While

Figure 1. The DriveSense system being used in a vehicle. Since the vehicle
is stationary, the speed on the smartphone is shown as 0mph.

touch screens have certain usability benefits, the interfaces
demand significant visual attention from the driver. Suppose
that you are traveling to an unfamiliar destination in your
city to visit a friend. You know that she lives close to a
popular landmark (e.g. a mall, tourist attraction) and have
visited that landmark several times. Directions from your
GPS will most likely provide a shortest or fastest route,
none of which will take into account the fact that you have
visited the popular landmark several times. The amount of
navigational detail that you would need to get to that popular
landmark would be far less than the assistance you would
need when you are driving in an unfamiliar region. In terms
of minimizing cognitive load, existing navigation systems
only show the next action that the driver needs to perform,
sacrificing context along the route.

To address these issues, we propose DriveSense - an
automated route map visualization system that leverages
large amounts of data that analyzes driving patterns to
identify regions of familiarity, and automatically customizes
the route map according to the perceived familiarity of that
particular driver/vehicle (Figure 1). Landmarks in our system
do not have to be popular, but could be destinations that the
user frequently drives to, such as a supermarket, daycare,



Figure 2. This figure provides an overview of the DriveSense system architecture.

work location and so on. Since the amount of detail shown
to a driver can be varied automatically in our system, we
can seamlessly provide context-preserving views of the route
to the driver at varying speeds. Maximum detail about the
route can be displayed to the driver with street names and
names of nearby landmarks when the speed of the vehicle
is less than 15 mph, but as the vehicle accelerates to 30
mph (the average U.S. local street speed) we display fewer
details and only show nearby street names with a couple of
major landmarks. As the vehicle accelerates to 60 mph (the
average U.S. highway speed), we display only the major
street names in a more pronounced and legible font with
some minimal detail to provide context that will help the
driver orient herself during navigation. This can provide
cognitive cues about the overall region and may help in
navigating accurately in a situation where a turn or an exit
was missed.

II. RELATED WORK

To address the visualization of large networks of data,
several user-driven approaches have been proposed [3], [4],
[5]. Card and Nation [3] introduce degree-of-interest trees
for hierarchical exploration that provides details to the user
based on the user’s attention (region of interest) or where
one would like the user’s attention to be. The ability to
provide context around user-provided search words helps
users explore massive graphs and networks and still find
relevant information as they interact with the data [4].

Rendering route maps effectively and succinctly has be-
come a popular research topic [6], [7]. These systems pro-
duce aesthetically pleasing results, but tend to be less useful

for navigational tasks. Kray et al. describe a method of
presenting route instructions on a mobile device depending
on various situational factors such as limited resources and
varying quality of positional information [8]. Reilly and
Inkpen describe a map morphing as a visualization technique
for relating maps with significant spatial and schematic
differences [9]. Patel et al. [10] developed a system that
suggests alternative directions based on pre-defined familiar
landmarks/routes. Duckham et al. [11] propose a similar
approach where they include popular landmarks in their
routing instructions, but here too the landmarks are pre-
defined. These approaches merely render an alternative route
in an application and assume some prior knowledge in the
system regarding the familiarity of landmarks. DriveSense
aims towards learning familiarity and providing appropriate
navigation directions during the process of driving to the
destination. Our approach is closest to the work proposed
by Dogru et al. [12], where they propose a user-centric
approach for car-navigation. Their focus was on eliminating
unimportant roads that a GPS would show, but they do not
address issues of automatic generation of map visualizations
based on context.

A. Contribution

DriveSense creates customizable maps based on contex-
tual information obtained while driving a vehicle. The novel
contribution of this paper lies in fetching appropriate routing
information using sensor data obtained from the vehicle
such as speed, fuel and route familiarity. Then, consequently
rendering the maps by applying differential levels of detail
to each object in the map based on contextual importance.



(a) Map Snippets (b) Route Overview

(c) Navigation View (d) Inset Arrow for Showing Next Step

Figure 3. DriveSense phone interface showing the different screens that a user navigates through.

III. SYSTEM OVERVIEW

The system uploads web history from the desktop to the
backend server through a browser extension. The extension
is designed to be lightweight and integrates seamlessly with
modern web browsers. The extension is triggered whenever
content is loaded within the browser window. This change
can be a new page load, or new content being loaded through
an iframe on the web page. The extension collects the
URL, title, and time of visit of the page and determines
which of these web pages are related to map directions.
This can be determined by examining the URL of the
webpage. The extension then sends information about the
map webpage such as source and destination coordinates
and place information to the map server.

