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Preface

During the last year of my Ph.D. at Caltech in 1987-88,
I was looking for a course to TA that would not take too
much time from finishing my dissertation. I had heard
that Feynman did not assign homework in his courses,
and in my naiveté asked him if I could be his teaching
assistant for a new course that had been announced, on
quantum chromodynamics. After checking my creden-
tials with my supervisor John Preskill, he agreed. Only
afterwards did I realize that the TA in Feynman’s courses
was generally the person who did the transcription of the
notes to create the monograph that would follow. This
was not the easy job I had bargained for, and I persuaded
Steven Frautschi to assign several other TAs to the course
to divide the labor. We took turns rewriting the lectures
into publishable form, which Feynman would revise be-
fore considering final. Little did I suspect that I was only
postponing my task by ∼30 years.

Unfortunately most of those corrected drafts became
dispersed with the other TAs, who have left physics. In
my possession are seven lectures that I prepared for pub-
lication, at least some of which were revised by Feynman.
(These are denoted by an asterisk ∗ in the section head-
ings.) As for the rest, I report what is in my class notes,
trying to convey their intent as best I can. Based upon
the rather extensive revisions he made to some of my first
drafts, the sections he did not check are unlikely to do
justice to all of his intended meanings. Certain parts call
for elaboration, but I abstain from restoring longer expla-
nations where I have no record of what Feynman actually
said. These fully revised lectures can be found in sections
6, 7, 8, 9, 12. I was able to supplement my notes in some
places with his own (mostly very sketchy) lecture notes,
that are available from the Caltech Archives, Folder 41.7
of the Feynman Papers.

For the lectures of Jan. 5, 12 and 14, 1988, I was able
to refer to tape recordings that were kindly provided by
Arun K. Gupta, one of the former TAs. I have placed ver-
batim transcriptions of these lectures in the appendix, as
a supplement to the more conventional versions in the
main document. The quality of the recordings makes it
impossible to reproduce every word, and ellipses indicate
words or passages that I could not make out. This is

especially the case toward the end of long explanations,
where Feynman’s voice would tend to diminish greatly,
whereas at the beginning he might almost be shouting.
These recordings are available alongside the lectures as
supplementary material. I have preserved as much as
possible his original words to convey the style of deliv-
ery, which was considerably more colorful and colloquial
than the tone he adopted in the drafts to be published.
The reader who compares these “raw” versions with the
revised ones will understand why it was sometimes chal-
lenging to correctly capture Feynman’s intended mean-
ings.

One thing you may notice, and that struck me as an
educator now myself, is that Feynman was never in a rush
to explain anything (although at times he would speak
very fast), nor did he eschew repeating himself, perhaps
in several different ways, to try to get his point across.
And of course there was his bent for telling stories, which
I had forgotten about in the context of this course, since
I had omitted them from my written notes. The “inter-
lude,” section 14, which were Feynman’s remarks at the
start of the new term, is kept in the main body of the
text; it has a few interesting stories, and shows that he
would make time to help a high school student with his
geometry.

I have the impression that in some places Feynman had
not prepared carefully and was working things out on
the spot, sometimes getting them not quite right, and at
times seemingly meandering through the material. This
was apparent for example in the early lectures on QCD,
where in subsequent class sessions he came back and re-
vised previous equations to correct the details. It is inter-
esting that no notes corresponding to the QCD lectures
appear in the Caltech Archives folder, suggesting he was
speaking extemporaneously. There is also repetition of
already introduced material. Perhaps this was a deliber-
ate pedagogical strategy, since it gave the students time
to digest the concepts and to see it being derived from
scratch. It is also possible that his terminal illness was
interfering with his ability to prepare as well as he might
have liked to. These detours would have been smoothed
over in the version destined for publication, had there
been time for him to revise the notes.

Although there were no homework assignments, there
were some recommended problems that are included in
the lectures. Moreover about a month before the end
of the first term, when students were starting to think
about the upcoming final exams, Feynman decided that
each of them should do an original research project re-
lating to QCD. I recall that many were dumbfounded
when this announcement was made. Such an unexpected
demand made by a lesser instructor would have created
some outcry, but to a decree from the great man nobody
objected, and everyone somehow managed to carry out
the task: it was a privilege. Feynman of course graded
the projects himself, and he comments on them in the
interlude section.

One may wonder what the specific content of the un-
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finished part of the course might have been. Feynman
announces at the beginning of the second term that it
will be half on perturbative methods followed by non-
perturbative. At that time he was interested in QCD in
1+1 dimensions, as an exactly solvable model that might
shed light on the real theory. He started working with a
few graduate students on this subject, including Sandip
Trivedi.

His private course notes reveal a different direction;
around 20 of the 60 pages are devoted to reformulating
vector spaces and calculus in arbitrary noninteger dimen-
sions, which he discusses in lectures 20-21. His intent was
to combine this with Schwinger’s functional formulation
of field theory, presented in lectures 21-22, to overcome
the difficulty of defining the path integral in noninteger
dimensions. Also in those notes is some material on chi-
ral symmetry breaking by the axial anomaly and theta
vacua in QCD, that he did not have time to present. No
doubt the students would have been exposed to his ideas
for deepening our understanding of the strong interac-
tions, had he lived until the end of the course.

Feynman was an inspiring teacher, presenting every-
thing in an incisive and fascinating way, that obviously
had his own mark on it. He reinvented the subject as was
his wont, even if he was not the first to discover, for ex-
ample, the Fadeev-Popov procedure for gauge fixing the
path integral. In the final meetings, he was too weak to
stand at the board, and he delivered the lectures while
seated. He died less than three weeks following the last
lecture. His passion for transmitting the excitement of
physics to a new generation never waned.

Sorry this took so long, professor.

James M. Cline
Montréal, 2020

1. THE QUARK MODEL (10-15-87)

We begin our exploration of the strong interactions
with a survey of the hadronic particles, interpreted from
the quark model perspective. The spin-1/2 baryons are
arranged in an octet in the plane of mass versus charge,
and likewise the spin-3/2 baryons form a decuplet, as
shown in fig. 1. The quark content is indicated for
the decuplet states, where the quarks u, d, s have charge
+2/3,−1/3,−1/3 respectively, and we take the opposite
convention for the sign of strangeness than is usual.

Detailed properties of the baryons can be understood
within the quark model by constructing the flavor/spin
wave functions for the states. Consider the ∆0 state (J =
3/2), whose upper two spin states are given by

∆0 :

{
ddu ↑↑↑, Jz = 3/2
ddu 1√

3
(↑↑↓ + ↑↓↑ + ↓↑↑), Jz = 1/2 (1.1)

Compare this to the neutron and Σ0 (J = 1/2),

N0 : ddu 1√
6
(−2 ↑↑↓ + ↑↓↑ + ↓↑↑), Jz = 1/2

Σ0 : uds 1√
6
(−2 ↑↑↓ + ↑↓↑ + ↓↑↑) (1.2)

For ∆0 and N0, the coefficients of the ↑↓↑ + ↓↑↑ spin
terms had to be equal, since they are symmetric under
interchange of the first two quarks, which have identical
flavors (dd). However this is not a constraint for the uds
baryons, so there must exist an additional state Λ0

Λ0 : uds 1√
2
(↑↓↑ − ↓↑↑) (1.3)

that has isospin 0. The fact that the mass eigenstates
are also eigenstates of isospin indicates that u and d are
approximately degenerate, compared to the scale of the
hadron masses.

Similarly the mesons can be arranged into multiplets,
as we illustrate for the J = 1− vector mesons in fig. 2.
The wave functions are given by

ω : 1√
2
(uū+ dd̄) ↑↑

ρ+ : ud̄ ↑↑; ρ0 : 1√
2
(uū− dd̄) ↑↑; ρ− : dū ↑↑

K∗− : sū ↑↑; K∗0 : sd̄ ↑↑;
K∗

+
: us̄ ↑↑; K∗

0
: ds̄ ↑↑;

φ : ss̄ ↑↑ (1.4)

It is interesting to notice that the ω and ρ0 are very close
to each other in mass. What do we learn about the strong
interactions from this near-degeneracy? Apparently, the
strong interactions conserve isospin.

It is also interesting to observe that φ decays much
faster into KK than into pions. This is an example of
Zweig’s rule (OZI suppression), that can be pictured
diagrammatically by the statement that

π

π

is favored over 

K

K

φ

One might wonder whether OZI suppression in this
example is somehow related to the degeneracy of the φ-
ω system. In fact there is a connection: if ω had some
ss̄ content rather than being purely made from uū and
dd̄, which would spoil the degeneracy, then by the same
mixing φ would also have light quark content, allowing for
decays into pions without going through the annihilation
diagram.

The pseudoscalar mesons (JP = 0−) have a different
flavor structure from the vector mesons, apart from the
similarities between the two isotriplets ρ and π,

[π+, π−, π0] : 1√
2
(↑↓ − ↓↑)

[
ud̄, dū, 1√

2
(uū− dd̄)

]
(1.5)

In this case there is mixing between the isosinglets,

η (546) ∼ (uū+ dd̄)− 1.4 ss̄

η′(960) ∼ (uū+ dd̄) + 0.7 ss̄ (1.6)
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Σ0

Λ0

JP = 1/2 + states

Ν+
Ν0

Ξ0Ξ−

Σ− Σ+

charge 
mass

(1320)

(1190)

(938)

s = −1

s = −2

s = 0

Ω−

Ξ′−
Ξ′0

Σ′− Σ′+Σ′0

∆0
∆− ∆+

(duu)
∆++

charge 

(sss)

(ssd) (ssu)

JP = 3/2 + states

(suu)(sdd) (sdu)

(ddd) (ddu) (uuu)
(1236)


(1385)

(1532)

(1672)

s = 0

s = −1

s = −2

s = −3

mass

FIG. 1: The baryon octet (left) and decuplet (right). Masses indicated in MeV/c2.

Why isn’t η purely (uū + dd̄), in analogy to ω, which
would have made it approximately degenerate with the
pions? This has to do with chiral symmetry breaking,
which is specific to QCD and not accounted for by the
quark model.

An interesting prediction of the quark model is elec-
tromagnetic matrix elements, that determine the baryon
magnetic moments. We consider those of the proton and
the neutron, where the proton wave function is

|p〉 = (uud) 1√
6
(−2 ↑↑↓ + ↑↓↑ + ↓↑↑) (1.7)

The magnetic moment is given by〈
p

∣∣∣∣ q~2m
σz

∣∣∣∣ p〉 (1.8)

where q is the charge operator acting on the quarks, and
m = mp/3 is the constituent quark mass. Using (1.7),

qσz|p〉 =
uud√

6

( 2e

3
(−2 ↑↑↓ + ↑↓↑ − ↓↑↑)

+
2e

3
(−2 ↑↑↓ − ↑↓↑ + ↓↑↑)

− e

3
(+2 ↑↑↓ + ↑↓↑ + ↓↑↑)

)
(1.9)

we find 〈
p

∣∣∣∣ q~2m
σz

∣∣∣∣ p〉 = 3µN (1.10)

ω 0ρ0

φ0

ρ−

∗−Κ ∗0Κ

ρ+

−= 1

∗0Κ

(770)

(1070)

(895)

(895) s = 1

s = 0

s = −1

JP  states

Κ∗+

FIG. 2: The vector meson nonet.

where µN = e~/2mp is the nuclear magneton. The anal-
ogous calculation for the neutron (see eq. (1.2)) gives
−2µN . These predictions are compared to the measured
values in the table 1.1

These predictions can be corrected, as shown in the
third row of the table, by taking a more realistic value of
the constituent u and d quark masses, mq = 1085/3 ∼=
362 MeV instead of mp/3.2 Further improvement might
arise from taking into account isospin breaking; the u and
d masses are not exactly the same. We must certainly
take SU(3) flavor breaking into account for the s quark,
whose constituent mass is ms = 1617/3 = 539 MeV. We
can then predict the other magnetic moments as

qσz
m
|Λ0〉 =

sud√
2

qσz
m

(↑↑↓ − ↑↓↑)→ − 1

3ms

qσz
m
|Σ+〉 =

sud√
6

qσz
m

(2 ↓↑↑ − ↑↓↑ − ↑↑↓)

→ 4
6

[
+ 1

3ms
+ 2

3mq
+ 2

3mq

]
+ 1

3

[
− 1

3ms

]
= 1

9ms
+ 8

9mq
(1.11)

p n Λ Σ+ Σ− Ξ−

µth. 3 −2 3 −1 −1

µexp. 2.79 −1.93 −0.61±.03 2.83±.25 −1.48±.37 −1.85±.75

µcorr. 2.59 −1.73 −0.58 2.50 −0.96 −0.49

TABLE I: Predicted and observed baryon magnetic moments,
in the quark model.

1 In class, RPF only presented the n and p values, and omitted
the “corrected” predictions. I have restored these and some of
the related discussion from his private notes.

2 It is not explained in his notes where the number 1085 comes
from; probably it is a consequence of taking the spin-spin inter-
actions into account in the baryon mass calculation.
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qσz
m
|Σ−〉 =

sdd√
6

qσz
m

(2 ↓↑↑ − ↑↓↑ − ↑↑↓)

→ 4
6

[
+ 1

3ms
− 1

3mq
− 1

3mq

]
+ 1

3

[
− 1

3ms

]
= 1

9ms
− 4

9mq

qσz
m
|Ξ−〉 =

dss√
6

qσz
m

(2 ↓↑↑ − ↑↓↑ − ↑↑↓)

→ 1
9mq
− 4

9ms
(1.12)

These are in rather good agreement with the data, except
for the Ξ−.

The nonrelativistic quark model can also be used to
predict the axial vector current matrix elements, σzγ

5.
In the quark model we find that σzγ

5 gives +1 for u and
−1 for d, leading to the prediction

gA = 4
6 [1 + 1 + 1] + 1

3 [−1] = 5/3 (1.13)

for the proton,3 which is high compared to the experi-
mental value 1.253± 0.007.

Exercise. What kind of baryon states do you expect
when there is one unit of internal angular momentum?

2. OTHER PHENOMENOLOGICAL MODELS
(10-20-87)

There are complementary phenomenological models
for describing the strong interactions, which we briefly
review here. The first is the relativistic string, which
was inspired by the observed Regge trajectories. These
are plots of the spin versus mass squared of hadronic
resonances, as in fig. 3. One considers only families of
resonances having the same parity, requiring J to jump
by ∆J = 2. Empirically the trajectory is linear, which
was not predicted by the quark model. However the rel-
ativistic string, illustrated in fig. 4, gets the correct re-
lation.4 In the simplest version of the model, the masses

m2

J

5

1

3

FIG. 3: A Regge trajectory.

3 This calculation, also taken from his written notes, seems to
be based on unstated insights from the extended quark model
analysis that takes into account the small components of the
Dirac spinors.

4 This is worked out in the next lecture.

c

c

(a) (b) (c)

FIG. 4: String model for mesons (a) and baryons (b,c).

of quarks or antiquarks on the ends of the string are ne-
glected, and one cares only about the constant tension
T = energy/length of the strings, which represent flux
tubes of the strong interaction field. One finds that m2

(the energy squared) is proportional to the angular mo-
mentum, with the endpoints of the string moving at the
speed of light. To explain the linear Regge trajectories
of baryons in this picture, one could imagine flux tube
configurations as in fig. 4(b,c). Configuration (c) would
obviously lead to the same prediction of linear Regge tra-
jectories as for mesons.

In the bag model (fig. 5(a)), quarks in a hadron “push
away the vacuum” and move around in this evacuated
region with nearly zero mass. It takes energy to make
the hole, which is interpreted as the hadron mass. An
application is to the decay ρ → e+e− (fig. 5(b)), where

we recall that ρ = (uū − dd̄)/
√

2. One must know the
wave function of the qq̄ bound state at the origin, ψ(0), to
estimate the amplitude. Although the bag model gives a
reasonable estimate for ψ(0), the bag nevertheless turns
out to be too stable to get the rate right. One needs to
make it more dynamical than in the bag model picture,
so that it shrinks more easily when the q and q̄ are close
to each other. And the bag should turn into a flux tube
when the pair is well-separated.

The parton model is useful for describing high-energy
processes, including inelastic scattering of electrons on
nucleons. An example is shown in fig. 6, for the case
of eN → eNπ. Let us think about the partons in the
initial state nucleon, in a reference frame where it is
moving to the right with 4-momentum pµ = (E, p, 0, 0)
and E ∼ 10 GeV for example, and the virtual photon 4-

momentum is qµ = (0, ~Q). A parton in the nucleus will

e+

e−
u(d)

(a)

u(d)

(b)

γ

FIG. 5: (a) Bag model for baryons. (b) Electromagnetic decay
of ρ meson.
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−eN

N

γ

π

FIG. 6: High-energy electron-nucleon scattering

have momentum components

p‖ = xp, p⊥ ∼ 300 MeV (2.1)

parallel and perpendicular to the beam, respectively,
where x is the momentum fraction of the parton that in-
teracts with the virtual photon. In this frame, its momen-
tum just gets reversed after scattering, px→ −px = Q/2,
since its energy changes by q0 = 0. In an arbitrary frame
we can write the momentum fraction as

x =
Q2

2pQ
=
−q2

−2p · q
. (2.2)

The momentum distribution of partons in the nucleon
can be thought of as coming from their respective wave
functions, written in momentum space. Naively, we
would expect the probability to find a quark with mo-
mentum in the interval [5, 5.5] GeV in a 10 GeV proton
to be the same as for the interval [10, 11] GeV in a 20
GeV proton. Each parton has its own probability distri-
bution

u(x), d(x), s(x) : quarks

ū(x), d̄(x), s̄(x) : antiquarks

g(x) : gluon (2.3)

For example u(x) is the probability density for finding a
u quark with momentum fraction x. Of course these defi-
nitions depend upon which hadron the parton belongs to.
If we define the above functions as belonging to the pro-
ton, then the amplitude for the photoproduction process
is proportional to

4
9u(x)+ 1

9d(x)+ 1
9s(x)+ 4

9 ū(x)+· · · , (ep→ eNπ) (2.4)

for scattering on protons, whereas it is

4
9d(x)+ 1

9u(x)+ 1
9s(x)+ 4

9 ū(x)+· · · , (en→ eNπ) (2.5)

for scattering on neutrons since u(x) in a proton must be
equal to d(x) in a neutron. The amplitudes will of course
also depend upon Q.

Challenge. Compute the width for φ→ e+e−.

3. DEEP INELASTIC SCATTERING;
ELECTRON-POSITRON ANNIHILATION

(10-22-87)

In the last lecture we saw that the electron-proton scat-
tering cross section is proportional to a function

F ep(x) = 4
9 (u+ ū) + 1

9 (d+ d̄) + 1
9 (s+ s̄) (3.1)

where u(x) is the probability density for finding a u quark
with momentum fraction x in the proton. The momen-
tum distribution functions are subject to constraints

1 =

(
proton

charge

)
=

∫ [
2
3 (u−ū)− 1

3 (d−d̄)− 1
3 (s−s̄)

]
dx

0 =

(
neutron

charge

)
=

∫ [
2
3 (d−d̄)− 1

3 (u−ū)− 1
3 (s−s̄)

]
dx

0 = nucleon strangeness =

∫
(s− s̄) dx (3.2)

where again we assumed the neutron is related to the
proton by interchange u↔ d. From these it follows that∫

(u− ū) dx = 2∫
(d− d̄) dx = 1∫
(s− s̄) dx = = 0 (3.3)

It has been shown that as x → 0, the distribution func-
tions have the behavior

u = ū = d = d̄ ∼ 0.24

x
(3.4)

Likewise, s = s̄ scales as 1/x. This behavior can be un-
derstood as coming from brehmsstrahlung of soft gluons,
which have a distribution of 1/x. These (virtual) gluons
decay into soft quark-antiquark pairs,

q

q

g

explaining why all flavors have the same 1/x dependence
at low x, regardless of whether they are particles or an-
tiparticles: gluons can decay into all flavors equally. The
gluons are known to comprise a significant fraction of the
total partons, ∫ 1

0

dx g(x) ≈ 0.44 (3.5)

So far, we have taken for granted that we know the
charges of the quarks. One experiment that constrains
the charges is annihilation of electrons and positrons,
fig. 7. Denoting the cross section for annihilation into
e+e− by σel, we can express that for annihilation into uū
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e−
e+

e+ e−

e−
e+

q q

γ γ

(a) (b)

FIG. 7: Electron-positron annihilation into e+e− (a) and qq̄
(b).

e+ e−

jet

jet

FIG. 8: Electron-positron annihilation into hadronic jets.

as5

σuū ∼
4

9
σel · 3 (3.6)

where the final factor of 3 is for the number of colors,
which we must determine by some independent means.
We have assumed here that final state interactions can
be neglected. Similarly for σdd̄ or σss̄ we get 1

9 σel ·3. For
the inclusive cross section to produce hadrons, we add
the three flavors together to obtain

σe+e−→hadrons

σel
=

4

3
+

1

3
+

1

3
= 2 (3.7)

assuming the energy is below the c quark threshold.
Above this threshold, 2 → 10/3, and above the b quark
threshold 10/3→ 11/3.

w = ln x

# of pions in jets

FIG. 9: Distribution of pions with momentum fraction x in
jets.

5 RPF has apparently ignored the t-channel contribution to σel

here.

Or course what we really see is not quarks in the final
state, but rather jets (fig. 8), primarily K’s and π’s, with
smaller admixtures of nucleons and antinucleons. One
can define probability distribution functions for hadrons
in the jets in analogy to those of the partons, for example
π(x), where now the momentum fraction is defined as

x =
energy of π

energy of e+e−
(3.8)

Like for the quarks, these distributions go like 1/x at
small x. Denote the components of the π momentum
parallel to and transverse to the average jet momentum
as p‖ and p⊥. Then

dx

x
=
dp‖

E
=

dp‖√
m2
π + p2

⊥ + p2
‖

(3.9)

This shows that at small x the distribution of particles
with momentum fraction x is flat as a function of w =
lnx, fig. 9. Lorentz transforming to a frame where the
average momentum of the two jets does not add to zero
causes the distribution to be translated to the right or
left in w. More generally, we can define fragmentation
functions Dq

h(x) that denote the probability distribution
for producing a hadron of type h and momentum fraction
x from a jet originating from a quark of flavor q. These
can be measured in deep inelastic scattering experiments.

The formation of two jets from the breaking of a string
of strong interaction flux is in some ways analogous
to a simpler problem, the spontaneous emission of an
electron-positron pair from a constant electric field. Solv-
ing the Dirac equation in this background, I find that the

probability of pair production is exp(− e2

8π
m2+~p 2

~E2
). Now

imagine that the electric field is created by two charged
plates that are moving together with velocity v. The
pairs should be produced with net total momentum. But
locally they are created from a uniform field, so how do
they know they should have net momentum?

A related problem concerns the wave function of
quarks in a stationary proton versus a moving proton.
The wave function is not a relativistic invariant, nor even
something that transforms nicely.
Exercise. From the Schrödinger equation, how does the
solution for the wave function ψ transform when the po-
tential changes by the Galilean transformation V (~r) →
V (~r − ~vt)? (Answer: ψ → eim(~v·~r− 1

2~v
2t)ψ(~r − ~vt, t).)

Similarly, the wave function for positronium,
ψ(~x1, ~x2, t), depending on the positions of its con-
stituents, changes in a complicated way, as can be
understood by Lorentz transforming and noting that in
the new frame, the events that were (t, ~x1) and (t, ~x2)
in the original frame are no longer simultaneous; see fig.
10. We have to evolve one particle forward and the other
backward in time to find the new wave function. Hence
ψ in the new frame, call it ψ′, is not just a function of
the original ψ, but rather ψ′ = f(ψ,H), depending also
on the Hamiltonian H of the system.
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t

x

x́

t

FIG. 10: Relativity of simultaneity for positronium con-
situents in the rest frame versus a boosted frame.

q

a

q

e+ e−

(E, −p)(E, p)

E E

FIG. 11: Hadronization after e+e− → qq̄ production, showing
the breaking of the QCD string.

We can say something more quantitative about the dis-
tributions of transverse and longitudinal momenta how-
ever. The center of mass energy of the e+e is 2E ∼= 2|~p|.
The produced quarks carry less momentum because of
the mass produced in the QCD string during hadroniza-

tion, E =
√
p2
‖ + p2

⊥ +m2 = xp
√

1 + (p2
⊥ +m2)/(xp)2

(recalling that p‖ = xp). Hence6

E − p‖ ∼
#

xp
. (3.10)

A measure of momentum loss is given by the sum over
the different kinds of hadronic particles h produced,

|∆~p| =
∑
h

∫
(E − p‖)

dp‖

E
Ch d

2p⊥

=
∑
h

∫
d2p⊥ Ch (p‖ − E)

∣∣∣p
0

=
∑
h

∫
d2p⊥ Ch

√
p2
⊥ +m2

h (3.11)

where Ch depends on the particle. As shown, one can do
the integral over p‖ exactly. This gives us a way of mea-
suring the string tension T , since the loss of momentum

6 This equation which holds at large xp does not seem to be needed
for what follows.

E2

L

asymptote

FIG. 12: Regge trajectory for the flexible bag model.

is given by Newton’s law,∑
L+R

|∆~p| = T × a (3.12)

where the sum is over both left and right sides of the
diagram (the two jets) and a is the time it takes to break
the string, as shown in fig. 11.

The theory of the string tension is not very quantita-
tive. It comes from Regge trajectories, but these are not
known for highly stretched strings, and moreover in the
real situation there are quarks at the ends of the strings,
that have not been taken into account.

Exercise. The “flexible bag” model takes the quark
mass to depend on the quark separation in a hadron,
with Hamiltonian H = 1

2m(r) ddt~r ·
d
dt~r+V (r), V (r) = kr,

m(r) = µr. The quark mass represents the inertia of the
gluon field (bag). Prove that E2 ∼ aL+ b+ c/L+ . . . for
large angular momentum L. Find E for L = 0 and for
large L.7 [RPF shows graphically his result in fig. 12.]
Problem. What happens for the relativistic treatment
of the string? We must formulate a relativistic equation.
String theory!8

Solution: The proper tension T is the energy per unit
length. The radial variable goes from 0 to a, so the ve-
locity varies as v(r) = r/a along the string, which rotates
at angular frequency ω = 1/a. The differential force act-
ing on an element of the string is dF = ωµvdr where
µ = T/

√
1− v2. Therefore the total energy and angular

momenta are

E = 2

∫ a

0

T dr√
1− v2

= 2Ta

∫ 1

0

dv√
1− v2

= πTa

J = 2

∫ a

0

µvr dr = 2Ta2

∫ 1

0

v2 dv√
1− v2

= π
2Ta

2

and we understand the Regge trajectory behavior, E2 =
2πTJ . Comparing to data, 2πT = 1.05 GeV2, giving
T = 0.167 GeV2.

7 RPF in his private notes devotes four pages to working this out,
first classically for circular orbits, then quantum mechanically
using exponential and Gaussian variational anzätze for the wave
function.

8 This was around the time of the first string revolution. I repro-
duce the following answer from RPF’s private notes.
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4. QUANTUM CHROMODYNAMICS (10-27-87)

We will denote color indices by a, b, · · · = r, b, g and
flavor by f so that the noninteracting part of the quark
Lagrangian is11 ∑

f

ψ̄fā (i/∂ − µf )ψfa (4.1)

while the interaction term (for a single flavor) is

ψ̄āA
µ
ābγµψb (4.2)

and the gluon kinetic term is12

tr(∂µA
bā
ν − ∂νAbāµ )2 ≡ tr(Ebāµν)2 (4.3)

(Here only the noninteracting part of the field strength
is used.) The gauge transformations are given by

ψ′ = Λψ

A′µ = Λ†AµΛ + Λ†i∂µΛ

Eµν = ∂µAν − ∂νAµ − [Aµ, Aν ]

→ Λ†EµνΛ = E′µν (4.4)

9 These were originally given at the end of lecture 5, but logically
they belong here since they pertain to quark models.

10 No specific references are given, but probably RPF had in mind
Isgur’s papers from 1978-1979 on the quark model.

11 RPF omits coupling constants and numerical factors in eqs. (4.2-
4.4), but restores them in (4.5).

12 RPF uses Eµν and Fµν interchangeably for the field strength.

The fully gauge invariant QCD Lagrangian is

LQCD =
∑
f

ψ̄f [i/∂ − /A− µf ]ψf

+
1

2g2
trEµνEµν (4.5)

The quark-gluon interaction can also be written as

Lq−int = trAµJµ (4.6)

with the current

Jµ =
∑
f

Jµ,f ; J b̄aµ,f = ψ̄b̄fγµψ
a
f (4.7)

Notice that there are 6× 4× 3 (quark) and 4× 8 (gluon)
field degrees of freedom at each point in spacetime.

Exercises. 1. If B(x) is a 3 × 3 matrix transforming
as B′ = Λ†BΛ, show that ∂µB does not transform
homogeneously in this way, but ∂µB − i[Aµ, B] does.
I.e., ∂µ − i[Aµ, ] ≡ Dµ is the covariant derivative for
fields transforming in the octet representation.

2. Prove that [Dµ, Dν ]B = i[Eµν , B].

3. If Aµ → Aµ + δAµ then δEµν = DµδAν −DνδAµ.

4. By varying Aµ in L, show that DµEµν = g2Jν ,
where J is the quark current.

5. Derive the equation of motion of the quarks,
(i/∂ − µf − /A)ψ = 0.

6. From this, show that DµJµ,f = 0; also
∂µtr Jµ,f = 0.

7. Show that #4 is meaningless unless
DµJµ =

∑
f DµJµ,f =. Hint: #2.

8. Show (identically, not as a consequence of the
equations of motion but due to the form of Eµν)
that DµEνσ + DνEσµ + DσEµν = 0. Note that

if Ẽµν ≡ 1
2εµνστEστ then this can be written as

DµẼµν = 0.

9. Define color electric and magnetic fields Ex = Ext
etc. and Bz = Exy etc. (check the signs). Then rewrite
the field equations in terms of these quantities. Let E =
(Ex, Ey, Ez) etc. Show that

D · B = 0

D× E+DtB = 0

D · E = g2ρ where ρ = Jt

D× B−DtE = g2
J (4.8)

where D = �− i[A, ] and Dt = ∂t − i[At, ].
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Define the matrices

λ1 =

 0 1 0

1 0 0

0 0 0

 λ2 =

 0 −i 0

i 0 0

0 0 0

 λ3 =

 1 0 0

0 −1 0

0 0 0


λ4 =

 0 0 1

0 0 0

1 0 0

 λ5 =

 0 0 −i
0 0 0

i 0 0

 λ6 =

 0 0 0

0 0 1

0 1 0


λ7 =

 0 0 0

0 0 −i
0 −i 0

 λ8 =
√

1
3

 1 0 0

0 1 0

0 0 −2


λ0 =

√
2
3

 1 0 0

0 1 0

0 0 1

 (4.9)

Our convention is that tr(λiλj) = 2δij . We define Aµ =
1
2A

a
µλa. There is no A0

µ term because this would corre-

spond to an extra U(1) force. Let ~Aµ = (A1
µ, . . . , A

8
µ).

Exercises, continued. 10. Show that Λ†∂µΛ is trace-
less, i.e., it has no λ0 component.

The structure constants fijk are defined through[
( 1

2λi), (
1
2λj)

]
= ifijk ( 1

2λk) (4.10)

One can show that fijk is totally antisymmetric. We also
define the anticommutator

{λi, λj} = 2 dijk λk (4.11)

Unlike fijk, we can find the extra generator k = 0
amongst those on the right-hand side.13

11. Show that ∂µA
i
ν − ∂νAiµ − fijkAjµAkν = Eiµν . We

can rewrite this as ∂µ ~Aν − ∂ν ~Aµ − ~Aµ
× ~Aν = ~Eµν by

defining a cross product in color space as

(~C × ~D)i = fijk Cj Dk (4.12)

Similarly define the dot product

~C
• ~D =

∑
i

CiDi (4.13)

12. Prove that

~C
•
(~C × ~D) = 0

and

~A×( ~B × ~C) + ~B ×(~C × ~A) + ~C ×( ~A× ~B) = 0

However (you don’t need to prove this), the familiar

identity ~A×( ~B × ~C) = ~B( ~A • ~C) − ~C( ~A • ~B) is only true
for SU(2) and not for general SU(N).

13. Show that

C = DµB =⇒ ~C = ∂µ ~B − ~Aµ
• ~B (4.14)

14. Rewrite L using component notation.

13 This seems to be a notational innovation of RPF.

4.1. Geometry of color space

Consider successive transformations ψ′ = ΛΨ, ψ′′ =
Mψ′. Then ψ′′ = Nψ ≡ MΛψ obviously. This is an
example of the group multiplication law for the color ro-
tations. For many purposes we may be interested in in-
finitesimal rotations, Λ = 1 + ia. Under this, the gauge
field transforms as

A′µ = (1− ia)Aµ(1 + ia) + (1− ia)∂µ(1 + ia)

= Aµ − i[a, Aµ] + i∂µa

= Aµ + iDµa (4.15)

So it is always possible to impose temporal gauge, A0 =
0, since this only requires solving a first order differen-
tial equation. In the following however we will discuss a
difficulty that arises when charges are present.

What happens to a quark’s color as it is transported
through a gluon field? The transformation between two
sets of color axes separated by a distance ∆xµ can be
written as 1 + iAµ ∆xµ. Now suppose that every set of
axes is changed locally by a rotation Λ(x). Then the new
transformation relating the two sets of axes is

Λ†(x+ ∆x)(1 + iAµ ∆xµ)Λ(x) ≡ 1 + iA′µ ∆xµ (4.16)

Therefore

A′µ = Λ†AµΛ + Λ†i∂µΛ (4.17)

which is the finite version of (4.15).

4.2. Quark-antiquark potential

It would be very satisfying if we could justify some of
the phenomenological approaches I considered earlier, us-
ing QCD as a starting point. Heavy quarkonium systems,
being approximately nonrelativistic, are the simplest sys-
tems to consider, and can be described by a potential of
the form

V ∼ α

r
+ br + . . . (4.18)

where I have omitted the spin-spin and spin-orbit in-
teractions. (In the complete Hamiltonian there is also
an annihilation term HA that can cause transitions like
uū↔ ss̄, that give rise to η-η′ mixing.) The terms writ-
ten describe the linearly confining potential representing
the mass of the string connecting the quark to the an-
tiquark, and the Coulomb-like interaction, which might
rather be something like e−µr/r.

One can also make predictions for relativistic systems
like the vector mesons; see S. Godfrey, N. Isgur, Phys.
Rev. D32, 189 (1985). Then it is advantageous to use
harmonic oscillator wave functions as a basis for com-
puting matrix elements of the Hamiltonian to get a good
approximate solution and compare to the data. Not only
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can one compute the mass spectrum, but also strong in-
teraction decay amplitudes, such as for φ → KK̄. But
all of this still relies on making a reasonable guess for
the form of the potential, and it would be preferable to
derive these interactions directly from QCD.

Let us recall how the analogous calculation works in
QED, for the potential between a proton and an electron.
We start with the fundamental interactions,

L = 1
4FµνFµν + ψ̄e /Dψe + ψ̄p /Dψp (4.19)

and from this we would like to derive the nonrelativistic
effective Hamiltonian

HNR =
p2

2µ
+ V (r) (4.20)

The potential can be computed perturbatively, by
Fourier transforming the amplitude,

V (r) ∼
+

+

+

+ . . .

. . . (4.21)

But for QCD we know that the linear term is a nonper-
turbative effect, so a different approach is needed.

A better way might be to solve the classical equations
of motion for the gauge field, in the presence of a source
term, where the Lagrangian is

L = 1
4FµνFµν +AµJµ

= 1
2 (∂µAν∂µAν − ∂µAν∂νAµ) +AµJµ

→ − 1
2 (Aν�Aν +Aν∂µ∂νAµ) +AµJµ (4.22)

This gives the equation of motion

−�Aµ + ∂µ∂νAν + Jµ = 0 (4.23)

which by taking the divergence implies the current is con-
served, ∂µJµ = 0. Since ∂ · F = ∂µFµν = ∂µ(∂µAν −
∂νAµ), eq. (4.23) can be written in the gauge-invariant
form

∂νFµν = Jµ (4.24)

Now we must solve (4.24) when the source is J0 =
e (δ(~r)− δ(~r − ~a)), supposing that the two charges are
located at the origin and at ~r = ~a respectively. In elec-
trodynamics this is easy, thanks to the linearity of the
theory. We just superpose the solutions from the two
sources, call them

~E1 =
q1

r2
r̂, ~E2 =

q2

r′2
r̂′ (4.25)

where ~r ′ = ~r − ~a. Then we can compute the interaction
energy by integrating the energy density in the fields,

E ∼ | ~E1 + ~E2|2:

V (a) =

∫
d 3x Eint =

∫
d 3x 2 ~E1 · ~E2 (4.26)

This shows how one might be able to compute the quark-
antiquark potential without relying on perturbation the-
ory; it would require knowing the classical solution for
the gluons fields in the presence of a static source.

4.3. Classical solutions

Therefore we would like to solve for the chromoelectric
field in the presence of a source. However it is no longer
possible write this only in terms of the field strength, as
we could for QED. In the temporal gauge A0 = 0, the
Gauss’s law equation is

D · E = � · E− i (A · E− E ·A) = g2 ρ (4.27)

where

ρ = J0 =
∑
f

ψ̄bfγ0ψ
a
f (4.28)

which is a matrix in color space. Before fixing the gauge,

D · E = D · (�A0 − ∂0A− [A, A0])→ −D · ∂0A (4.29)

so another way of writing (4.27) in A0 = 0 gauge is

−D · ∂0A = g2ρ (4.30)

However we should first verify that there is no obsta-
cle to transforming to the A0 = 0 gauge when external
charges are present. An issue, as I will show, is whether
one can consider the source to be static. Starting from
some configuration with A0 6= 0, we would like to con-
struct the gauge transformation that makes A′0 = 0, by
solving eq. (4.17) with µ = 0. One can guess that it is a
time-ordered exponential,

Λ = P exp

(
i

∫ t

t0

dt′A0(t′)

)
(4.31)

and verify that this is a solution, since

∂0Λ = ∂0

(
1 + i

∫ t

t0

dt′A0(t′)

−
∫ t

t0

dt1A0(t1)

∫ t1

t0

dt2A0(t2) + . . .

)
= A0(t)−A0(t)

∫ t

t0

dt′A0(t′) + . . . (4.32)

So there is no difficulty in transforming to the temporal
gauge. But we must also consider how the source (4.23)
transforms:

ρ→ Λ†ρΛ (4.33)

Recall that the quark changes its color when it emits a
gluon; that’s why the charge is a matrix. Does the gauge
dependence mean that it makes no sense to ask what
is the potential between two spatially separated charge
matrices?

Before getting too ambitious and trying to solve with
the source having both a quark and an antiquark, let’s
first imagine the seemingly easier case of a single quark,
even though the solution is not expected to fall off at
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large distances. Suppose that a quark starts out being
red. At a later time, after emitting or absorbing a gluon,
it is some linear combination of red, green, blue:

q(t) =

 r(t)

b(t)

g(t)

 (4.34)

where |r|2 + |b|2 + |g|2 = 1, say. It gives a color charge
matrix of the form ρāb = q̄āγ0q

b. Clearly a nontrivial
solution will have time dependence, associated with the
fact that the source is not a color singlet. To avoid this,
we would have to include the antiquark contribution, so
as to form a gauge-invariant source,

ρ = q̄a(x)
[
Pei

∫ x+r
x

Aµdx
µ
]
ab
qb(x+ r) (4.35)

which is no longer a matrix, since we have traced over
the color indices. But this trace is not actually present
in the equation of motion (4.27), which has the explicit
form

D · E = � · E− i[A·, E]

= � · Ȧ− i[A·, Ȧ] = g2ρ (4.36)

in A0 = 0 gauge. In this form it is clear that trD · E = 0
since every term is proportional to an SU(3) generator.
Therefore (as we already knew) only the traceless part of
ρ can act as a source for the gluons.