The map server consists of a database containing geo-
graphic data, such as roads and landmarks. Additionally,
the database contains user specific data for generating per-
sonalized map layers and a routing service. Our system
extracts the individual map primitives that comprise the map
along with their associated importances from a database.
These primitives are stylized based on map generalization
principles for enhancing the most important map primitives
and reducing the details of the lesser important map objects.
The server then sends the map data to the mobile interface
to be rendered. The overview of the system is illustrated in
Figure 2.

A. Wayfinding and Map Generalization Principles

The algorithm for stylizing route maps on the server,
based on driving context, takes several parameters as input:

the various context parameters (such as speed, fuel and
location ) Mc and the importance values of the various map
objects (M j

i , where j ∈ [0,n], n being the total number of
map objects). The importance values are constrained to be
∈ [0,1]. The algorithm concerns the manipulation of indi-
vidual map primitives to render maps to users as a function
of semantic importance of the data represented in the map
rather than traditional tile based rendering often seen in
most digital map systems. The advantage of using a non-tile
based rendering approach is to be able to represent specific
portions of the map with greater clarity and importance than
other portions. Moreover, rather than iteratively displaying
the map tile-by-tile to the user, the map can immediately
show portions of the map that are most relevant to the user
(e.g. along the route from the user’s current location to the
desired location) and then iteratively fill in other superfluous
details that are less important to the user.

In order to automate the process of visualizing route maps,
we draw inspiration from a collection of perceptually based
artistic approaches. Similarly, generalization is a process
used by cartographers to reduce the scale and complexity
of imagery while maintaining detail in important elements.
These techniques facilitate differential resizing instead of
a uniform scaling, involving de-emphasizing contextual ob-
jects, and increasing the detail in key objects [13].

B. Mobile Interface

The mobile user interface is built using Qt/QML and
runs on a Nokia N9. The interface collects map search
history from either the desktop or mobile browser. If the



(a) Underlying representation of a user’s
familiarity based on driving patterns.

(b) Map view showing shortest path (in red)
and familiar path (in blue)

(c) DriveSense map view showing visual
clutter removed along familiar path.

Figure 4. Familiarity Maps

search is done on the desktop, the URL and also the meta
information such as the exact search term and if the user
checked the ‘start at my location’ option, is sent to the
phone using push notifications. The user does not have to
refresh the view and in case the application is not running, it
automatically pops up. Map snippets are displayed to assist
the user to quickly browse and look up the map searches.The
snippets are dynamic in the way that the route is recalculated
according to the current location of the user. If the route is
already partly traversed an arrow icon indicates where the
user is along the route. Map snippets are stored locally on
the phone without using a central database. The browsing
interface initially shows a list in portrait mode. In this state,
the snippets are accompanied with small textual descriptions.
As the speed goes up, the interface changes into portrait
mode it and only shows big icons with big fonts, which can
be browsed horizontally (Figure 3a).

An important step before starting the navigation is to
check whether the calculated route is bringing the user to the
correct destination. The detail view allows a quick overview
of the route that is zoomed to its bounding box (Figure
3b). At this point, all intermediate waypoints are displayed
and known landmarks are shown as a first orientation aid.
More detailed meta information is provided to the user in
an additional overlay.

The navigation page renders custom maps generated by
the server (Figure 3c). Custom per-user map layers con-
taining personalized geo-data are rendered in realtime for
every request. The sensor input from the car (through an On-
board diagnostics (OBD) Link) and the phone is collected
locally and uploaded to the server whenever a good network
connection is available. For a quick change of the interface,
layers are preloaded and cached locally. If a condition for
a layer holds, it is smoothly faded in at the right position
of the stack. The interface does not deal with geographical
data directly. Instead, all the necessary data to render the
map is preprocessed by the server and is sent as compressed

transparent images to the phone. This way, state-of-the-art
map rendering and label placement algorithms can be used
without having the energy and computing constraints of a
mobile device.

The dashboard view indicates the current state of the car’s
sensor data. The current status of the connection of the
car is indicated with either a red (no connection), blinking
yellow (poor connection) or green icon (good connection),
and common sensor data such as speed, coolant temperature,
throttle position, and tire pressure.