Let’s rewrite (4.27) in the SU(3) vector notation I in-
troduced previously,

∇i ~̇Ai − iAai Ȧbi [T a, T b] = g2~ρ . (4.37)

Using [T a, T b] = ifabcT
c and rescaling A → g2A, this

becomes

∇i ~̇Ai + g2 ~A ×i
~̇Ai = ~ρ . (4.38)

Now let ~Ai = t ~Ei; then since ~E ×i
~Ei = 0, we get Gauss’s

law ∇i ~Ei = ~ρ. So it looks like we have succeeded in find-
ing a class of solutions, that looks like just eight copies
of the Abelian problem. Not so fast! In electrodynamics,
there is no difficulty in setting the magnetic field to zero
for a static charge configuration. But in QCD the color
field sources itself, and now it is no longer obvious that
we can set B = 0. Since B contains the term [A,A],
it would vanish for special charge distributions where
ρ3 and ρ8 (whose generators are diagonal) are the only
nonzero components. But such solutions are not helpful
for understanding the distinctive properties of QCD, in
particular the confining potential.

More generally there could be an integration constant,
~Ai = ~ai(~x) + t ~Ei, giving the extra term

∇i ~Ei + g2~a ×i
~Ei = ~ρ (4.39)

in Gauss’s law. What is the physical significance of ~ai?
Recall that

Bz = Exy = ∂xAy − ∂yAx − [Ax, Ay] (4.40)

so that ~ai(x) gives a time-independent contribution to
the chromomagnetic field,

Bz = ∂xay − ∂yax + t[∂xEy − ∂yEx] (4.41)

− [ax + tEx, ay + tEy]

= ∂xay − ∂yax − [ax, ay]

+ t (∂xEy − ∂yEx − [Ex, ay]− [ax, Ey])− t2[Ex, Ey]

The time-dependent terms still vanish for the special
charge distributions ρ3, ρ8, while the time-independent
one vanishes if in addition a3

i and a8
i are curl-free.

In electrodynamics, a static electric and magnetic field
in temporal gauge are described by Ai = ai + tEi with
∇ × E = 0 and ∂tai = ∂tEi = 0. We can’t seem to do
that here:

Ei = −∂iA0 + ∂0Ai + [Ai, A0]

= ∂0Ai in temporal gauge;

Bx = ∂yAz − ∂zAy − [Ay, Az] (4.42)

because the commutator in B generically gives rise to
time dependence. This seems to imply that we cannot
impose A0 = 0 gauge when charges are present. In elec-
trodynamics it is more common to express a static solu-

tion as ~E = ~∇A0 in Coulomb gauge where; ~∇ · ~A = 0.
Then

~∇ · ~E ∼ ~∇ · r̂
r2

= ∂i
xi
r3

=
3

r3
−
(

3

2

)
xi 2xi
r5

= 0 (4.43)

But we previously showed that it is always possible to go
to temporal gauge; why should it matter what gauge we
choose?

One reason it could matter is the gauge-covariance of
the source. Suppose that ρ was initially static in a gauge
where A0 6= 0. When we transform to temporal gauge, it
is no longer static! Instead

Λ†ρΛ =
(
P ei

∫ t dt′A0(t′)
)†
ρ
(
P ei

∫ t dt′A0(t′)
)

(4.44)

which is t-dependent, unlike in the Abelian case. One
might try to fix the problem by rewriting Gauss’s law in
terms of gauge invariant quantities on the left-hand side
of the equation. Using D · E = � · E − i[A, E], it would
read

� · E = g2ρ+ i[A, E] (4.45)

But that doesn’t work, since E itself is not gauge invari-
ant!

Eq. (4.35) suggests that it might be possible to find
a solution where the charge remains static if we work
instead in an axial gauge with n·A = 0 for some spacelike
vector n, for example Az = 0, in the case where the
quark and antiquark are separated along the z direction.
Then the gauge transformation needed to transform from
Az 6= 0 to A′z = 0 is

Λ = Pei
∫ z dz′Az(z′) (4.46)
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If the initial gauge field was static, Ȧµ = 0, then Λ†ρΛ
remains static. In fact, the same argument would have

worked in temporal gauge since then Pei
∫ t dt′A0(t′) =

PeitA0 = eitA0 , which would be consistent, but then ~E =
0.

In summary, it seems to be difficult to find the classical
gauge configurations that would explain the origin of the
quark-antiquark potential.14

5. QCD CONVENTIONS (10-29-87)

In the previous lectures we may have been a bit care-
less with numerical factors and signs. Let’s now try to
get all of these right and establish a consistent set of con-
ventions. First, we can verify that the quark Lagrangian
should read ψ̄(i/∂ − /A)ψ to be invariant under the gauge
transformations

ψ → Λψ, ψ̄ → ψ̄Λ†,

Aµ → ΛAµ Λ† + i(∂µΛ) Λ† (5.1)

Second, we carry out the gauge transformations

∂µAν − ∂νAµ → Λ(∂µAν − ∂νAµ)Λ† (5.2)

+ (∂µΛ)AνΛ† − (∂νΛ)AµΛ†

+ ΛAν∂µΛ† − ΛAµ∂νΛ†

+ i∂µ((∂νΛ)Λ†)− i∂ν((∂µΛ)Λ†)

and

[Aµ, Aν ] → [ΛAµΛ† + i(∂µΛ)Λ†,ΛAνΛ† + i(∂νΛ)Λ†]

= Λ[Aµ, Aν ]Λ† + i[ΛAµΛ†, (∂νΛ)Λ†] (5.3)

+ i[(∂µΛ)Λ†,ΛAνΛ†]− [(∂µΛ)Λ†, (∂νΛ)Λ†]

Using (∂νΛ)Λ† = −Λ∂νΛ†, we can show that the terms
involving derivatives of Λ cancel in the linear combination

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (5.4)

which is therefore the covariant field strength. The chro-
moelectric and magnetic fields are

Ei = F0i = ∂0Ai − ∂iA0 + i[A0, Ai]

Bx = Fyz = ∂yAz − ∂zAy + i[Ay, Az] (5.5)

The full Lagrangian is

L =
1

2g2
trFµνFµν + ψ̄(i/∂ − /A−m)ψ (5.6)

14 This statement was not in my notes; it conveys my impression
that RPF was explaining from memory the sequence of difficul-
ties he encountered when looking for classical solutions, some
time prior to the course. There is no record of these attempts in
his personal notes.

Let’s vary it with respect to A to find the equation of
motion. The variation of the first term is

δL =
1

g2
trFµν δFµν + . . . (5.7)

=
1

g2
tr
(

2δAµ∂νFµν + i([δAµ, Aν ] + [Aµ, δAν ])Fµν

)
=

2

g2
tr
(
δAµ∂νFµν + i[δAµ, Aν ]Fµν

)
(5.8)

Then15 writing Aµ = AaµTa = Aaµ( 1
2λa),

g2 δL
δAaµ

= 2tr
(
Ta ∂νFµν + i[Ta, Aν ]Fµν

)
= ∂νF

a
µν + 2i Abν F

c
µνtr

(
[T a, T b]T c

)
= ∂νF

a
µν + i[Aν , Fµν ]a (5.9)

where we used

tr([T a, T b]T c) =
i

2
fabc = tr([T b, T c]T a) (5.10)

Therefore

∂νF
a
µν + i[Aν , Fµν ]a = g2ψ̄T aγµψ (5.11)

Exercise. Show that in Coulomb gauge ∂iAi = 0, the
Gauss’s law constraint becomes16

∇2A0 + 2ig[Ai, ∂iA0]− g2 [Ai, [Ai, A0]] = gρ (5.12)

after rescaling Aµ → gAµ. ρ is the matrix charge defined
in eq. (4.28).

6. GEOMETRY OF COLOR SPACE∗ (11-3,5-87)

17 Our discussion of the QCD Lagrangian has been of
a largely algebraic nature to this point, but much intu-
ition can be gained by considering the local color sym-
metry in geometric terms. At each point in spacetime
we imagine there exists a set of axes in the color space,

15 At this point RPF writes δL/δAaµ on the left side, but on the

right side gives the variation of L with respect to Aab̄µ labeled by
the (3, 3̄) indices, rather than varying with respect to Aaµ labeled
by the adjoint index a. This gives a result twice as large as it
should be (due to the normalization of the generators), which
RPF recognizes as being wrong and therefore concludes that the
gluon kinetic term should really be normalized as (1/4g2)trF 2.
This may be another case of him extemporizing. I have corrected
the derivation here.

16 In the lectures, RPF derives this but I leave it as an exercise.
Part of the derivation involves assuming that ∂0Ai = 0 in the
commutator [Ai, ∂0Ai], which seems not generally true.

17 This section, which was revised by RPF, combines lectures 6 and
7, given on Nov. 3 and 5, 1987. It repeats some material that
was presented earlier. I retained the redundancies in the interest
of historical accuracy.
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which may vary in its relative orientation from place to
place. This freedom to rotate color frames independently
at each point is embodied in the SU(3) transformation
matrices Λ(x), under which a quark transforms as

ψ′(x) = Λ(x)ψ(x) . (6.1)

Since one rotation may be followed by another,

ψ′′(x) = Λ′(x)ψ′(x) = Λ′(x)Λ(x)ψ(x)

≡ Λ′′(x)ψ(x) ;

they form a group, with Λ′′ = Λ′Λ being the group multi-
plication law. Requiring that Λ not change the length of
a color vector is equivalent to demanding that Λ†Λ = 1.
Thus the Λ’s would represent the group U(3) of unitary
3× 3 matrices. However U(3) contains a U(1) subgroup,
matrices of the form eiθ1, which would give rise to an
additional long-range interaction like the electromagnetic
force. To eliminate this we note that

det Λ′′ = det Λ′ det Λ

represents the U(1) transformations (it is Abelian), so we
should make the restriction

det Λ = 1,

i.e., Λ is a special unitary matrix, hence the group is
SU(3).

The transformation law for the gluon field has a less
immediately obvious interpretation than that for the
quarks, eq. (6.1). For infinitesimal rotations Λ = 1+ia,18

A′µ = (1− ia)Aµ(1 + ia) + (1− ia)∂µ(1 + ia)

= Aµ − i[a, Aµ] + i∂µa

= Aµ + iDµa (6.2)

where Dµ is the covariant derivative. How can this be
understood geometrically?

To answer this, it must first be realized that there is,
a priori, no way of telling whether a color frame at point
x is parallel to one at x+ ∆x, because the color space is
completely unrelated to spacetime. An analogy is trying
to choose local tangent frames on a curved space, such
as the surface of a two-sphere, that are “parallel” to each
other. It is not possible to do without defining a law of
parallel transport for vectors, so that we know what it
means for two vectors at different locations to be parallel.
Similarly in QCD one needs a rule for comparing orienta-
tions of nearby color frames. This is the function of the
gauge field Aµ(x), in much the same way as the metric
tensor (to be more precise, the Christoffel symbol) de-
fines parallel transport in the geometry of curved space.

18 Neither RPF nor I noticed the inconsistency with eq. (5.1), which
is the correct version having i∂µ instead of ∂µ in the first line.

xµ
xµ∆

U
1

U
2

U
3

U
4

xµ−∆

xν xν
−δ δ

FIG. 13: Parallel transport of a quark around a closed loop.

Define the relative orientation between two nearby color
frames, at x and x + ∆x, to be given by the rotation
matrix

U(x,∆x) = 1 + iAµ(x)∆xµ . (6.3)

Now suppose that every set of axes is rotated by Λ(x),
depending on the position x. Then the new transforma-
tion relating the frames at x and x+ ∆x is

U ′(x,∆x) = Λ†(x+ ∆x)U(x,∆x)Λ(x)

= 1 + iA′µ(x)∆xµ (6.4)

It follows that

A′µ(x) = Λ†(x)Aµ(x)Λ(x) + iΛ†(x)∂µΛ(x) (6.5)

which shows that our geometric interpretation of Aµ(x)
agrees with its previously determined transformation law.

If one was to take a quark at x with color vector ~q and
parallel-transport it to x+ ∆x, its color would change to
U(x,∆x)~q. Of particular interest is the change in ~q when
transported around a closed loop, such as the one shown
in fig. 13. Let U1 = U(x,∆x), U2 = U(x + ∆x, δx),
U3 = U(x + ∆x + δx,−∆x), U4 = U(x + δx,−δx). The
transformation of ~q in going around the loop is

~q ′ = U4U3U2U1~q = Utot~q (6.6)

One notices that Utot(x) has a simple transformation un-
der local SU(3) rotations,

Utot(x)→ Λ†(x)Utot(x)Λ(x) ,

which is just how the field strength Fµν(x) transforms.
This is not an accident: if you expand Utot in terms of
the gauge field as in (6.3), you will find that

Utot = 1 + iFµν(x)∆xµδxν (6.7)

plus terms of order (∆x)2 and (δx)2. Notice that ∆xµδxν

is the area of the loop. So Fµν(x) tells us how much color
rotation a quark suffers under transformations around in-
finitesimal loops. It is analogous to the Riemann tensor,
which does the same thing for vectors in curved space.

With the concept of parallel transport in hand, covari-
ant differentiation becomes quite transparent. If ψ(x)
is a quark field, it is not ψ(x + ∆x) − ψ(x) that is of
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physical interest, because this includes the difference due
to arbitrary orientations of the local color axes. We
should rather compare ψ(x+ ∆x) with ψ(x) transported
to x+ ∆x. Therefore define the covariant derivative as

∆xµDµψ(x) = ψ(x+ ∆x)− U(x,∆x)ψ(x)

or equivalently

Dµψ(x) = (∂µ − iAµ)ψ(x) . (6.8)

Similarly for the field strength,

∆xαDαFµν(x) = Fµν(x+∆x)−U†(x,∆x)Fµν(x)U(x,∆x)

which implies

DαFµν(x) = ∂αFµν(x)− i[Aα, Fµν ] (6.9)

Even as seemingly abstract an equation as the Bianchi
identity can be understood geometrically. This is one of
the statements you were asked to prove previously,

DαFβγ +DγFαβ +DβFγα = 0 . (6.10)

For concreteness, let (α, β, γ) = (x, y, z). Then the first
term is DxFyz. In terms of fig. 14, this is the change in
color axis orientation around the top loop minus that of
the bottom loop. The use of Dz rather than ∂z means
that the bottom loop was parallel transported to the po-
sition of the top loop before making the subtraction. The
contribution to DzFxy from each link of the cube is de-
noted by a line with an arrow that shows the relative
sign of the contribution. From the figure, it is easy to see
that when the remaining terms in (6.10) are included,
each link will contribute twice, once in each direction.
Therefore the sum is zero.

The matrix U(x,∆x) that connects nearby color axes
can be used to construct the rotation connecting color
frames that are separated by a finite distance. Choose a
path connecting the two points and divide it into small
increments, labeled by xµi , such that ∆xµi = xµi+1−x

µ
i as

shown in fig. 15. Then the rotation matrix between xµ0
and xµf is

S(x0, xf ) =
∏
i

(1 + iAµ(xi)∆x
µ
i ) . (6.11)

As ∆xµi → 0, this becomes equivalent to
∏
i e
iAµ(xi)∆x

µ
i .

We would like to write it as exp(i
∫
Aµ dx

µ), which would

x

y

z

FIG. 14: Geometric interpretation of the Bianchi identity.

x
0

x
f

FIG. 15: Path connecting two points in spacetime.

be true if the Aµ were numbers, but since the Aµ don’t
commute at different positions, we cannot add the expo-
nents. Instead one defines the path ordering operator

Peb2+b1 = eb2eb1 ,

where it is understood that b2 is farther along the path
than b1. Therefore

S(x0, xf ) = P exp

(
i

∫ xf

x0

dxµAµ

)
= 1 + i

∫ xf

x0

dxµAµ (6.12)

−
∫ xf

x0

dxµ
∫ xf

x

dx′ν Aν(x′)Aµ(x) + · · ·

Notice that S is by no means unique; it depends upon
the path chosen. Under a gauge transformation however,

S(x0, xf ) = Λ†(xf )SΛ(x0) (6.13)

regardless of the path.
Exercise. Using the definition (6.12), show that

P exp

(
−
∫ xf

x0

dxµ Λ†(x)∂µΛ(x)

)
= Λ†(xf )Λ(x0)

Hint: consider the differential equation satisfied by (6.12)
for ∂S/∂xµ.

The connection S is useful for making bilocal operators
gauge invariant. For example, in the full interacting the-
ory, the two-point function for the field strength vanishes
because of gauge invariance, since

〈0|Fαβ(x0)Fµν(xf )|0〉 =

〈0|Λ†(x0)Fαβ(x0)Λ(x0)Λ†(xf )Fµν(xf )Λ(xf )|0〉

for an arbitrary Λ(x). This can only be satisfied if
〈FF 〉 = 0. However the function

tr
(
S†(x0, xf )Fαβ(x0)S(x0, xf )Fµν(xf )

)
is gauge invariant, and has a meaningful nonvanishing
expectation value.

The statement that 〈FF 〉 = 0 for F ’s at distinct points
implies some way of defining expectation values without
tampering with the gauge symmetry of the path inte-
gral over Aµ, to be discussed later on. In practice, it is
necessary to choose a condition that fixes the gauge, by
associating Fµν(x) with a unique vector potential Aµ(x).
For example, it is always possible to demand that A0 = 0
by transforming Aµ → Λ†AµΛ + iΛ†∂µΛ, where

Λ†A0Λ + iΛ†∂µΛ = 0
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One can show that the solution to this equation is

Λ = T exp

(
i

∫ t

A0(t′)

)
dt′

where T is the same as P but for a purely timelike path.
Another gauge condition that is conceptually useful is

to minimize the quantity∫
d 4x tr(Aµ(x))2 (6.14)

In this gauge, P exp(i
∫
dxA) does not change much if

the path is varied only slightly. Therefore it is possible to
define a global orientation for color axes on short enough
distance scales: a quark that looks red at point x will
still look red after parallel transport if it is not carried
too far. Because of this it makes some sense to say that
quarks of the same color repel each other, whereas quarks
that are antisymmetric in their colors attract each other,
as will be shown in the next lecture. In an arbitrary
gauge it would not be meaningful to say that two blue
quarks repel each other, unless they were at the same
position, since what is blue at one place may not be blue
at another.

The above choice of gauge is closely related to another
more familiar one. Under an infinitesimal gauge trans-
formation Aµ → Aµ +Dµα, the change in (6.14) is

2

∫
d 4x trAµDµα = −2

∫
d 4x tr(αDµAµ) (6.15)

If
∫

tr(A2
µ) is at a minimum, then (6.15) must vanish for

all α(x). This implies

DµAµ = ∂µAµ = 0 (6.16)

However the two gauges are not equivalent, because the
first one asks for the absolute minimum of

∫
tr(A2

µ),

whereas ∂µAµ = 0 only requires that
∫

tr(Aµ)2 be at
a local minimum. Therefore ∂µAµ = 0 may have many
solutions, and it does not uniquely fix the gauge. This
problem was first discussed by Gribov in the context of
the path integral.

6.1. Omitted material

19 A synopsis of the popular gauge choices is

At = 0 Weyl

∂µAµ = 0 Lorentz

� ·A = 0 Coulomb (6.17)

19 This material appears in my original notes but was omitted from
the revised version above.
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FIG. 16: (a) Left: quark-quark scattering by gluon exchange.
(b) Right: same, with particular choice of colors.

In addition, there is an analog to (6.14) due to Mandula,
which is to minimize

∫
d 3xA : A.

Exercise. Show that Eµν
•Ẽµν ≡ εµναβEµν •Eαβ could

be added to the Lagrangian (usually written as the ac-

tion θ
∫
d 4xEµνẼµν), but it makes no contribution to

the equations of motion: it is a total derivative.