C. Map Stylization and Rendering

To perform semantic zooming of map objects in the
scene, it is necessary to compute the spatial detail of each
object and to be able to redistribute this quantity based on
importance. The spatial detail indicates the density per unit
area of the vector primitives that define the map object [14].

The redistribution of spatial detail in the map is a simple
budget allocation method based on the importance value of
individual objects. The most important object is budgeted
the largest amount of the total spatial detail available for the
image, while the least important object is budgeted the least
amount. The importance value of an object is constrained
by definition to be ∈ [0,1], and the importance values of all
objects are then normalized. An object cannot be made more
detailed than the original or more simplified than its basic
outline. As the semantic zooming increases, the number of
superfluous map details such as roads and less important
landmarks are removed to minimize visual clutter.

These constraints may be dictated by the physical limita-
tions of display devices such as the size and resolution of
display monitors, the minimum size and width of objects that
can be displayed or the minimum spacing between objects
that avoids symbol collision or overlap. A spatial detail
redistribution algorithm computes a spacial detail constraint
for every object to emphasize particular objects and to clarify
by removing visual clutter as indicated in Algorithm 1.



Figure 5. Comparison of route maps for varying speeds. As the speed increases (left to right), the amount of detail displayed to the user is reduced.

Algorithm 1 Spatial Detail Distribution of Map Objects
Mi is the importance of map object i, Si is the spatial
detail of map object i, Stotal is the total spatial detail of
the map, and S′total is the new recomputed spatial detail
after map generalization principles are applied to the map.
Mi← Importance Value of each map object.
Si← Spatial detail of map object.
Norm(Si) = Si/BoundingArea
Stotal = ∑Norm(Si)
Apply exaggeration to important map objects based on
car context Mc.
Compute the new total spatial detail of the map, S′total
while S′total > Stotal do

Apply elimination, typification and outline simplifica-
tion to less important map objects.

end while

1) Familiarity Maps: Matching GPS trajectories on a set
of map objects such as roads is known as the map matching
problem [15]. However, it does not completely apply to the
collection of familiarity data, since there are less severe
timing constraints. For rendering purposes and for routing,
the data is aggregated as supposed to following one single
object on a timeline. Also, the tolerance of false positives
is much higher because a route segment or a place is only
marked as familiar if it is traversed or visited frequently.

First, DriveSense collects usage data as sequential entries
(ln1, ln2, ..., lm). The format of the log entries are l.latitude,
l.longitude, l.speed, l.direction, l.accuracy and l.time. Sec-
ondly, the system builds an index I for the log entries
ln1, .., ln for fast lookup. The algorithm now calculates the
sparse matrix of the log entries being imported. Before
matching single log entries against map objects, the amount
of map objects is reduced by applying a bounding box filter
around the total extent of the map objects. For every log

entry l, it is now checked if it matches against the geometry
of the map object according to the following function:
intersects(bu f f er(map),radius),(l.latitude, l.longitude)),
where bu f f er creates a new geometry out of its input by
adding radius as a border around it. Radius is determined by
speed. The underlying concept is that the user can visually
process less information as he travels at a faster speed along
a route. If the user is slow going at only 30 mph, it is
more likely that he remembers one particular landmark or a
favorite place. If the condition is met, the familiarity value
of a map object is increased by f which is 1.0, the highest
possible.

In the last step, the familiarity values are normalized
by determining the maximum value and dividing all other
values by the same. At the point of rendering the map,
this value is easily accessible and serves as a meaningful
indicator for familiarity. Furthermore, this value is used
in the cost function of the routing algorithm. The default
cost function for applying the shortest path algorithm is the
length. DriveSense can reduce the cost of road segment by
multiplying with the familiarity measure of a single road
segment. This results in routes which may be slightly longer
but more familiar to the user.

2) Speed Variant Maps: Speed is used to change the level
of detail in the map. The faster the user goes, the less level of
detail is shown by the interface. More precisely the amount
of information which is visually represented on the map
is reduced as the user is going fast. DriveSense, reduces
the map detail by replacing and disabling transparent map
layers based on our map stylization algorithm. DriveSense
modifies the zoom level of the map resulting in a constant
map movement, which results in less distraction.

IV. USER EVALUATION

In order to evaluate the usability and effectiveness of
DriveSense, we performed a user evaluation with 7 subjects.