7. SEMICLASSICAL QCD∗ (11-10-87)

I know you are eager to move on to the quantum theory
of chromodynamics, now that we have studied it at the
classical level, but there always has to be some professor
deterring you by saying “before we do that, let’s look at
such-and-such!” Accordingly, before we quantize QCD I
want to discuss a somewhat tangential but very impor-
tant issue: can we explain the properties of the hadrons,
even qualitatively, with the theory of QCD? That is, we
would like to see that we are at least going in roughly the
right direction before we invest all our effort in it. For
example, it would be quite discouraging if at the lowest
level of analysis QCD predicted that the three quarks in
a baryon will want to fly apart.

But we shall see that it does work, and we won’t even
have to do that much work ourselves to see it, if we just
remember a few things from quantum electrodynamics.
This is because at lowest order in the coupling constant g,
the interaction between two quarks is given by essentially
the same Feynman diagram as that for electron-electron
scattering, fig. 16. The only difference is that in the
case of QCD, each vertex comes with a group theory
factor λiab and λicd to account for the fact that the quarks
are changing color when they exchange a gluon of color
i. The sum over intermediate gluon colors then gives a

factor ~λab
•~λcd in the amplitude.20

Of course we know that fig. 16(a) is not a good approx-
imation for the quark-quark scattering in a hadron, be-
cause the coupling is large. But we just want to see that
it is going in the right direction, when we do make this
approximation. Knowing that a single photon exchange
gives rise to the Coulomb potential in electrodynamics,
we can immediately write the quark-quark potential from

20 These should be accompanied by extra factors of 1/2 from Ta =
λa/2.
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fig. 16(a) as

V (r) =
g2

r
~λab

•~λcd (7.1)

Now all that remains is to evaluate the ~λ •~λ factor in
the color channels appropriate for baryons and mesons.
This could be done by using fancy group theory tech-
niques, but I find it useful to take a more simple-minded
approach at first. It is not necessary to know group
theory—all one needs to know is that there are three
colors!

Let us suppose that quark 1 (on the left) starts out be-
ing red, and converts to green by emitting a red-antigreen
gluon. In order to conserve color, quark 2 must have
started out being green and turn to red when it absorbs
the gluon. Using the convention

(R, G B)T = (red, green, blue)T (7.2)

for the components of a color vector, there are two λ
matrices contributing to the process shown in fig. 16(b),
namely λ1 and λ2,

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 (7.3)

due to the fact that a RḠ gluon corresponds to a partic-
ular linear combination, λ1 + iλ2. Therefore the contri-

bution to ~λab
•~λcd from fig. 16(b) is

1 · 1 + i(−i) = 2 (7.4)

Now suppose that the colors of the initial state quark
did not change. This could happen if gluons correspond-
ing to the color-diagonal generators λ3 and λ8 were ex-
changed,

λ3 =

 1 0 0

0 −1 0

0 0 0

 , λ8 =
√

1
3

 1 0 0

0 1 0

0 0 −2

 . (7.5)

For example, the contribution to ~λ •~λ from fig. 17 is

1 · 0 +
1√
3

(
− 2√

3

)
= −2

3
(7.6)

B

B
R

R

FIG. 17: A color-conserving q-q scattering process.

From (7.4) and (7.6) we could guess that the general

expression for ~λ •~λ is

~λab
•~λcd = 2P c.e.ab,cd −

2

3
δabδcd (7.7)

where P c.e. is the color-exchange operator,

P c.e.ab,cd =

{
1 if a = d and b = c

0 otherwise
(7.8)

As a check, look at the graph

B B

B B

:

(
− 2√

3

)(
− 2√

3

)
=

4

3
(7.9)

which has only a λ8-type gluon. This agrees with (7.7)
since 2P c.e.BB,BB − 2

3δBBδBB = 4/3.
So far we have not concerned ourselves about whether

the initial state was symmetric or antisymmetric in color.
If it was antisymmetric, it would be an eigenstate of the
color exchange operator with eigenvalue −1. (Of course,
it would also be an eigenstate of the identity operator
δabδcd with eigenvalue +1.) On such a state,

~λ
•~λ |ψ〉 =

(
2P c.e. − 2

3

)
|ψ〉 = − 8

3 |ψ〉 . (7.10)

It means that in the antisymmetric channel, the quark-
quark potential is

V (r) = −8

3

g2

r
. (7.11)

The sign is important: since electron-electron scattering
is repulsive, the relative sign here tells us that quarks
that are antisymmetric in their colors attract. This is
precisely what we want: in a baryon the quarks are in a
completely antisymmetric state, which is the only way to
make a color-neutral object out of three color triplets. So
we understand, in a rough way, why protons, neutrons,
∆’s, etc. exist.

The mesons can be understood similarly. In this case
the initial state is color symmetric,

|ψ〉 =
1√
3

(
RR̄+BB̄ +GḠ

)
. (7.12)

If we focus on the RR̄ part, there are three graphs to

consider, fig. 18. They contribute −~λ •~λ factors (the ex-
tra minus sign coming from the coupling of vectors to

,

B R R

,

R

GG B

R RR R R

FIG. 18: Scattering of q-q̄ within a meson.
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antiparticles) of

−(1 · 1 + i(−i)) = −2, −2, −
(

1 · 1 + 1√
3
· 1√

3

)
= − 4

3

(7.13)
respectively. Obviously the BB̄ and GḠ parts of |ψ〉 do
the analogous thing, so that the quark-antiquark poten-
tial for color-symmetric states is

V (r) = −16

3

g2

r
. (7.14)

Graphs like fig. 18 give an attractive potential for elec-
trons and positrons in QED, and we see that quarks and
antiquarks in a meson must also attract each other.

One notices that the qq̄ force in mesons is twice as
strong as the qq force in baryons. But it is interesting
to note that the total force per quark is the same in each
system, since

1

2 quarks

(
16

3

)
=

8

3
for mesons (7.15)

and

1

3 quarks
× (3 pairwise forces )×

(
8

3

)
=

8

3
for baryons

(7.16)
Problem. Show that the general qq̄ interaction due

to one-gluon exchange (summed over gluon colors) can
be written as

2
3 1− 6|s〉〈s|

where 1 is the identity operator in color space, and |s〉〈s|
projects onto the color singlet state,

|s〉 = 1√
3

(
RR̄+BB̄ +GḠ

)
7.1. Spin-spin interactions

So far, so good: QCD explains why the hadrons exist,
even at this crude level of approximation where g was
taken to be small. Now we would like to see if it explains
some more detailed observations, like the nondegeneracy
of the ∆0 and the neutron:

∆0 : 1232 MeV; |ψ〉 = (udd)(↑↑↑) (7.17)

N : 935 MeV; |ψ〉 = (udd) 1√
6
(2 ↓↑↑ − ↑↓↑ − ↑↑↓)

If the masses were coming solely from the constituent
masses of the quarks, these states would be degenerate
due to their identical quark content. The only differ-
ence between them seems to be their spin wave func-
tions. Therefore their mass splitting must be due to
spin-dependent forces. This comes as no surprise since
the photon-exchange graph gives a spin-spin interaction
as well as the Coulomb interaction in QED. Let us recall
what the sign of the force is in electromagnetism. Specif-
ically, if we could make an s-wave from two electrons,

12

2

1

FIG. 19: An electron spin (2) in the dipole field produced by
another electron (1).

would their spins tend to align or anti-align? We draw
the second spin in the magnetic field of the first, with
both of them pointing up; see fig. 19. When the second
spin is beside the first, the interaction energy is positive,

since spin 2 would prefer to flip so as to align with the ~B
field. When spin 2 is above spin 1, the interaction energy
is negative. To make an s-wave we must average over the
positions of spin 2 relative to spin 1 in a spherically sym-
metric way. One can show that at any nonzero radius,
the interaction energy is zero when this is done.

However, zero is not the correct answer, as we already
know. The problem is that the spins have been idealized
as pointlike objects. If they actually have a small but
finite spatial extent, the magnetic field of spin 1 will look
like fig. 20. Because of the interior region, the integration
over positions of spin 2 give a net positive interaction
energy, and two electrons in an s-wave tend to align. This
is known as the Fermi interaction; it is the first term in
the expression

Vspin(~r) ∝ −8π

3
~σ1 ·~σ2 δ

(3)(~r)

+
1

r3

(
~σ1 ·~σ2 − 3(~σ1 ·r̂)(~σ2 ·r̂)

)
. (7.18)

The second term comes from the exterior region that we
discussed previously; its angular average is zero, as we
noted.

From this we can deduce that the color magnetic mo-
ment interaction energy for two quarks, in a relative s-
state, is positive if the spins are aligned and the colors
are antisymmetric. This is because the sign of the spin
force relative to that of the Coulomb force is determined
by the Lorentz indices of the diagram in fig. 16, so this
relative sign must be the same for QCD and QED. Hence
the ∆ is heavier than the N—it takes more energy to line
up all the spins.

What about the Σ0 and the Λ? They have identical
quark content, and equal numbers of aligned spins, yet
the Σ0 is more massive. However, the spin wave functions
are not the same,

|Σ0〉 = (sud) 1√
6
(2 ↓↑↑ − ↑↓↑ − ↑↑↓)

|Λ〉 = (sud) 1√
2
(↑↑↓ − ↑↓↑) (7.19)

We must remember that the magnetic moment of a quark
is inversely proportional to its mass, so the s quark has
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FIG. 20: Effect of a nonpointlike spin 2 (red) overlapping the
central region of the magnetic field produced by spin 1.

smaller spin interactions. In the limit that its magnetic
moment is neglected, the Σ0 is 4/6 aligned and 2/6 anti-
aligned in its spins, whereas the Λ is completely anti-
aligned. Hence the Λ is expected to be lighter, as ob-
served.

To be more quantitative, suppose the spin-spin cou-
pling has strength aqq, aqs, ass between two light quarks,
one light and one strange, and two strange quarks, re-
spectively. Then the spin-spin coupling for Σ0 and Λ
particles is

Ô = aqq (σu ·σd) + aqs (σs ·σu + σs ·σd) (7.20)

where aqs < aqq, or equivalently, defining a spin-exchange
operator P s.e.qq′ ,

Ô = aqq (2P s.e.ud − 1) + aqs (2P s.e.su − 1) + aqs (2P s.e.sd − 1)
(7.21)

Acting on Σ0,

P s.eud (2 ↓↑↑ − ↑↓↑ − ↑↑↓) = 2 ↓↑↑ − ↑↑↓ − ↑↓↑,
P s.esu (2 ↓↑↑ − ↑↓↑ − ↑↑↓) = 2 ↑↓↑ − ↓↑↑ − ↑↑↓,
P s.esd (2 ↓↑↑ − ↑↓↑ − ↑↑↓) = 2 ↑↑↓ − ↑↓↑ − ↓↑↑

(7.22)

Therefore

Ô|Σ0〉 = [(2− 1)aqq + (−2− 2)aqs] |Σ0〉
= (aqq − 4 asq) |Σ0〉 (7.23)

Similarly one finds that

Ô|Λ〉 = [(−2− 1)aqq + (2− 2)aqs] |Λ〉 = −3|Λ〉 (7.24)

Therefore the mass difference is MΣ−MΛ = 4(aqq−aqs),
which is positive since aqq > aqs.

Problem. Find the mass splittings of the rest of the

baryon 1
2

+
octet and 3

2

+
decuplet states. Assuming that

aqq − aqs = aqs − ass

prove the Gell-Mann–Okubo formula,

2(MΞ +MN ) = 3MΛ +MΣ

A similar analysis can be done for the mesons, and it
is observed that the level splittings of heavy quarkonium
excitations, such as the ψ and Υ systems, are similar to
those of positronium. However there is an interesting
distinction between the spin forces in quarkonium and
those of positronium. In the latter an extra contribution
to the spin-spin interaction arises from the annihilation
diagram, fig. 21. However, at lowest order in g, no such
process can occur for quarkonium. This is because the
qq̄ pair in a meson forms a color singlet, which cannot
annihilate into a colored object like a gluon. It cannot
even annihilate into a pair of gluons, for it is spin 1−,
a state not available to two gluons. It requires at least
three gluons, which means a high power of the coupling
constant, g6, which is rather small at the scale of the
separation between a heavy q and q̄ in the ψ or Υ. Also
the numerical coefficient of the annihilation amplitude is
small, making the width for disintegration of ψ or Υ into
hadrons quite narrow. Hence the OZI rule is understood
for these particles, at least.
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functions at large distances such that the linear term in
V (r) = −α/r+ br is important. But the whole potential
approach is approximate for various reasons, including
relativistic effects and annihilation/creation processes.22

8. QUANTIZATION OF QCD∗ (11-12-87)

We now turn to the quantization of QCD. Recall that
the action for the gluon fields, interacting with a non-
dynamical source, is

S[A] =

∫ (
1

4g2
~Fµν

• ~Fµν + ~Jµ
• ~Aµ

)
d 4x (8.1)

I will assume that you are familiar with the path integral
formulation of quantum mechanical amplitudes. If Ai
andAf are the initial and final configurations of the gluon
field, the transition amplitude for going from Ai to Af is

K[Af , Ai] ≡
∫ f

i

DAeiS[A] (8.2)

where the integral is supposed to be over all field con-
figurations Aaµ(~x, t) such that Aaµ(~x, ti) = Aai,µ(~x) and
Aaµ(~x, tf ) = Aaf,µ(~x). Formally, the measure is defined as
an infinite product over all points in spacetime between
t = ti and t = tf ,

DA =
∏
~x,t,µ

d 8Aµ(~x, t) (8.3)

The eight-dimensional measure d 8Aµ simply means the
product over the eight components of color,

∏
i dA

i
µ.23

The action (8.1) is invariant under the local color gauge
transformations of Aµ,

A′µ = Λ†AµΛ + iΛ†∂µΛ (8.4)

This implies that the measure DA is also gauge invariant,
since it transforms as dA′µ = Λ†dAµΛ at each point, and
the Jacobian of this transformation is trivial when we
consider d 8Aµ. Problem. Prove this.24

Now as you know, this path integral is plagued with
infinities. One rather trivial kind is the infinite volume
of spacetime. Another sort, the ultraviolet divergences,
comes from the uncountably infinite dimensional nature
of the measure, an integral for each point of spacetime.
This kind I want to ignore for the moment—it can be

22 This paragraph, present in my notes, was omitted from the orig-
inal revised version.

23 This sentence may seem extraneous, but RPF was correcting my
misconception that the Haar measure for the group manifold was
somehow incorporated.

24 The Jacobian matrix is 1
2

tr(λaΛ†λbΛ). One can show its deter-
minant is trivial by considering an infinitesimal transformation
to leading order, and using det = exp tr ln.

cured by approximating spacetime as a discrete lattice,
in some gauge invariant way. This has been discussed by
Wilson, and we shall describe it later. It is the basis for
a numerical method to evaluate the path integral.

But in QCD we are still left with another in-
finity, due to the gauge symmetry itself. If we
represent the space of functions Aµ(x) in two di-
mensions, we have trajectories of gauge fields that
are related to one another by local color rotations:

space of A
µ

(x)

This means that the expectation value of a physically rel-
evant operator, that is gauge invariant, will diverge like
the volume of local gauge transformations in function
space, ∫

DAeiS[A] ∼
∫
DΛ(~x, t) =∞ (8.5)

Put another way, there are directions in which A can
change (i.e., by gauge transformations) for which the in-
tegrand is invariant and the region of integration is infi-
nite.

However we can get a finite and meaningful result by
defining a kind of expectation value of any gauge invari-
ant functional F [A] of the field, and limiting ourselves to
computing only such quantities,

〈F 〉 = lim
R→∞

∫
DAF eiS[A]∫
DAeiS[A]

(8.6)

where R is a relatively finite region in the space of gauge
fields; for example we might limit the range of each Aµ
to be [−M,+M ] for some large value of M , the same in
the numerator and denominator, and then take the limit
as M → ∞. (I say “relatively finite” because there are
still infinitely many integration variables, one for each
point in spacetime, unless we go to a lattice.) Gauge
invariance is broken temporarily by this procedure be-
cause |A′µ| need not be less than M even if |Aµ| is, but
this should be no problem in the limit R →∞.

Having found a finite and gauge-invariant definition of
amplitudes, we are free to choose a gauge. A convenient
choice is A0 = 0. Recall that it is always possible to
reach this gauge from a configuration where Aold

0 6= 0,
using the transformation matrix

Λ(~x, t) = P exp

(
i

∫ t

Aold
0 (~x, t′)

)
dt′ . (8.7)

In general, the path integral measure DAold
µ changes

by a Jacobian factor when we transform the variables
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Aold
µ → Anew

µ , where Anew
0 = 0. How can this be? The

measure was supposed to be gauge invariant! But this is
true only for gauge transformations that are independent
of Aµ. Nevertheless, we will show that for the special
case of (8.7), the Jacobian is still almost trivial, even
though Λ(~x, t) depends on Aµ. This is because Λ de-
pends only on A0, and thus for the three space directions
at least, d 8A′m = d 8Am (we use n,m, etc. for the spatial
components of ν, µ, while the time component is 0.) The
expectation value of an operator can now be written as∫

Rold e
iS[Aold,Aold

0 ]F [Aold, Aold
0 ]

∏3
n=1DAold

n DAold
0∫

Rold eiS[Aold,Aold
0 ]
∏3
n=1DAold

n DAold
0

=

∫
Rnew e

iS[Anew,0]F [Anew, 0]
∏3
n=1DAnew

n DAold
0∫

Rnew eiS[Anew,0]
∏3
n=1DAnew

n DAold
0

(8.8)

by making the gauge transformation (8.7). In the second
expression, the integrands are independent of A0, and
the factors of

∫
DAold

0 cancel between numerator and de-
nominator, using the definition (8.6).

If F were not a gauge invariant operator, we could
always replace it by its gauge-averaged expression,

F̂ [A] =

∫
dΛF [A′]∫
dΛ

(8.9)

where A′ is as in (8.4), and dΛ is the invariant group
measure, satisfying∫

dΛ f(Λ) =

∫
dΛ f(ΛΛ0) (8.10)

for any SU(3) matrix Λ0 and any function f .
Problem: If F is not gauge invariant, show that 〈F 〉

as defined in (8.6) is the same as 〈F̂ 〉.
Now the path integral is reduced to the simpler expres-

sion,

Z =

∫
eiS[A,A0]DA (8.11)

where

S =
1

2g2

∫
d 4x

(
~E

•· ~E− ~B •· ~B
)
. (8.12)

Since A0 = 0,

~E = −∂0
~A = −~̇A (8.13)

and B is just as it was before,25

~B = �×~A− 1
2
~A××

~A (8.14)

25 RPF had written ~B = �×~A− ~A×~A. I have corrected it here and
in some subsequent equations to indicate the operation needed
for the spatial indices of the interaction term. The spatial cross
product introduces a factor of 2 that must be compensated.

(for example, Bz = ∂xAy − ∂yAx − [Ax, Ay]). In terms
of the gauge field, the Lagrangian is

L =
1

2g2

∫
d 3x

(
~̇A

•· ~̇A− (�×~A− 1
2
~A××

~A)2
)
. (8.15)

This is analogous to the Lagrangian for a particle moving
in a potential

L = 1
2mẋ2(t)− V (x(t)) (8.16)

where ~A is like the position of the particle, ~̇A : ~A plays

the role of the kinetic term, and ~B : ~B is the potential.
This situation is unique to the A0 = 0 gauge; in other

gauges we would have terms like ~̇A : ~A, and the separation
between kinetic and potential energy would no longer be
so clean.

For simplicity we suppressed the source term. In A0 =
0 gauge, it is

Lsource =

∫
d 3x ~A

•· ~J , (8.17)

and one sees that the charge density ρ does not enter.