The user evaluation consisted of driving to an unfamiliar
destination using a commodity GPS and DriveSense. In
order to evaluate the efficacy of using GPS as well as
DriveSense to route a user to an unfamiliar destination, we
conducted a survey of the subjects after having used both
the GPS and DriveSense to navigate. The survey contained
subjective questions pertaining to their experience. We asked
them explicitly for their confidence and their perception of
the ease of use of a standard GPS and DriveSense. The
answers were recorded on a 1-5 Likert Scale as appropriate
and longer answers were recorded when possible. Some of
the questions in the survey were geared around identifying
their overall perception of the neighborhood they were
driving in and whether the navigation system was conveying
that information to them. The survey questions were:

1) How confident were you when using a standard GPS?
1 (Not at all confident) - 5 (Very confident)

2) How confident were you when using DriveSense? 1
(Not at all confident) - 5 (Very confident)

3) Did you notice the change in detail of the display map
as the car speed changed? If yes, what did you think
about it?

4) If you made any errors using the standard GPS, how
easy was it to navigate using the new route? 1 (Very
hard) - 5 (Very easy)

5) If you made any errors using the standard DriveSense,
how easy was it to navigate using the new route? 1
(Very hard) - 5 (Very easy)

6) What were the major concerns when using a standard
GPS?

7) What were the major concerns when using
DriveSense?

8) Were you aware of the part of town/city that you drove
in when using the GPS? If so, which part of town/city
was it?

9) Were you aware of the part of town/city that you
drove in when using DriveSense? If so, which part
of town/city was it?

10) Between a standard GPS and DriveSense, which one
do you prefer better for navigation to unknown desti-
nations?

11) Are there any other suggestions for improvement to
DriveSense?

Based on the results of the survey, all 7 participants
preferred DriveSense over a commodity GPS. The quan-
titative results obtained from the confidence and the ease-
of-use questions were analyzed. Based on the results, the
confidence of the subjects when using DriveSense was
higher than when using a GPS. Similarly, they rated the
ease of use to be higher when using DriveSense than when
using a GPS. Figure 6 shows a plot of the two quantities for
comparison. These results were analyzed using a student’s
t-test and were not found to be statistically significant.

Since, we wanted to find out whether the subjects noticed
the change in detail of the route map and their opinion about

it, we asked them an open ended-question about the same.
All the subjects said that they noticed the change in detail
and 6 out of the 7 subjects said that they liked the change in
detail views since they were very useful and subtle. One of
the subjects would have liked to have less detail even for the
stationary view (for example, when he was at a traffic light).
A user said that when driving at fast speeds, she would like
to quickly glance at the display and DriveSense provide just
the right amount of information for navigation. One of the
favorite features of all the users was the automatic display
of gas stations for the situation when fuel was low. They
liked the fact that the maps would be personalized based on
driving patterns. Since this user evaluation was conducted on
a small scale, large familiarity patterns were not available
and evaluated.

The major concerns and complaints users had when using
a GPS was its lack of context. A subject said that if he needs
to find the nearest gas station (low fuel), you would have to
either stop and interact with the GPS and wait for it to find
the gas station or risk driving and entering information at the
same time. Similarly, a user mentioned an important concern
about current GPS which is around entering destination
information. One need the exact address and often takes too
much effort to use it. In DriveSense, due to our integration
with a browser, we cache all your destination addresses
and provide “favorite” style snippets and allow for auto
completion of destination address. Another concern was
about how a GPS always shows the shortest/fastest path, but
does not provide any contextual information for exploration
of new parts of town. One of the users said that “GPS would
be better if it was connected to car context like DriveSense.”

In terms of suggestions for improvements of DriveSense,
there were a few subjects who would have liked voice
integration at various levels (provide audio cues as the map
detail changes, specify address verbally and so on). Some
would like to further personalize the maps and specify even
less detail for stationary/slow and even medium driving
speeds. In terms of personalizing the maps further, some
subjects said that they would have preferred maybe a bigger
display with bigger fonts to be more legible at faster speeds.
This could be explored by the use of a tablet in the vehicle
for navigation purposes.