Then the equation of motion for ~A implied by the full
Lagrangian is

~̈A−D×B = g2
J (8.18)

We also have the nondynamical equations

D · B = 0, Ḃ+D×E = 0 (8.19)

which are identities, due to the way B and E are defined
in terms of A. Recall that we found one further equation
by varying the covariant form of the Lagrangian, namely
Gauss’s law,

D · E = g2ρ (8.20)

Problems. Gauss’s law does not seem to arise from
the path integral formulation in A0 = 0 gauge. What
happened to it?

What condition must the source Jµ obey in order for∫
d 4x ~Jµ

• ~Aµ to be gauge invariant? What is the phys-
ical significance of this condition when Jµ is the quark
current?

Show that the equations of motion of ψ imply that
DµJµ = 0.

9. HAMILTONIAN FORMULATION OF QCD∗

(11-17-87)

Just as in ordinary quantum mechanics the state of
a system is specified by a wavefunction ψ(x, t), in the
purely gluonic version of QCD we can characterize phys-
ical states by a wave functional Ψ[A(~x, t)] that depends
on the gauge field A. (We continue to work in A0 = 0
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gauge.) In this lecture we shall explore the analogy some-
what, and discuss the Hamiltonian formalism for evolving
Ψ in time.

Perhaps the closest analogy to the situation in field
theory, where we have infinitely many dynamical vari-
ables, would be a lattice of atoms, say, interacting with
each other through some potential V that depends on
the positions ~q(~n, t), where ~n is a lattice vector telling us
which atom is being referred to. The action is

S =

∫
dtL =

∫
dt

(
1
2m
∑
~n

∣∣∣~̇q(~n, t)∣∣∣2 − V (~q(~n, t))

)
.

(9.1)
Now if ψi(~q(~n)) is the wave function at some initial time
ti, then the amplitude for reaching a state ψf (~q(~n)) at a
later time tf is given by an ordinary integral∫ ∏

~n

d 3qi(~n) d 3qf (~n) (9.2)

ψf (~qf (~n))K
(
~qf (~n), tf ; ~qi(~n), ti

)
ψi(~qi(~n))

and the function K that propagates the initial state is
given by a path integral

K
(
~qf (~n), tf ; ~qi(~n), ti

)
=
∏
~n

D~q(~n, t) eiS[~q(~n,t)] (9.3)

where the integral is over functions ~q(~n, t) satisfying

~q(~n, ti) = ~qi(~n) ,

~q(~n, tf ) = ~qf (~n) . (9.4)

In the same way, we can assign to each state in QCD a
wave functional Ψ[A(~x, t)] such that |Ψ|2 is the probabil-
ity density for the gauge field to have the value A(~x, t),
for each point in space, at a given time. Here A corre-
sponds to ~q, and the position ~x corresponds to the lattice
vector ~n in the atomic crystal analog. The kernel for time
evolution of Ψ[A] was given in (8.2), which is the analog
of (9.3).

Alternatively, the time evolution of Ψ can be described
in differential rather than integral form—Schrödinger’s
equation! To do this, we must first find the Hamiltonian.
In the finite system (9.1), the canonically conjugate mo-
menta are

~p(~n) =
∂L

∂~̇q(~n)
= m~̇q(~n) (9.5)

They can be represented by

~p(~n) =
1

i

∂

∂~q(~n)
(9.6)

(taking ~ = 1) since −i∂/∂~q has the same commutation
relation with ~q as ~p has canonically. Similarly in QCD
the momentum conjugate to Aan(~x) is

pan(~x) =
δL

δȦan(~x)
= ȦaN (~x) = −Ean(~x) (9.7)

where we used the Lagrangian (8.15) after rescaling
A → gA, and the operation that appears is a functional
derivative,

δAan(~x)

δAbm(~x′)
= δab δnm δ

(3)(~x− ~x′) (9.8)

This is the natural generalization of the partial deriva-
tive to the case of infinitely many variables, labeled by a
continuous index ~x. Notice that ~p is just minus the color
electric field. It can also be written as

pan(~x) =
1

i

δ

δAan(~x)
(9.9)

similarly to (9.6). Now the Hamiltonian can be con-
structed. For a discrete system like the lattice, it is

H =

(∑
~n

~p(~n) · ~̇q(~n)− L

)
~̇q=~p/m

. (9.10)

For QCD, one simply replaces the sum with an integral,
so that

H = 1
2

∫
d 3x

(
~E2 + ~B2

)
= 1

2

∫
d 3x

(
−
(
δ

δ~A

)2
+ ~B2

)
. (9.11)

Then the Schrödinger equation for Ψ[A] is

1

i

∂

∂t
Ψ = HΨ . (9.12)

Previously we noted that three of the four Maxwell
equations of QCD emerged from the gauge-fixed La-
grangian (8.15), and the definitions of E and B, but
Gauss’s law,

D·~E = g2~ρ ,

did not appear. However, the time derivative of Gauss’s
law can be deduced as follows:

∂

∂t

(
D·~E

)
= − ∂

∂t

(
�· ~̇A− i~A ·× ~̇A

)
= −�· ~̈A+ i~A ·× ~̈A

= D· ~̈A (9.13)

Using the equation of motion for A, eq. (8.18), this be-
comes

∂

∂t

(
D·~E

)
= −D· (D×~B)− g2

D·~J (9.14)

The middle term would vanish trivially if D was the ordi-
nary gradient, but since the components of D do not com-

mute, more care is required. One finds that D· (D×~B) is

[Dx, Dy]Bz plus cyclic permutations.
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But this is just i[Fxy, Bz], as you showed in a previous
exercise, which vanishes because Fxy = Bz. Furthermore
the source is covariantly conserved,

DµJµ = 0,

so that

D·~J = − ∂

∂t
~ρ

in A0 = 0 gauge. (In our conventions, AµBµ = −A0B0 +
AiBi, and ρ = −J0.26) Therefore the condition

∂

∂t
(D·~E) = g2 ∂

∂t
~ρ (9.15)

is a consequence of the equations of motion. Conse-
quently, if the wave functional satisfied[

D·~E− g2~ρ
]

Ψ[A(x)] = 0 (9.16)

at some initial time, it would continue to do so forever.
Therefore Gauss’s law can be implemented by imposing
it as a constraint on the state of the system, Ψ.

Notice that (9.16) is a functional differential equation,
since E is to be interpreted as −iδ/δA. Moreover (9.16) is
an infinite set of constraints, one at each point in space.
One might wonder whether solutions exist, since the con-
straint operator

~C(~x) ≡ D·~E(~x)− g2~ρ(~x) (9.17)

does not commute at different positions,

[~C(~x), ~C(~x′)] 6= 0 .

To be consistent, we require that this new operator also
annihilates the wave functional. If the commutator is
a linear combination of ~C’s there is no problem, but if
not we might generate more and more constraints, to the
point that no solution existed. It turns out to be nicer

to investigate this not with the ~C’s directly, but rather
with their weighted averages, defined by

Γ(µ) ≡
∫
µi(~x)Ci(~x) d 3x . (9.18)

One can show that

[Γ(µ),Γ(ν)] = Γ(λ) (9.19)

where

~λ = ~µ×~ν (9.20)

26 This choice of the metric signature is not consistent throughout
the lectures.

Thus the commutators produce no new constraints; in-
stead they form a closed algebra. It is the algebra of the
color group SU(3), for we could define generators of local
color transformations

Γ̂(µ) = µi(x)T i

in the three-dimensional (i.e. fundamental) representa-
tion of SU(3), and they would satisfy the same relations
(9.19,9.20) as the Γ(µ).

Problem. Prove eqs. (9.19,9.20).
It is therefore not surprising that the Γ operators gen-

erate gauge transformation on the state Ψ. That is,

eiΓ(µ)Ψ[A] = Ψ[A′] (9.21)

where A′ is the gauge field obtained from A by trans-
forming with the matrix

Λ(~x) = ei~µ(~x)
• ~T (9.22)

The alert reader may wonder how it is possible to do
gauge transformations, since we have already fixed the
gauge to A0 = 0. However the transformation (9.22) is
time-independent, so Λ†∂0Λ = 0 and any such Λ will
keep A0 = 0. Hence the Gauss’s law constraint on Ψ
means that Ψ must be invariant under the residual gauge
transformations that preserve the A0 = 0 condition. We
can prove this directly from the equation itself: let[∫

~α
•

(
D·~E− g2~ρ(~x)

)
d 3x

]
Ψ[A] = 0 (9.23)

for some ~α(~x). For simplicity suppose that there are no
quarks, so that ρ = 0. Then (9.23) can be rewritten as[∫

D~α(~x) : ~E(~x) d 3x

]
Ψ[A] = 0

where we have integrated by parts. (The reader should
satisfy himself that partial integration works for covariant
derivatives.) Using the operator form of E = −iδ/δA,
this becomes ∫

D~α(~x) :
δΨ

δ~A
d 3x = 0 (9.24)

Now the functional version of Taylor’s theorem says that

Ψ[~A(x) + ~a(x)] = Ψ[~A(x)] +

∫
~a :

δΨ[~A(x)]

δ~A(x)
d 3x (9.25)

to first order in ~a. So for infinitesimal ~α(~x), Gauss’s law
is equivalent to

Ψ[~A(x) +D~α(x)] = Ψ[~A(x)] (9.26)

which is just the result claimed, since D~α(x) is the effect
of an infinitesimal gauge transformation.
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FIG. 22: Diagrams for the hydrogen atom.

However not all gauge transformations can be built up
from infinitesimal ones. This is most easily demonstrated
for the SU(2) subgroup of SU(3) generated by

~σ = (λ1, λ2, λ3)

Imagine that we have cut off the infinite volume of space
by introducing a large radius R. It is easy to check that
the matrix

Λ =

√
1− x2

R2
+ i

~x · ~σ
R

(9.27)

is unitary and has determinant 1, yet cannot be written in

the form of exp(i~α •~λ). We should therefore require that
Ψ[A] be invariant under all such “large” gauge transfor-
mations, as well as the ordinary ones.

10. PERTURBATION THEORY (11-19-87)

Now we must confront the question, how do we calcu-
late anything quantitatively in this theory? Perturbation
theory (P.T.) is not very useful for bound state proper-
ties since the coupling g is large. On the other hand,
we have some experience with nonperturbative processes
even in nonrelativistic quantum mechanics; the hydro-
gen atom is not a perturbative problem—it is an exact
nonperturbative solution to Schrödinger’s equation. But
it is nevertheless made more accurate by the smallness
of the coupling e. Consider fig. 22(a). Since photon ex-
change is relatively infrequent, we can replace the pho-
ton exchanges by instantaneous effective interactions de-
picted in fig. 22(b). The Schrödinger equation takes an
initial state of the proton and the electron and propa-
gates them freely via −(∂/∂x)2 plus interactions V (x).
This only works if the coupling constant is small; oth-
erwise diagrams like fig. 22(c,d) become too important
and we would have to find some other kind of effective
interaction potential to represent their effect.

But there are some processes for which perturbation
theory in QCD works relatively well, for example pp̄ col-
lisions (fig. 23). At sufficiently high energies, only one
gluon might be exchanged, similarly to fig. 21. One can
then predict the dynamics of the jets rather precisely us-
ing perturbation theory.

10.1. Review of P.T. from the path integral

Recall the massless scalar field theory with Lagrangian

L =
1

2

(
φ̇2 − (∇φ)2

)
+
g

3!
φ3 − S(x)φ

The equation of motion is

φ̈−∇2φ ≡ �φ =
g

2
φ2 − S (10.1)

Let us ignore interactions for the moment and focus on
the source term. Going to Fourier space, the equation of
motion becomes

(ω2 − ~k2)φk = k2φk = Sk (10.2)

To solve for φk, a prescription must be given for treating
the pole of the propagator, i.e., we must add iε,27

φk =
Sk

k2 + iε
(10.3)

Putting back the interaction, we have the rule that the
amplitude for three φ particles to interact is g. Then for
example the s-channel scattering diagram is

=
g2

k2 + iε
(10.4)

Let’s now compare this to the case of QCD in A0 = 0
gauge, where the propagator comes from the free La-
grangian

L =
1

2

(
~̇A

•· ~̇A− (�×~A)2
)
. (10.5)

jet

jet

p p

FIG. 23: Electron-positron annihilation into hadronic jets.

27 Throughout these lectures, RPF avoids writing factors of i for
the vertices and the propagators. Later, he will claim that the
only factors of i that are necessary to keep track of can be as-
sociated with loops. I have not checked whether his rules for
the cubic and quartic gluon interactions give rise to the correct
sign of interference for the diagrams contributing to four-gluon
scattering, but his later claim implies that he did so.
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Here we have rescaled A→ gA to get the coupling out of
the propagator and back into the interactions. Including

a classical source ~S, the equation of motion is

~̈A−�× (�× ~A) = −~S (10.6)

or equivalently

Ä
i −∇2

A
i +�(� ·Ai) = −Si (10.7)

Hence, going to Fourier space,

(ω2 − k2)A+ k(k ·A) = S (10.8)

(omitting the gauge index i and subscript k for brevity).
Next dot k into this equation to get

(ω2 − k2)k ·A+ k
2
k ·A = ω2

k ·A = k · S . (10.9)

We can therefore eliminate k ·A from eq. (10.8) and find

k2
A =

1

ω2
(S− k(k · S)) . (10.10)

In analogy to the scalar field example, one can read off
the propagator

P(k) =
1− kk/ω2

k2 + iε
(10.11)

in the form of a 3×3 matrix for the spatial components of
the gauge field, with the understanding that kk denotes
the outer product of the spatial momenta components.

10.2. Perturbation theory for QCD

Now we would like to perturbatively compute path
integrals involving gauge invariant functionals F [A, 0]
(showing explicitly that A0 is set to zero),

〈F 〉 =

∫
eiS[A,0] F [A, 0]DA∫

eiS[A,0]DA
(10.12)

where the action is

S[A, 0] = 1
2

∫ [
~̇A : ~̇A− ~B : ~B

]
d 4x+ g

∫
~A : ~J d 4x

(10.13)

with ~B = �×~A− (g/2) ~A××
~A and the current

J
i
n = ψ̄(~x, t) γn

λi

2
ψ(~x, t) (n = 1, 2, 3) . (10.14)

The amplitude for a quark-gluon interaction can be
written as

u1

p1

u2

p2

an
i =

√
4πg2

∑
n,i

(
ū2γn

λi

2
u1

)
ain

(10.15)

where ain is the combined spin-color polarization of the
gluon and the coupling is rescaled so that the Coulomb
interaction is g2/r instead of g2/(4πr). Therefore the
gluon-exchange diagram giving rise to the potential is

p2

p3

p1

p4

k

= πg2
(
ū3γnλ

iu1

)(δnm − kmkn
ω2

k2

)
δij

(10.16)

×
(
ū4γmλ

ju2

)

This can be put into a simpler form using the conserva-
tion of the quark currents, e.g.,

kµ(ū3γµλ
iu1) = ū3(/p1

− /p3
)λiu1

= ū3(m−m)λiu1 = 0 (10.17)

since the gluon vertex conserves flavors. Therefore
knū3γnλ

iu1 = ω ū3γ0λ
iu1 and we can rewrite the right-

hand side of (10.16) as28

πg2
(
ū3γµλ

iu1

)(−δµν
k2

)
δij
(
ū4γνλ

ju2

)
(10.18)

in which the gluon propagator takes a Lorentz covariant
form. This is an illustration of the fact that physical
amplitudes are independent of the choice of gauge. Nev-
ertheless we must make some choice. Consider the gluon
Lagrangian with no choice of gauge imposed,

L ∼
[
∂µAν − ∂νAµ −A×µAν

]2
(10.19)

The noninteracting part has the structure k2δµν − kµkν
in momentum space, which is noninvertible. Hence we
need to fix the gauge to define the gluon propagator.

Another interesting observation is that when varying
the full action, the equation of motion takes the form

�Aν − ∂ν∂µAµ = Sν

=⇒ k2Aν − kν(k ·A) = Sν(k)

=⇒ 0 = k · S (10.20)

where the source Sν now includes contributions that are
nonlinear in A for nonvanishing background gauge fields,
in addition to the quark current contribution. In this
case, current conservation is more complicated than for
QED, where the current comes only from the charged
fermions.

28 RPF writes δµν for the Minkowski metric tensor, even though
he is not working in Euclidean space. Moreover he normally
does not distinguish between covariant and contravariant Lorentz
indices.
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10.3. Unitarity

Consider the lowest order processes contributing to
gluon propagation (postponing for the moment the issue
of gluon loops):29

1 iX

+ = 1 + iX (10.21)

The probability associated with this amplitude is 1 +
i(X − X∗) + . . . . This means that i(X − X∗) is the
probability of not producing a gluon from a gluon, which
is the probability of instead producing a qq̄ pair:

Im = 

2

(10.22)

However if we try to do the same thing with gluons in
the loop, and using a covariant gauge for the gluon prop-
agator, the analogous relation breaks down. To fix it, we
need to add ghost fields,

2

= 
Im +

(10.23)

The ghost fields (dashed line) do not appear on the right-
hand side of eq. (10.23) because ghosts never enter into
a final state. Alternatively, we can work in A0 = 0 gauge
instead of covariant gauge, and dispense with the ghosts.

Before Faddeev and Popov solved the problem of con-
sistently incorporating ghosts at any order of perturba-
tion theory, I was trying to figure out how to make it
work beyond one loop, without success. At that time it
did not occur to me to use A0 = 0 gauge, because of a
prejudice based on experience with QED. People origi-
nally tried to formulate QED in a nonrelativistic gauge,
� · A = 0, but nobody understood how to renormalize
this theory in a relativistic way.

Another way to try to get around the gauge fixing
problem is to temporarily give the gluons a mass. Then
the propagator exists, and one can try to take mg → 0 at
the end of the calculation. However for processes beyond
tree level, this limit turns out not to exist.

29 The factor of i associated with the loop will be explained at the
end of the lecture.

10.4. Gluon self-interactions

For now we will avoid the ghosts by continuing in
A0 = 0 gauge. The next step is to write the rules for
the gluon self-interaction vertices. We continue to write
combined spin/color polarization vectors a, b, c, . . . cor-
responding to a plane wave solution Aiν = (aiνe

iqµaxµ +

biνe
iqµb xµ + ciνe

iqµc xµ , and taking all qi to point inwards
toward the vertex, so that

∑
i q
µ
i = 0. Recall that the

cubic interaction Lagrangian is

g(∂µAν − ∂νAµ)Aµ
×Aν (10.24)

By substituting the plane wave solution for the fields, we
can read off the rule for the 3-gluon vertex,

g(qµaaν − qνb aµ)
•
(bµ
×cν) + cyclic permutations (10.25)

The permutations can be reorganized into the form

qa

qb
qc

cλ
k

bν

j

aµ
i

=
√

4πg2

 (qa − qc)ν
(
bν

•
(aµ
×cµ)

)
+(qb − qa)ν

(
cν

•
(bµ
×aµ)

)
+(qc − qb)ν

(
aν

•
(cµ
×bµ)

)


(10.26)
after rescaling the coupling as before. Similarly, for the
four-gluon amplitude, we obtain

a

d

c

b

=
4πg2

4
(aµ
×bν)

•
(cµ
×dν)

+ symmetric permutations

(10.27)

For completeness, the gluon propagator is again

=
δmn − kmkn/ω2

k2
δij (10.28)

and the rules for quarks are

ji =
δij

/p−mq
(10.29)
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and30

u2

u1

p2

p1

a =
√

4πg2 ū2(~aµ
•~λ γµ)u1 (10.30)

We can rewrite the gluon propagator in a more
covariant-looking form by introducing the 4-vector ηµ =

(1, 0, 0, 0). Taking qµ = (ω,~k), we have ω = η · q and

(0,~k) = qµ − ηµ(η · q), so

knkm
ω2

=
(qµ − ηµ(η · q)) (qν − ην(η · q))

(η · q)2
(10.31)

Moreover −δmn = δµν − ηµην . The gluon propagator
(ignoring color indices) becomes

Pµν =
−δµν +

qµην+qνηµ
q·η − qµqνη

2

(η·q)2

q2 + iε
(10.32)

which has the property Pµνην = 0. All of the η-
dependence must drop out of physical amplitudes for
them to be Lorentz invariant. We will see in section 12
that the qµqν term can be eliminated by an appropriate
gauge fixing procedure.

10.5. Loops

Thus far all the rules have been unencumbered by any
factors of i. We can consistently push them into the rules
for loops, integrating over the internal momentum of the
loop,

i

∫
d 4p

(2π)4
for gluon loops

−i
∫

d 4p

(2π)4
for quark loops (10.33)

These are the only factors of i that one ever needs.31

32 The minus sign for fermion loops can be understood
as the result of doing a 360◦ rotation, illustrated by tak-
ing the two ends of a belt and exchanging their positions

30 RPF aligns ~p2 against the flow of fermion number since the spinor
is ū2, not v̄2. We will see this again in section 11. The point
of defining final state momenta as being negative is to make the
Mandelstam variables all look the same, all involving plus signs
rather than minus signs.

31 See note 27
32 The following material appears in my notes as an interruption

of the new subject that has just been introduced, section 11,
as though it suddenly occurred to RPF that he had meant to
discuss it earlier. In characteristic showman fashion, he removed
his own belt to do the demonstration.
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FIG. 24: Left: magnetic monopole with a charge transported
around its Dirac string. Right: the charge is transported
around the monopole within the plane.

while keeping the orientations of ends of the belts fixed.
Although each fermion by itself undergoes only a 180◦

rotation, relative to each other it is 360◦, which as we
know for fermions introduces a relative sign, symbolized
by the kink in the belt.

Similarly when we exchange the positions of two fermions
in diagrams such as

1

42

3 1

2

3

4

,

they differ from each other by a minus sign because of
Fermi statistics. There is inherently a 360◦ rotation of
their relative orientations. A similar exchange occurs
when there is a fermion loop, leading to the minus sign
in the diagrammatic rule.

An interesting aside illustrates the origin of this sign
for a composite system that behaves like a fermion. This
is the combination of a magnetic monopole of strength
µ and an electrically charged scalar, with charge q, sep-
arated by some distance, ~r 33

����
����
����
����
����

����
����
����
����
����

q
µ

r

v

BE

Even in the absence of any relative motion between the
two constituents, this system has angular momentum in

33 Characteristically, RPF does not call this by its common name,
dyon. Several pages of his personal notes are devoted to this
problem.
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FIG. 25: Interchange of two monopole-charge systems.

the ~r direction, which can be deduced by imagining that
we try to move the charge with velocity ~v as shown. Since
q is moving in a magnetic field, it experiences a force that
gives a torque on the system, as if it were a gyroscope,
showing that it has angular momentum.

Since B = � × A, B can never have a divergence un-
less there is a Dirac string. If µ is quantized such that
µq = ~/2, then the change in phase of an electron as it

moves around the string is eie
∫
~A·~dx, which is −1 if µ is

quantized properly. This is easiest to see in the right-
hand part of fig. 24 by considering the phase change of a
charge moving in the plane of the monopole using Green’s
theorem,

eiq
∫
A·dx = eiqΦ

= eiq(
1
2 4πµ) = eiq2πµ

= eiπ (10.34)

where Φ is the flux of B through the upper hemisphere.
But we have merely rotated the system by 360◦, so this
phase change shows that it behaves like a particle of spin
1/2.

Moreover if we consider two such systems such as in fig.
25, and interchange them, their combined wave function
acquires a phase of −1. It comes from the combined
phase changes of the charges as they move around the
opposite monopole by 180◦.

11. SCATTERING PROCESSES (11-24-87)

Let us now consider the scattering of two quarks as
shown in fig. 26.34 This can be measured by doing p-
p scattering, since the parton model allows us to relate
the two processes. The parton distribution functions are
measured by deep inelastic scattering experiments.

Most of the time the scattering does not produce
jets, but these are the observables we are interested in.
The scattered quarks determine the directions of the
jets. This part of the problem—how quarks hadronize
into jets—can be understood from the observations of
e+e− → [2 hadron jets] through the electromagnetic pro-
cess shown in fig. 27.

Of course it is also possible to get jets originating from
gluons produced in the QCD scattering process. This

34 The unconventional choice of momentum labels is deliberate; see
note 30.

p1

p2 p4

p3

time

q q

q

FIG. 26: Quark-quark scattering.

e−

q q

e+

FIG. 27: Electromagnetic production of jets.

has to be taken into account, but for simplicity we will
start with the quark production process. Our goal is to
measure αs through scattering. Historically this analysis
helped to design the experiments observing these pro-
cesses, and QCD helped to tune the phenomenological
models needed to make the predictions.

Recall the gluon propagator (10.32) in η ·A = 0 gauge.
The terms involving η drop out of the amplitude because
of the conservation of the external quark currents. Then
the amplitude becomes

T = [4π] g2

(
ū2γµ

λi

2
u1

)
1

q2

(
ū4γµ

λi

2
u3

)
(11.1)

Conventionally we express it in terms of the Mandel-
stam variables. Neglect quark masses, since we want high
enough energies to get clean jets. Then

s = (p1 + p3)2 = 4E2 in c.m. frame

t = (p1 + p2)2 = −(momentum transfer)2

u = (p1 + p4)2 (11.2)

which have the property s+ t+ u =
∑4
i=1m

2
i (left as an

exercise for the reader to prove). In the center-of-mass
frame,

(E, p cos θ , p sinθ )

(E, p, 0) θ (E, −p, 0)

the momentum transfer is given by

t = (0, p(1− cos θ), p sin θ)
2

= −2p2(1− cos θ) = q2 (11.3)
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Next we need |T |2, which depends upon the polariza-
tions of the quarks. If these are not measured, then we
are only interested in

|T |2 =
∑

init. spins
& colors

∑
final spins
& colors

|T |2(
no. of spins &

colors in init. state

) (11.4)

If we measure the final state polarizations but the incom-
ing beams are unpolarized, then we should omit the sum
over final state spins.

In eq. (11.1) we have implicitly assumed that the
spinors ui are products of spin and color factors, which
we can write as

u1 = U1 α1, etc. (11.5)

Then

|T |2 =

(
4πg2

q2

)2 [
Ū2ᾱ2γµ

λi

2
U1α1

] [
Ū4ᾱ4γµ

λi

2
U3α3

]
×
([
Ū2ᾱ2γν

λj

2
U1α1

] [
Ū4ᾱ4γν

λj

2
U3α3

])∗
→

∑
spins

(
4πg2

q2

)2

(11.6)

×
(
Ū2γµU1

) (
Ū4γµU3

) ( (
Ū2γνU1

) (
Ū4γνU3

) )∗
×
(
ᾱ2
λi

2
α1

)(
ᾱ4
λi

2
α3

)(
ᾱ2
λj

2
α1

)∗(
ᾱ4
λj

2
α3

)∗
The sum on spins gives, for example,

u2ū2 = /p2
+m (11.7)

leading to the traces

tr
(
γν(/p2

+m)γµ(/p1
+m)

)
tr
(

(/p4
+m)γµ(/p3

+m)γν

)
Similarly, the sum on colors gives

∑
colors

(
ᾱ2
λi

2
α1ᾱ1

λj

2
α2

)
= tr

λi

2

λj

2
=

1

2
δij (11.8)

Recall that

tr γν/p2
γµ/p1

= 4
(
p2νp1µ + p2µp1ν − (p1 ·p2)δµν

)
tr /p4

γµ/p3
γν = 4

(
p4νp3µ + p4µp3ν − (p3 ·p4)δµν

)
neglecting masses. The total color factor is

δijδij
4

=
8

4
=
N2 − 1

4
(11.9)

where we indicated the more general result for SU(N) at
the end, and we have not yet included the 1/N2 from

averaging over the quark colors. Putting everything to-
gether,

|T |2 =

(
(4πg2)2

22N2q4

)
16· 14 (N2 − 1)

× [2(p2 ·p4)(p1 ·p3) + 2(p1 ·p4)(p1 ·p3)]

=
N2 − 1

4N2

(
16

4

)
(4πg2)2

t2
1
2 (s2 + u2) (11.10)

and the differential cross section is35

dσ

dt
=
|T |2

16π2s2
(11.11)

where dt = 2E2 d cos θ.
Similar results can be found for quark-gluon (QG) and

gluon-gluon (GG) scattering. At low momentum trans-
fer, and apart from an overall proportionality constant,
their relative squared matrix elements go as

QQ→ QQ =
8

9

s2

t2

QG→ QG = 2
s2

t2

GG→ GG =
9

2

s2

t2
(11.12)

We see that the formulas simplify at small t.

12. GAUGE FIXING THE PATH INTEGRAL∗

(12-1-87)

We now have a complete set of rules for calculating
amplitudes perturbatively in the gauge At = 0. (It is not
perfectly complete because we have not yet specified how
to deal with the infinities arising from loop diagrams; this
will be the subject of some later chapters.) Ordinarily I
would not complicate matters by introducing an addi-
tional formalism that gives the same answers in the end,
but Faddeev and Popov (Phys. Lett. B25 (1967) pp. 29-
30) have invented another way of fixing the gauge that is
so elegant and useful that it deserves mention. It allows
one to evaluate the path integral with an arbitrary gauge
condition, of which At = 0 is just a special case.

Before deriving the method, it will be useful to know a
technique that allows the path integral in At = 0 gauge,∫

eiS[A,0]D 3
A(x, t) , (12.1)

to be rewritten as an integral over all four of the Aµ, with
an extra At-dependent term in the Lagrangian. Notice

35 RPF had written |T |2/(8π2s2); I have restored the missing factor
of 1/2. For same-flavor quarks, there should be yet another factor
of 1/2.
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that (12.1) is the same as∫
eiS[A,φ]D 3

A , (12.2)

for any function φ. One way to see this is to gauge trans-
form A in (12.1) to

A
′ = Λ†AΛ + Λ†�Λ

A′t = φ = Λ†Λ̇ , (12.3)

where Λ, which is determined by solving Λ̇ = φΛ, does
not depend upon A, hence D 3A is invariant. Eq. (12.2)
can also be written as∫

eiS[A,At]D 3
A δ[At − φ] (12.4)

Since it does not depend on φ, we can functionally inte-
grate over φ with some weight, say

exp

(
iµ2

2g2

∫
d 4xφ2

)
(12.5)

and change the path integral by only an overall multi-
plicative factor. This factor has no effect on an expecta-
tion value of a gauge-invariant functional,

〈F 〉 =

∫
Dφ eic

∫
φ2∫

eiS[A,At] F (A, At)D 3ADAt δ[At − φ]∫
Dφ eic

∫
φ2
∫
eiS[A,At]D 3ADAt δ[At − φ]

(12.6)
since it cancels between numerator and denominator.
Now the φ integral is trivial because of the delta func-
tional, and the path integral is∫

e
iS[A,At]+

iµ2

2g2

∫
A2
t d

4xD 4A (12.7)

Because of the new term in the action, the gluon propa-
gator now exists, even though At is no longer fixed to be
zero.

Exercise. Show that the propagator for (12.7) is

Pµν(k) =
1

k2

(
−δµν +

kµην
k · η

+
kνηµ
k · η

− kµkνη
2

(k · η)2

)
− kµkνη

2

µ2(k · η)2
(12.8)

where ηµ = (1, 0, 0, 0).
It would be nice to simplify the propagator by choos-

ing µ2 = −k2, which is impossible because µ2 is just a
constant, not a Fourier transform variable. But the same
thing can be accomplished by using

e
i µ

2

2g2

∫
d 4x (∂µφ)2

(12.9)

instead of (12.5) as the weight factor. Then we get (12.8),
but with µ2 → −k2µ2, and µ2 can be chosen so that the
last two terms in (12.8) cancel. This is the justification

A t

W(A) = ε

W(A) = 0

A
ε

FIG. 28: Gauge orbits sliced by a gauge condition W .

for saying, in a previous lecture, that the kµkν term in
the propagator was irrelevant.

We are aiming for an expression similar to (12.7), but
for some arbitrary gauge condition, not necessarily At =
0. For this the Faddeev-Popov procedure will be needed,
which since I didn’t invent it myself, I claim is extremely
subtle! Suppose we wanted the gauge condition to be
∂µAµ = 0. Then the path integral must look something
like ∫

eiS[A] δ[∂µAµ]D 4A . (12.10)

But this is not quite right, even though it would be right
for the At = 0 case. Consider the space of all gauge field
configurations, represented schematically by plotting At
along one axis and A along the other. Let W (A) = 0
be the desired gauge condition, represented by a surface
in the function space, that cuts across the trajectories of
gauge-equivalent Aµ(x)’s, called “gauge orbits” (see fig.
28). Previously we integrated over the line At = 0. The
delta functional δ[At] can be interpreted as the limit of
a less singular constraint, which is to integrate over the
strip between At = 0 and At = ε, divide by ε, and take
ε → 0. However if we try to do the same thing for the
surface W (A) = 0, the gauge orbits will not necessarily
cross the strip at the same angle everywhere, and the
simple constraint δ[W (A)] will weight some orbits too
much, some too little, as one moves along the surface.
An extra factor is needed to compensate for the varying
length of the orbits crossing the strip.

Call this compensating factor ∆(A). It will be shown
that

∆(A)−1 =

∫
Dg δ[W (Ag)] (12.11)

where

Agµ = Λ†(g)Aµ Λ(g) + Λ†(g) i∂µΛ(g) , (12.12)

is the gauge-transformed Aµ and Λ(g) is the matrix rep-
resentation of the abstract group element g. Dg stands
for the invariant group measure at each point in space-
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time. It has the property∫
Dg δ[W (Ag)] =

∫
Dg δ[W (Ahg)]

= ∆(Ah)−1 (12.13)

for any h in SU(3), so we see that ∆(A) is gauge invariant.
To define the path integral, insert a factor of 1 =∫
∆(A)

∫
Dg δ[W (Ag)] into

∫
eiS[A]D 4A. The expecta-

tion value of F [A] is then

〈F 〉 =

∫
eiS[A] F D 4A∫
eiS[A]D 4A

(12.14)

=

∫
eiS[A] F ∆(A) δ[W (Ag)]D 4ADg∫
eiS[A] ∆(A) δ[W (Ag)]D 4ADg

.

The nice thing about these integrals is that they don’t
depend on g (assuming, as usual, that F is gauge invari-

ant). Make the change of variables A → Ag
−1

. Because
each factor in the integrals is gauge invariant except for
the delta functional, the g-dependence disappears, and
the (infinite) integrals

∫
Dg cancel between numerator

and denominator. We are therefore left with the path
integral

Z =

∫
eiS[A] ∆(A) δ[W (A)]D 4A , (12.15)

as claimed.
Eq. (12.15) is the desired generalization of (12.1) for

At = 0 gauge, but it is not in a very useful form for ex-
plicit computations. ∆(A) is some horribly complicated
functional which in general nobody knows how to com-
pute. Fortunately, it is not necessary to know ∆(A) for
all values of A, but only where W (A) = 0, and there it
can be determined. Take W (A) = ∂µAµ, for example.
We must evaluate∫

δ[∂µA
g
µ]Dg

∣∣∣
∂µAµ=0

. (12.16)

We first assume that there is a unique solution to ∂µA
g
µ =

0, such that g is the identity when ∂µAµ is already zero.
Therefore we can focus on infinitesimal gauge transfor-
mations,

~Agµ = ~Aµ +Dµ~α = ~Aµ + (∂µ −A×µ )~α . (12.17)

Then (12.16) becomes∫
δ[∂µAµ + ∂µDµα]Dα

∣∣∣
∂µAµ=0

. (12.18)

Recall that for finite-dimensional integrals,∫
dnx δ(n)(Mabx

b) =
1

|detM |
.

In the present case, eq. (12.18), we get a functional de-
terminant,

Det−1(∂µDµ) ,

which depends on Aµ through Dµ. Therefore the path
integral (12.5) is∫

eiS[A] δ[∂µAµ] Det(∂µDµ)DA (12.19)

in the gauge ∂µAµ = 0.
The next step is to reexpress the determinant so that

it looks like a new term in the action. If instead of
Det(∂µDµ) we had Det−1/2(∂µDµ), we could use the
functional generalization of the formula∫

dnx e−
1
2x
aMabx

b

=
(2π)n/2√

detM
.

However, there is an analogous formula for anticommut-
ing variables that does what is needed,∫

DP DP̄ eP̄MP = detM . (12.20)

Here P is an anticommuting function, {P (x), P (x′)} =
0, P̄ is its complex conjugate, and M is a differential
operator. (The reader who is unfamiliar with this type
of integral should work through the following exercise.)

Exercise. Complex anticommuting variables are de-
fined to satisfy θ2 = θ̄2 = {θ, θ̄} = 0. The complete table
of integrals for such variables is, by definition,∫

dθ =

∫
dθ θ̄ = 0;

∫
dθ θ = 1

(and similarly for the complex conjugates). If there are
2N variables θi, θ̄i, i = 1, . . . , N , then they all anti-
commute with each other. By the above rule, the only
nonvanishing integrals over all the θi, θ̄i are∫

dnθ dnθ̄
[
θ̄1θ1 . . . θ̄NθN

]
= 1 ,

and those integrals that differ from it by a permutation
of the variables in the integrand. (If the permutation is
odd, the integral will be −1 instead of +1.) Convince
yourself that ∫

dnθ dnθ̄ eθ̄aMabθb = detM .

Applying this technique to the path integral gives∫
eiS[A] δ[∂µAµ] ei

∫
P̄ (x)∂µDµP (x) d 4xDP DP̄ , (12.21)

where the P ’s transform in the octet representation of
SU(3), since that is the representation on which Dµ acted
in (12.18).

The new fields P , P̄ are called Faddeev-Popov ghosts
to underscore the fact that they are not physical fields
like quarks or gluons, but only a mathematical conve-
nience. Because they are anticommuting, they behave
like fermions in the sense that ghost loops contribute a
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factor of −1 in a Feynman diagram; but they are not
fermions, for their spin is zero. The ghost action can
be put into a more conventional form by integrating by
parts,

∂µP̄ DµP = ∂µP̄ ∂µP − ∂µP̄ · (Aµ×P ) . (12.22)

The Feynman rules for ghosts are seen to be

−1 for loops;

propagator: a b =
1

k2
δab ;

coupling : p1 p2

c1

a
µ

c2

= pµ2 ~̄c
•

2 (~aµ
×~c1)

where ~c1 and ~̄c2 are octet color vectors, just like
~a0, . . . ,~a3. In addition, the gauge field propagator is sim-
ply

a,µ b,ν =
δµν δab
k2

in this gauge, since

1
4

∫
d 4x (∂µAν − ∂νAµ)

2
= 1

2

∫
d 4x

(
(∂µAν)2 − (∂µAµ)2

)
after integrating by parts, and ∂µAµ = 0.

Now we are almost done, but the expression (12.21)
is still not easy to use since we don’t know how to do
Gaussian integrals with a constraint. This is where the
trick introduced at the beginning of the chapter comes
in. If instead of ∂µAµ = 0 one used ∂µAµ = f , ∆(A)
would be the same as before, and (12.21) would be∫

eiS[A] ∆(A) δ[∂µAµ − f ]D 4A . (12.23)

This expression does not really depend on f because it
was obtained from the same starting point,

∫
eiS[A]D 4A,

for any f . So again it is permissible to integrate over f
with a weight factor exp(i

∫
f2 d 4x). The final result is∫

e
iS[A]+ i

2g2

∫
(∂µAµ)2 d 4x+i

∫
∂µP̄DµP d

4xD 4ADP̄ DP .

(12.24)
The second term in the action cancels the similar term
in S[A] so that the gluon propagator is still δµν/k

2, but
there is no longer any restriction on Aµ in the integral.