V. VISUAL CLUTTER

Visual clutter has shown to cause significant degradation
in performance when performing tasks [16]. Many studies
have shown that a user’s driving performance is adversely
affected with visual clutter [17], [18]. Recently, Rosenholtz
et al. presented a novel technique for measuring visual
clutter in an image [20]. They presented two metrics to
compute visual clutter: Feature congestion measure and
Subband Entropy measure. The intuition behind the Feature
congestion measure is based on practical observations. The
idea is to add a feature into an image and measure the



Figure 6. Graph depicting the results of the user evaluation for a standard
GPS as compared to DriveSense. The average confidence was higher for
subjects using DriveSense. Similarly, the average ease of use too was higher
for DriveSense.

new visual saliency [21] of the image with that feature
added in. If the initial image is too cluttered, then adding
that feature will not result in the visual saliency to change
significantly whereas if the image is neatly organized, then
adding that feature will alter its visual saliency significantly.
The Subband Entropy measure is based on their observation
that if an image is neatly organized into groups then the
image has a smaller footprint on the disk when stored as a
JPEG. It performs wavelet based decomposition to compute
the total clutter in the image.

We measured the Feature Congestion (FC) measure and
the Subband Entropy (SE) measure for visualizations gen-
erated by DriveSense at slow speeds (0-10mph), city speeds
(25-40mph) and highway speeds (60-80mph). The top row
in Figure 7 shows two such input visualizations for 0mph
and 60mph. The bottom row shows the output of the feature
congestion step along with the FC scalar value. Based on
sets of images that we tested, we found that the reduction
in visual clutter was statistically significant for both the
measures (FC: p < 0.0030, SE: p < 0.0019). Tables I and
II show the results of analyzing the FC and SE values
for the three different categories of visualization (slow,
medium/city, fast/highway). Figure 8 shows a graph that
shows the drop in visual clutter for both the metrics as the
vehicle speed gets faster.

Source of Variation Sum of Sq. d.f. Mean Squares F
between 14.93 2 7.464 8.768

error 12.77 15 0.8512
total 27.70 17

Table I
FEATURE CONGESTION MEASURE: THIS TABLE DISPLAYS THE RESULTS

OF AN ANOVA OF THE FEATURE CONGESTION MEASURE ON
DRIVESENSE MAPS GENERATED FOR THE SAME REGION WITH

DIFFERENT SPEEDS (0MPH, 30MPH AND 60MPH). THE PROBABILITY OF
THIS RESULT ASSUMING THE NULL HYPOTHESIS IS p < 0.0030.

Source of Variation Sum of Sq. d.f. Mean Squares F
between 2.606 2 1.303 9.807

error 1.993 15 0.1328
total 4.598 17

Table II
SUBBAND ENTROPY MEASURE: THIS TABLE DISPLAYS THE RESULTS OF

AN ANOVA OF THE SUBBAND ENTROPY MEASURE ON DRIVESENSE
MAPS GENERATED FOR THE SAME REGION WITH DIFFERENT SPEEDS

(0MPH, 30MPH AND 60MPH). THE PROBABILITY OF THIS RESULT
ASSUMING THE NULL HYPOTHESIS IS p < 0.0019.

Figure 8. A comparison of the visual clutter metrics (Feature Congestion
measure and the Subband Entropy measure) for visualizations displayed by
DriveSense at slow, medium and fast speeds.

VI. CONCLUSIONS AND FUTURE WORK

The automobile has a unique role of being an active pro-
ducer and consumer of big data. Despite the advancements
of automotive technology, drivers are easily distracted by
too much visual data. Hence, human-auto interaction is very
much a work in progress. This creates unique opportunities
for research in human-computer interaction for balancing
data delivery and cognitive overload. As a first step in this
direction, we present a system called ‘DriveSense’ that uses
sensor information from the vehicle to vary the amount of
detail being displayed to a driver.

Based on the user evaluation, we found that all the users
preferred DriveSense over a commodity GPS for navigation
purposes. The ability to change detail automatically in a
subtle manner was most preferred. Users also liked that
DriveSense could automatically sense vehicle parameters
and show appropriate nearby destinations (low gas - gas
station, low tire pressure - service stations) and so on. Addi-
tionally, we also measure visual clutter in our visualizations
and found that the amount of detail (clutter) shown for faster
speeds is statistically less than the amount of detail shown
for slower speeds. A more detailed user evaluation with
subjects using DriveSense for a long period of time will
give us more insight into the usage patterns and the benefits
of using context for navigation purposes.
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