36 In deriving this we assumed that for a given vector
field Aµ the gauge transformation g needed to arrange
that the divergence of the new field is zero, ∂µA

g
µ = 0,

36 The following paragraph was added to my revision of the lecture
by RPF.

is unique. This was found to be false by Gribov. Thus
∂µAµ = 0 does not completely specify the gauge. Thus
Faddeev’s argument looks imperfect—first there are sev-
eral places in g where there are contributions to (12.15).
In addition our ghost gives Det(∂µDµ) but our analy-
sis from (12.18) wants the absolute value |Det(∂µDµ)|.
There is much confusion, but I think (from some studies
I made some time ago) the final integral is really cor-
rect.37 At any rate no error would be expected in per-
turbation theory because for configurations with small
Aµ the gauge that makes ∂µAµ = 0 is unique. Gribov’s
ambiguity appears only for sufficiently large A. We shall
see examples of it later.

Exercise. Rewrite (12.24) for a general gauge condi-
tion, W (A).

13. QUARK CONFINEMENT∗ (12-3-87)

The utility of being able to quantize QCD in a variety
of different gauges is that some gauges are particularly
convenient for certain applications. In electrodynamics,
the Coulomb gauge has the virtue that fields satisfying
the gauge condition

� ·A = 0 (13.1)

represent truly physical, transverse degrees of freedom. It
also has some peculiarities. The Hamiltonian has a non-
local, instantaneous interaction (action at a distance),
which must combine with the interactions of the trans-
verse photons so that the net force propagates at the
speed of light.

Interactions that look instantaneous are well suited to
Schrödinger’s equation, which requires the potential be-
tween particles at equal times. It would be quite awk-
ward to explicitly describe finite-velocity forces in the
Schrödinger equation because the potential for one par-
ticle at a time t would depend on the positions of the
others at the retarded times, and one would need the
past histories of all the particles to propagate the sys-
tem forward in time. In what follows we will derive the
Coulomb gauge path integral for QCD in the Hamilto-
nian form (which is closely related to the Schrödinger
picture) and see some indications of quark confinement.

Write the gauge field as

Aiµ = (φi, Ai) . (13.2)

Then in the gauge (13.1), the vacuum amplitude is

X =

∫
eiS[A] Det(� ·D) δ[� ·A]D 3

ADφ , (13.3)

37 In my course notes, I have some elaboration of this point: “RPF
conjectures that the sign of the Det changes only if the gauge con-
dition does not uniquely determine Aµ. In this case, he believes
that integrating over the different solutions gives a compensating
error that makes up for using Det instead of |Det|.”
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where D = (� − A×) is the covariant derivative in the
adjoint representation. The constraint in (13.3) implies
that if A is expanded in plane waves, C(k)eik·x, then
k · C = 0. The color electric and magnetic fields are
(omitting the gauge index for brevity)38

E = (−�φ+ Ȧ+A
×φ) = Ȧ−Dφ (13.4)

B = �×A− 1
2 A
×
×A (13.5)

and the action is

S[A] =
1

2g2

∫
(E2−B2) d 4x+

∫
(ρφ− J ·A) d 4x (13.6)

in the presence of an external source Jµ = (ρ, J). Notice
that exp( i

2g2

∫
E2) can be rewritten as

e
i

2g2

∫
E
2 d 4x

= c

∫
e−

ig2

2

∫
�

2 d 4x+i
∫
�·E d 4xD3

� (13.7)

by completing the square. Then the amplitude becomes

X =

∫
e
− ig

2

2

∫
�

2 d 4x+i
∫
�·(Ȧ−Dφ) d 4x+ i

2g2

∫
B

2 d 4x

× ei
∫

(ρφ−J·A) d 4x Det(� ·D)D 3
AT DφD3

�

(13.8)

where δ[� · A] has been eliminated by integrating only
over the transverse part of A, denoted by AT , and the
integrand is evaluated at � ·A = 0.

Now any vector field can be split into a longitudinal
and a transverse part,

� = �transverse +�longitudinal

≡ P+�f (13.9)

where � · P = 0, by definition. Then

X =

∫
exp

[
− ig2

2

∫ (
P·P+ 2P·�f + (�f)2

)
d 4x

+ i

∫
P·
(
Ȧ−�φ+A

×φ
)
d 4x+ i

∫
(ρφ−J·A) d 4x

+ i

∫
�f ·(Ȧ−Dφ) d 4x+

i

2g2

∫
B·B d 4x

]
× Det(�·D)DAT DφDPDf . (13.10)

The underlined terms can be eliminated by integrating by
parts and using the fact that �·P = �·A = 0. An overall
constant, Det(�), has been omitted from the functional
measure Df . Grouping the remaining φ-dependent fac-
tors together and integrating over φ gives a delta func-
tional,

δ[P×A+D ·�f + ρ] (13.11)

38 See note [25].

which says that f must satisfy

f = −(D ·�)−1(ρ+ P
×
A) . (13.12)

This is reminiscent of the analogous equation in electro-
dynamics,

f̃ = − 1

∇2
ρ ,

whose solution is

f̃ =
1

4π

∫
ρ(R′)

|R− R′|
d 3
R
′ , (13.13)

but the complexity of the QCD version (13.12) prevents
us from obtaining such a nice closed-form solution for f .

There is a fortunate simplification from the constraint
(13.11) however. The delta functional produces a factor
of

Det−1(D ·�) (13.14)

when the integral over f is performed (recall that δ(ax) =
δ(x)/a). If it was Det−1(� · D) instead, it would can-
cel the Faddeev-Popov determinant in (13.10). However,
� ·D is the same as D ·� in the present case, since

D ·�g = (�−A×) ·�g = ∇2g −A×•�g

and

� ·D = � · (�−A×)g = ∇2g − (� ·A)×g −A×•�g ;

the � ·A term vanishes in the path integral (13.10) which
can therefore be written as

X =

∫
ei

∫
P·Ȧ−H(P,A)] d 4xDAT DP ; (13.15)

H =
1

2g2

(
(∇f)2 + P · P+ B · B+ J ·A

)
(13.16)

This is the Hamiltonian form of the path integral. Let
us recall from ordinary quantum mechanics the connec-
tion between it and the Lagrangian form,

XL =

∫
eiSDQ(t) (13.17)

where Q is the particle coordinate, S =
∫
Ldt, and the

Lagrangian is

L =
m

2
Q̇2 − V (Q) (13.18)

for a particle of mass m. From L one derives the canon-
ical momentum

P =
∂L

∂Q̇
= mQ̇ (13.19)

and Hamiltonian

H = (PQ̇− L)
∣∣∣
Q̇=P/m

=
P 2

2m
+ V (Q) . (13.20)
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The Hamiltonian path integral is given by

XH =

∫
ei

∫
[P (t)Q̇(t)−H(P,Q)]dtDP (t)DQ(t)

=

∫
ei

∫
[P (t)Q̇(t)− P2

2m−V (Q)]dtDP DQ

(13.21)

This is seen to be the same as XL after completing the
square and integrating over P . However, it would do
no good to carry out the integral over P in the case of
QCD, (13.16), because it would introduce a complicated
functional determinant depending on AT , due to the way
P enters �f , (12.12).

We now concentrate on the interaction Hamiltonian
from (13.16),

HI =
1

2g2

∫
(�f)2d 3x = − 1

2g2

∫
f∇2f d 3x

= − 1

2g2

∫ [
ρ+ P

×
• A
] 1

D ·�
∇2 1

D ·�
[
ρ+ P

×
• A
]
d 3x

(13.22)

You will recall that ρ is the charge density of the external
quark field. This suggests interpreting P×• A as the color
charge density of the transverse gluons. To see that this
interpretation makes sense, recall that a complex scalar
field φ = (φ1 + iφ2) has the charge density

ρ =
1

2i

(
φ∗φ̇− φ̇∗φ)

)
=

1

2i
(φ∗π∗ − πφ)

= (φ1π2 − φ2π1) (13.23)

where π = ∂L/∂φ̇ is the canonically conjugate momen-
tum. Eq. (13.23) is like the cross product of the vectors
(φ1, φ2) and (π1, π2).

Now we would like to deduce the potential between
quarks from the operator (D·�)−1∇2(D·�)−1 in (13.22).
Although D ·� cannot be inverted in closed form, it can
be expanded in powers of the gluon field, which corre-
sponds to weak coupling. We get

1

D ·�
∇2 1

D ·�
=

1

∇2
+ 2

1

∇2
A
×
• �

1

∇2

+ 3
1

∇2
A
×
• �

1

∇2
A
×
• �

1

∇2

+ . . . (13.24)

The first term corresponds to the Coulomb potential, as
in (13.13).

39 If the following terms are evaluated to 2nd order we
get a strong attraction. In β0 = 11− 2

3nf
40 it contributes

39 The remainder of this section was added to my submitted draft
by RPF.

40 The beta function has not yet been introduced; this will come in
the next lecture.

+12 units—most of the confining effect. Thus the in-
stantaneous Coulomb interaction probably rises with dis-
tance. The charge densities of transverse (“real”) glu-
ons and quarks are (ρ + P×A) and their interaction via
HI , via (D ·�)−1 ∼= ∇−2, to second order in HI , makes
a vacuum polarization of the normal sign, contributing
−1− 2

3nf to β0.
This leads to an interesting model of a string connect-

ing heavy quarks. Because of the rapid rise (with r2)41

of the force between charges, unbalanced color charges
ρ + P×A at any distance are intolerable. Suppose we
start with a red quark at r = 0 and say anti-red far away
to the right. By creating a dipole gluon R̄G within this
range where opposite colors are tolerable we cancel red-
ness at larger transverse distances. But then the G end
of the gluon is unbalanced, so another gluon dipole ḠB
forms (the energy for which coming from the decrease in
G energy). This continues until we meet the final quark.
Thus we have a state of superpositions of color arrange-
ments,
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R RRR G G B B

In the transverse region away from the string, all the col-
ors cancel and there is not much energy in the Coulomb-
like quantum chromostatic field.

We shall have a more general and precise discussion of
these strings later on in the course, and will see if this is
a useful viewpoint of a string. (Such pictures have also
been discussed by Greenstreet.42)

14. INTERLUDE (1-5-88)

[From the audio tape. RPF begins with some remarks
about the research project.] First, last term we added
an assignment to write something up; I’ve given some of
them back already and here are the rest. I’ve written a
lot on them but it doesn’t mean that I’ve corrected every-
thing. Mainly I’m trying to suggest some ways of looking
at things, which is not meant as a criticism necessarily;
well it could be a criticism, but very often a great deal of
what I’m writing is not a criticism. I think this is a very
useful way of teaching, and I would like to do the same
thing this term, at the end of this term, having another
paper to hand in on the first day of exam week at the end
of the term.

41 This seems to be a slip since the equations imply a linear poten-
tial between charges, leading to a constant force, as is usually
understood. It can be derived using dimensional analysis, by
evaluating the Green’s function ∇−2 at large separations.

42 RPF means Greenberg, who wrote several papers about quark
confinement.
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And this paper this term will have to be better than
the paper of the last term. You remember that I decided
on that rather late; I only gave you a few weeks. So I
said it doesn’t have to be too good. So everybody passed.
On some of the papers I was rather surprised and disap-
pointed and thought that you were unable or didn’t have
the time to do your subject justice, and I made some re-
marks that you should talk to me about it or something
like that; that’s only one or two so don’t worry. Some-
times a person isn’t prepared or doesn’t have the back-
ground or the focus needed, and it’s worth finding out
earlier rather than later.

The other possibility is that you’ve got some kind of
a block somewhere, a misunderstanding of what it’s all
about. And it’s very surprising [noise] . . . it looks very
simple to me, but it’s only a block. I know that because
I’ve had that experience once myself, and I understand it.
I also used to do tutoring, and I’ve discovered many blocks
like this . . . and straightened the person out who had the
wrong idea. I’ll give you an example. My own block oc-
curred when I studied solid geometry in high schoool. I
was pretty good at math as you might guess, and I thought
I’d have a good time in solid geometry. The class started
and I didn’t understand anything. The guy would ask
questions, and I couldn’t figure out what the hell the an-
swer was, and moreover something that I thought was
usually pretty dopey would come out as the right answer.
It would proceed like this and I was getting foggier and
foggier for about a week. All of a sudden, thank God,
it suddenly hit me. I understood. They were drawing
things like this, parallelograms, overlapping. Then some-
times lines that would come out [connecting the paral-
lelograms]; the question was were they perpendicular to
another line like that . . . [laughter]. I was looking at every
one of the diagrams as though it were a plane diagram,
but it was a three-dimensional picture. So when I finally
figure it out the teacher told me “that’s why we call it
solid geometry, you idiot!” [laughter]. I couldn’t figure
out the theorems and equations and relations because I
was looking at the diagrams flat. That’s a block.

Another example was a student that a lady came to me
and told me that her son was very good in math but was
needing some help in geometry, he was in high school.
So the first thing I did was to ask him some questions,
like if this is a rectangle and this is the diagonal, how
far is it from here to here? It’s the same, he says; and
then a few more questions, showing that he had a first-
rate intuition about geometry; there was no problem about
understanding what geometry was about. But to make
a long story short, he had a double block. One: they
had in his course in high school that you write what they
call proofs. You write something and then you write the
reason. Given: . . . and so on and so on. The way he
thought was, and he didn’t understand, was how you knew
what to write on each line. He thought there was some
logical process to know what to write on each line. And I
had to explain to him, no, what you did was you first had
to figure out how to prove it. And then after you figured

out how to prove it you wrote the proof down. Okay, that
was stupid, but that’s the way they did it.

Another block was, he didn’t realize the rule that the
theorems that you were allowed to use in proving, the
things you could write on the right-hand side as rea-
sons, always had to be statements that were earlier than
the thing you were trying to prove. For example, no,
you can’t use the Pythagorean theorem here because you
haven’t gotten there yet. Sounds dumb, but it’s just ar-
tificial conventions of human beings [long section where
RPF is speaking away from the microphone].

Same thing happens in algebra, where people have great
difficulty because it’s not realized and it’s not explained to
them that x is used in two ways to represent a number;
when you have a problem like this [writing on board].
The problem is x is some special number and you have
to find it, and when you have a statement like this [more
writing]that’s an entirely different use; there it means it’s
true no matter what x is.

So these blocks may be the cause of some . . . if you
look at your papers and find some remark . . . let’s talk
about it . . . a chance to maybe figure out if you have some
difficulty. Alright? Most of you have no such difficulty.

Is everything alright? Do you want me to give more
problems during the year, or is it okay if we do these final
exam papers, because they’re very useful, I think . . . If you
have some objections, come and tell me because I know
it’s been . . .

15. SCALE DEPENDENCE (1-5-88)

So far in this course we have emphasized perturba-
tion theory as the main tool for making theoretical pre-
dictions, but it is important to keep in mind that the
path integral is not limited to this treatment. For exam-
ple, lattice gauge theory, which we will discuss in some
detail, is a way of computing observables nonperturba-
tively. And I will bring up some other possible ideas for
going beyond perturbation theory. That will occupy us
in the second part of this term. For the first part, we will
continue to explore aspects of perturbation theory.

I would like to spend some time in this lecture on the
topic of running coupling constants, which must be han-
dled carefully in order to avoid confusion. In fact, there is
quite a great potential for confusion in this subject, and
an apparent complexity, because of the lack of agreement
about the best conventions for carrying out the renormal-
ization of the couplings, and also some misguided sug-
gestions that the running coupling should be defined in
terms of some particular processes.

15.1. Measuring couplings

But before we discuss the running, we should try to
understand what are the most efficient ways of experi-
mentally determining the values of the couplings in the
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QCD Lagrangian,

1

g2
0

trFF +
∑
i

q̄i(i/∂ +mi
0)qi (15.1)

where I have summed over the quark flavors, i =
u, d, s, c, b (and presumably t, although it has not yet
been observed). The subscript 0 means that these are
the bare couplings, that would coincide with the physical
values if we were to make predictions only at tree level,
but which of course will differ once we start to include
loops. So we have at least six Lagrangian parameters,

g2
0 , m

u
0 , m

d
0, m

s
0, m

c
0, m

b
0 (15.2)

In principle, we could determine all of these by mea-
suring six independent observables, since generically each
one would constrain different combinations of the param-
eters. But in practice we usually focus on one thing at a
time, and try to choose an observable that is most sensi-
tive to the quantity of interest. For example, to compute
mb

0, we could initially estimate it as approximately half
the mass of the Υ meson (bound state of bb̄), since we
know that Υ gets most of its mass from the quarks and
not the gluons. This would give m0

b ∼ 5 GeV. Similarly
we can estimate m0

c as being about half of the mass of
the ψ. Of course the Υ and ψ do get some of their mass
from the gluons, and so we could try to improve on these
estimates by doing a bound-state calculation to take that
into account—but that would depend on other parame-
ters, namely g2

0 .
To determine g0, we could try to compute the mass

of a particle like the proton, which is believed to get
most of its mass from the gluons, since mu

0 , m
d
0 � mp.

However we then encounter the problem that we don’t
know how to compute mp; it is very far from being a
perturbative calculation, and we would have to rely on
the lattice, which for the present looks hopeless, although
maybe someday it will be feasible.

Instead, to measure g0 it is more practical to look at a
process involving higher energies, much higher than the
quark masses, so that the measurable quantity depends
very weakly on the mi

0; in this way we can disentangle
the dependences and determine g0 independently. At ar-
bitrarily high energy E � mi

0 this should become an in-
creasingly good approximation since the amplitudes will
depend only on the ratio mi

0/E.
Let me start with a process that at first looks like it

will not help us, since it does not seem to depend on the
QCD coupling g0 at all: electroproduction of quarks:

e− e+

qq

qQ  e

(15.3)

Of course the real physical process does depend on g0

because what we actually observe is not the quarks, but

rather e+e− → hadrons, and the hadronization process
depends strongly on g0. But this is not the kind of g0

dependence we are interested in because (as I will ar-
gue later in the course) it is more characteristic of the
low-energy scales of the hadron masses and it is not a
perturbatively computable process. Instead, we want to
ignore the details of hadronization and pretend that the
quarks are produced freely. This is actually a much bet-
ter approximation than one might at first imagine, for the
simple reason that hadronization mainly occurs after the
quarks have been produced. Therefore it cannot affect
the production cross section (at least at energies that
are not too close to resonances), which is the quantity
that we can compute perturbatively, and which we can
measure more or less cleanly despite the complications of
hadronization.

Hence the electroproduction process does not depend
on g0 at all, at the leading order in couplings; I am go-
ing to take advantage of a subleading effect to suggest
a way of measuring g0. But first let’s look at the lead-
ing contribution, in the high-energy limit where we can
ignore all the masses. We see that the calculation for
producing quarks is hardly different from that for pro-
ducing µ+µ−. The only differences are the charges of the
quarks, and the fact that quarks come in three colors.
Consider e+e− → uū; the charge of u is +2/3, so we can
relate the quark and lepton cross sections as

σuū = 3

(
2

3

)2

σµ+µ−

The factor of 3 is commonly understood as coming from
the number of quark colors: you can produce either a red
quark, or a blue or a green. This is actually a cheat: in
reality you can only produce a color-singlet combination

1√
3

(
RR̄+BB̄ +GḠ

)
≡ 3 a√

3
=
√

3 a (15.4)

In this formula, a represents the amplitude for producing
a quark of a definite color, that we assumed could occur
when we multiplied its cross section by 3. We see that
the amplitude of the color singlet state that is actually
produced is bigger by a factor of

√
3, and so this is the

proper explanation of the factor of 3 in the cross section.
But either way of thinking about it gives the right answer.

Similarly for producing dd̄, we have

σdd̄ = 3

(
−1

3

)2

σµ+µ− ,

and we can continue this to include all the higher mass
quarks if the center-of-mass energy is sufficient to pro-
duce them.

The interesting quantity to measure and compare to
predictions is the ratio

R =
σtotal

σµ+µ−
(15.5)
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whose contributions, at high enough Q2, we can read off
from equations like (15.4,15.5). The experimental data
look like this:

µ+µ−σ

σ
total

4/3

3.7

2

M M
ψ 40 GeV

E

R =

At each quark threshold, a resonance for the correspond-
ing bound state occurs, giving rise to the peaks and dips.
These are the hadronization complications that we would
like to avoid. In between the thresholds, we observe the
simple behavior that we can understand within our ap-
proximations: R is just flat, and it is counting the num-
ber of quarks that can be produced, weighted by their
electric charges (squared).

Now this is all very beautiful, but it doesn’t yet help
us to determine the QCD coupling. For that, we should
consider a higher-order process, where a gluon gets radi-
ated from one of the quarks, or exchanged:

e− e+
e− e+

qq qq

g

γγ

g

(15.6)

One can show that at high energies, these processes are
also independent of the quark masses, and they lead to a
multiplicative correction of the leading order prediction
R0,

R = R0

(
1 +

αg
π

+ . . .
)

(15.7)

where αg = g2/4π. Then if we can measure R well
enough, the deviation between R and the lowest order
prediction R0 will determine αg. So this is a possible way
of measuring g0. It is not quite as direct as we would like,
since it depends on a relatively small correction, of order
a few percent, to the basic quantity that is insensitive to
g0. Can we do better?

A more direct approach would be to observe the gluon
that is emitted. That of couse is impossible, just like for
the quarks, since they are all colored objects. Instead,
we observe the jets of hadronized particles emerging from
those primary particles,

(15.8)

where I have drawn the momentum vectors of the in-
dividual hadrons and enclosed them with an envelope
to indicate the jet. At high energies, the jets are well-
defined, with lengths (in momentum space) of order the
center-of-mass energy E, and widths of order the QCD
scale ∼ 1 GeV. The two-jet event corresponds to the lead-
ing order process (15.3), while the three-jet event comes
from the first diagram in (15.6), assuming the gluon was
radiated at a large enough angle to produce a distinct
jet.

As we will discuss in a later lecture, it could happen
that the gluon is too soft, is radiated nearly in the same
direction as the quark, and its hadronization products get
lumped in with the quark jet. But at high enough ener-
gies, there is a significant probability for the gluon jet to
be well separated from that of the quarks. It will never
be as probable as the soft gluon emission, because the ex-
tra quark propagator in the radiative diagram would like
to be on shell, which favors the soft emission, but at high
energies there is the competing effect from the available
phase space to make the hard gluon jet observable.

Of course there is no definite dividing line between
hard and soft, so this is somewhat less clean in practice
than the idealized pictures shown in (15.8); we might
confuse some of the hadrons that came from the gluon as
being associated with the quark jet, or vice versa, leading
to errors in the estimates of the total momenta of the
respective jets. These errors become relatively smaller
at high energies, where the soft jet contributions become
relatively less important. The important point is, this
is an observable that depends directly on αg, so it is
a more senistive determination than using the ratio R.
In the following discussion, I will continue to focus on
high-energy processes that allow us to neglect the quark
masses and focus on the coupling g0.

15.2. Ultraviolet divergences

You may have noticed something peculiar about the
diagrams I drew in (15.6): they mix up different orders
of perturbation theory. And of course there are other
loop diagrams not shown, like the self-energy correction
to the quark from a gluon loop. As you probably know
from a previous course on electrodynamics, the tree dia-
gram with the gluon emission cannot properly be sepa-
rated from this self-energy correction: the infrared diver-
gence of the soft gluon emission is canceled by a similar
divergence in the self-energy diagram, when it interferes
with the tree diagram. So that is one reason we cannot
avoid considering the loops. But a more important one,
for the present discussion, is that the loops will modify
our predictions at high energies, which I have stressed is
the best regime for comparing predictions to experiment.

And as you know, these loop contributions are prob-
lematic because they diverge at high virtual momenta,
so we need to introduce the procedure for cutting off the
divergences. A typical kind of integral that we have to
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deal with (continuing in our approximation of neglecting
masses) is ∫

d 4k

k2(p− k)2
, (15.9)

which by counting powers of momenta in the numerator
and denominator is logarithmically divergent. A naive
way of regularizing this, which later we will see does not
quite work in the case of gauge theories, is to modify the
propagators by taking

1

p2
→ lim

Λ→∞

1

p2
− 1

p2 − Λ2
(15.10)

This will render (15.9) finite, in the intermediate step
before taking the limit Λ → ∞, and yields a divergent
term going as ln Λ. This divergence can be absorbed by
redefining the coupling g0, before taking the limit.

Let’s recall how this works in electrodynamics, for
electron-electron scattering. First consider the low-
energy, large distance limit, corresponding to scattering
in the Coulomb potential e2/r. The tree-level scattering
amplitude is

Q

∼ 4πe2

Q2
(15.11)

I want to consider the Q → 0 limit first, since in this
limit the charge e becomes the familiar constant value
eexp

∼=
√

1/137 ∼= 0.09.43 This is the physical value,
which is not the same as the bare value e0 that is needed
to cancel the divergences from loops, such as

(15.12)

One can show that the divergences from this loop (plus
the others not shown) can be canceled by defining e0 such
that

1

e2
exp

=
1

e2
0(Λ)

+
1

3π
ln

Λ2

Q2
(15.13)

When we originally wrote the Lagrangian for QED, we
thought that e0 was a parameter very close in value to
the measured charge; now we see that it is not a fixed
parameter, but rather a function of the cutoff. In the
end nothing can depend on Λ, since we are taking the
limit Λ → ∞. What about the dependence on Q2? We
thought that e2

exp is supposed to go to 0.09 as Q2 → 0.

43 Notice RPF’s unconventional normalization of the coupling, that
we have seen before and which he sometimes abandons in favor
of the usual one in later lectures.

In reality, we should have something like Q2 +m2
e in the

log; then this makes sense as Q2 → 0. The expression
(15.13) is valid for Q2 � m2

e.
Of course there is one peculiarity in QED: we can’t take

the Λ→∞ limit! There is some scale Λ ∼ me e
3π×137/2

at which e0 diverges, and we cannot make sense out of the
theory beyond this point since e2

0 becomes negative. This
is the Landau pole. In practice, it is such a high scale, far
greater than the mass of the universe, that we don’t care:
the residual dependence of amplitudes on Λ is negligible.
It is more of an aesthetic shortcoming. But a very nice
feature of QCD is that the analogous correction to 1/g2

0

has the opposite sign, so there is never any Landau pole;
instead g0 goes to zero as Λ→∞.

In this course I will discuss three different methods of
regularization, which are summarized as follows:

1. Pauli-Villars:
1

k2
→ 1

k2
− 1

k2 − Λ2

As I mentioned, this is not quite right as written; we need
to be more careful to avoid spoiling gauge invariance; we
will come to that later.

2. Dimensional regularization:

αg becomes dimensionful when d 6= 4;

αg → αg µ
d−4

where we analytically continue amplitudes in the number
d of spacetime dimensions, and

3. Lattice regularization:

has a dimensionful parameter:

a↔ 1/Λ

where we have approximated spacetime as a discrete lat-
tice, with sites separated by the lattice spacing a, that
plays the role of 1/Λ relative to the first method. Any
of these approaches leads to equivalent results when we
take the continuum limits, Λ → ∞, ε → 0, a → 0. Each
one of them has its own different expression for how the
bare couplings depend on the cutoff, but the physical pre-
dictions that they make to a given order in perturbation
theory are the same. To fully define the theory we will
also have to discuss gauge fixing.

Let me continue to work in the Λ cutoff scheme for
now; we will come back to the other regulator methods
in later lectures. One can show that there is a general
form for the Λ dependence of the bare coupling, which
we will derive later on,

1

g2
0(Λ)

= β0 ln
Λ2

M2
+
β1

β0
ln

(
ln

Λ2

M2

)
+ c0 +

(
c1

ln Λ2/M2
+ . . .

)
. (15.14)

Here · · · denote terms falling with Λ even faster than
1/ ln Λ2, that do not concern us in the large-Λ limit. The
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interesting observation is that the constants β0 and β1 are
the same in different regularization methods, if we make
the appropriate identifications ln Λ2 → 1/ε or ln Λ2 →
ln(1/a2) to translate between them. There is an arbitrary
scale M appearing, known as the renormalization scale.
Notice that any change M2 → e−γM2 can be absorbed
into a change of the constants c0 and c1 (for Λ�M):

1

g2
0

→ 1

g2
0

+ β0γ︸︷︷︸+
β1 γ

β0︸︷︷︸ ln
Λ2

M2
+O

(
ln−2 Λ2

M2

)
δc0 δc1 (15.15)

Thus the ci are not universal at all, and they also depend
on the method of regularization. Their values get fixed,
within the given method, by comparing some prediction
in which g2

0 appears to its corresponding measured value.
The essential fact is that it should not matter which ob-
servable we choose; any quantity that is sufficiently sen-
sitive to g0 will suffice. And once that is done, we can
use the same formula to predict other observables, and
use these to test the theory.

You may wonder why I bother to write the c1 term at
all, since it is irrelevant as we take the continuum limit.
There may be some practical situations where we are not
able to take this limit, notably the lattice, where it is
computationally prohibitive to do so. The best we can
do there is to take a to some small value. To get the best
description of the data at two different values of a, we
would need to keep the c1 term, so as to properly compare
predictions at different values of a, to see whether we
think a is small enough to trust our predictions.

It is worth remarking on the observation that for QCD,
g0 → 0 as we remove the cutoff. Does that mean that
perturbation theory should always work in QCD? No,
it depends on the scale of the physical problem. This
is because the limit Λ → ∞ is the same as the limit
M → 0 in eq. (15.14). When we compute an observable
quantity at a physical scale Q2, the amplitude will have
factors going as ln Λ2/Q2. When we combine these with
the coupling g2

0 , the cutoff dependence disappears, and
the log becomes lnM2/Q2, which diverges as M → 0.
Thus we can’t necessarily take the continuum limit while
keeping perturbation theory under control; it only works
if Q2 is larger than the characteristic scale of QCD,
λ2

Politzer ' (1 GeV)2, where perturbation theory starts
to break down.

Related to this, another possible source of confusion
is the arbitrariness of the choice of M in (15.14). I
showed that M is perfectly arbitrary since we can ab-
sorb any change of M into a redefinition of the ci con-
stants. That is true, but in practice, for a given applica-
tion, some choices of M will be more advantageous than
others. Generally, if we are going to use an observation
at a particular scale Q2 to fix the value of g2

0 , then it
makes sense to choose M2 ∼ Q2, to get rid of large loga-
rithms lnM2/Q2, that would also appear in the higher-
loop diagrams that we are not including in our calcula-
tion. This choice reduces the error coming from these

higher-order diagrams. This argument also shows why
it would not make sense to try to take M2 all the way
to zero: perturbation theory in QCD is breaking down
at scales Q2 . λ2

P . So we should not take M < λP .
It is sometimes convenient to define M by imposing a
choice like c0 = 0 on the arbitrary constant, to make eq.
(15.14) look nicer. Then M takes on a physical signifi-
cance (within a particular regularization method), that
can be called the scale where QCD is becoming nonper-
turbative. In this convention, M = λP , which has been
determined to be around 200 MeV.

Because the coupling only runs logarithmically, it takes
considerable experimental effort to reach energies where
convergence of the perturbation expansion improves dra-
matically. And on the lattice, it takes enormous numer-
ical effort. Consider that on a 4D lattice, by cutting the
lattice spacing in half, we compound the computational
problem by a factor of 24 = 16, yet the coupling has de-
creased by a factor of only 1/ ln 4 ∼= 0.7. Thus it seems
nearly hopeless to achieve quantitative accuracy on the
lattice, given the limitations of computers, and it would
be nice to come up with another nonperturbative method
that is not just brute force.

16. THE RENORMALIZATION GROUP (1-7-88)

Last time we saw that the bare coupling could be ex-
pressed in a way that I will rewrite in the form

1

g2
0(Λ)

= β0 ln
Λ2

λ2
P

+
β1

β0
ln

(
ln Λ2

λ2
P

)
+ const.

+ O
(

1

ln(Λ2/λ2
P )

)
(16.1)

where λP is short for a scale I am calling “λPolitzer,” and
the last term, that vanishes as the cutoff goes to infin-
ity, is scheme-dependent. If we choose g0 in this way, for
a given method of regularization, physics is unchanged
from scheme to scheme and as the cutoff varies. If we
rewrite the second term on the right-hand side of (16.1)
as (β1/β0) ln

(
1/(β0g

2
0)
)
, the terms that vanish as Λ→∞

are cleaner and have no ln ln coefficients in the numera-
tors of 1/ ln Λ2.44

Now we can differentiate,

d
(

1
g20(Λ)

)
d
(

ln Λ2

λ2
P

) = β0 + β1 g
2
0 + β2 g

4
0 + . . . (16.2)

This is closely related to the beta function,

β(g) = − dg0

d ln Λ
= β0 g

3
0 + β1 g

5
0 + . . . (16.3)

44 This statement is justified in eq. (16.4).
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Here β0 and β1 are scheme-independent, but β2,
β3, . . . are scheme-dependent and they affect only the
O(1/ ln Λ2) terms. As I explained in the last lecture, we
must choose the constant in (16.1) in order to define λP ;
so we made a specific choice. We define the constant to
be zero in the MS scheme of dimensional regularization,
and we can do likewise in Pauli-Villars. This defines λP .
It is an arbitrary choice which depends on the regulariza-
tion method. Making this choice, we can write an exact
formula

1

g2
0(Λ)

= β0 ln
Λ2

λ2
P

+
β1

β0
ln

(
1

β0 g2
0

)
(16.4)

which is an implicit definition of g2
0(Λ). It satisfies the

differential equation

d
(

1
g20(Λ)

)
d
(

ln Λ2

λ2
P

) = β0 + β1 g
2
0 +

β2
1

β0
g4

0 + . . . (16.5)

=
β0

1− β1

β0
g2

0

(
β0 = 11− 2

3nf

β1 = 102− 38
3 nf

)

where nf is the number of quark flavors. Notice that
β2 and higher coefficients are all determined by β0 and
β1 in this definition of g0(Λ). For large Λ, the different
choices one could make for these higher coefficients are
not important.

As I mentioned in a previous lecture, in QED we have
a problem when we try to do the analogous thing. Let
e2

th denote the physical, observed value of the coupling.
Then

1

e2
th

=
1

e2
0(Λ)

+
1

3π
ln

(
Λ2

m2

)
(16.6)

where we have a plus sign instead of minus between the
two terms. Hence

1

e2
0(Λ)

=
1

e2
th

− 1

3π
ln

(
Λ2

m2

)
(16.7)

As Λ gets large, 1/e2
0(Λ) becomes negative, and we lose

unitarity. This means we can’t push QED to arbitrarily
high energies, at least not greater than

Λ2

m2
∼ e137 . (16.8)

Grand unification is one solution to this problem.45

45 In my notes I have parenthetically, “(Even just electroweak the-
ory seems to fix it.)” perhaps referring to the modification of the
QED beta function by the other standard model interactions.

16.1. Measuring g2

Recall that we could measure g2 through the ratio

R =
σe+e−→had.

σe+e−→µ+µ−
; (R− 1) =

g2
0

π
+ a g4

0 + · · · (16.9)

at high energy. We wanted something that didn’t depend
on the mass of the quarks, another example being qq scat-
tering at high energies. In this way we could concentrate
on determining g2

0 . We would also like our observable to
be dimensionless, such as Q2σ since the cross section σ
has dimensions of (length)−2. To avoid extraneous de-
pendences, we can imagine keeping the scattering angles
fixed as we increase the energy scale.

In general, our calculation of this quantity will depend
on g2

0 , Λ and Q; call it Dtheory(g2
0 , Λ, Q). At first we

consider g2
0 to be independent of Λ—it’s just a parame-

ter. Now we want the physically measured value of the
observable

Dphys. = D(g2
0(Λ), Λ, Q) (16.10)

to be independent of Λ as Λ → ∞ (and of course it
must have a well-defined limiting value). Recall that the
coupling is dimensionless, which you can see from the
action,

S =

∫
d 4x

1

g2
0

FµνFµν (16.11)

=

∫
d 4x

1

g2
0

(
∂µAν − ∂νAµ −A×µ Aν

)2
and remembering that [A] = 1/L hence [F ] = 1/L2.
So [F 2] = 1/L4 and since the action is dimensionless,
[g2

0 ] = 1: the coupling is dimensionless. Therefore
Dtheory(g2

00, Λ, Q) can only depend on the dimension-
less ratio Λ/Q if we keep g2

00 fixed.46 Hence we can write
Dtheory in the form Dtheory(g2

00, ln Λ2/Q2). Similarly, our
prediction for the physically observed value must take the
form

Dphys. = D
(
g2

0(Λ), ln Λ2/Q2
)

(16.12)

and it cannot depend on Λ. This tells us how it depends
on Q for large Q.

Suppose we ignore the β1 term in g2
0(Λ), and the g4

0

term in (R− 1). Then

Dtheory

(
g2

00, ln
Λ2

Q2

)
=

g2
00

π
(16.13)

Dphys.

(
g2

0(Λ), ln
Λ2

Q2

)
=

g2
0(Λ)

π
=

1

πβ0 ln Λ2

λ2
P

46 The subscript on g2
00 is to distinguish the coupling g2

00 that is
considered to be independent of Λ from g2

0(Λ).
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But this depends on Λ! The problem is that we didn’t
go to the next order:

Dtheory

(
g2

00, ln
Λ2

Q2

)
=

g2
00

π
+ g4

00

(
β1 ln

Λ2

Q2
+ a1

)
Dphys.

(
g2

0(Λ), ln
Λ2

Q2

)
=

g2
0(Λ)

π
(16.14)

=
1

πβ0

(
ln Λ2

λ2
P
− ln Λ2

Q2

)
=

1

πβ0 ln Λ2

λ2
P

+
ln Λ2/Q2

πβ0 ln2 Λ2/λ2
p

+ · · ·

where · · · represents terms of order g4
0 . The next order

terms in Dtheory must be

g6
00

π

(
β2

0 ln2 Λ2

Q2
+ 2a1 ln

Λ2

Q2
+ a2

)
Terms of the form (β0 ln Λ2/Q2)n are the leading logs.
The fact that you can sum them is all due to demanding
that Dphys. does not depend on Λ2. If we do the sum
then we get

1

πβ0 ln Q2

λ2
P

+
a1

π
(
β0 ln Q2

λ2
P

)2 + · · · (16.15)

where the first term comes from the leading logs, the
second from the next-to-leading logs, and so on. Now we
could write

(R− 1) =
α(Q)

π
+
a1

π
α2(Q) + · · · (16.16)

where

α(Q) =
1

β0 ln Q2

λ2
P

(16.17)

This shows that α(Q2) operates like a coupling constant
that depends on energy. We did this by neglecting β1. If
we keep β1, we get

1

α(Q2)
= β0 ln

Q2

λ2
P

+
β1

β0
ln

(
1

β0 α(Q2)

)
(16.18)

Evaluating it at different energies Q in GeV, using λP =
0.2 GeV, gives47

Q 1 3 5 10 30 50 100 300 1000

nf 3 3 4 4 5 5 6 ? 6 ? 6 ???

α 0.43 0.26 0.23 0.19 0.16 0.15 0.14 0.12 0.11± 0.01

47 This table, which RPF apparently computed himself, was not
given in the lecture, but it appears in his private notes for this
lecture.

16.2. Renormalization group equations

Now we are ready to derive the renormalization group
equations, using the fact that physical quantities cannot
depend on Λ. dDphys./dΛ = 0 implies that

∂D

∂g2
00

∣∣∣∣
g200=g2(Λ)

× dg2(Λ)

d ln(Λ2/λ2
P )
− ∂D

∂ lnQ2
= 0 (16.19)

where

dg2

d ln Λ2
= −g β(g) (16.20)

= −
[
β0g

4(Λ) + β1g
6(Λ) + β2g

8(Λ) · · ·
]

Suppose we have worked out the theoretically predicted
value

Dth

(
g2

00, ln
Λ2

Q2

)
= b0 + b1g

2
00 + b2g

4
00 + b3g

6
00 + · · ·

(16.21)
where the bm may depend on t ≡ ln Λ2/Q2. Let b′m =
dbm/dt. Then the RG equation says that

b′0 + b′1 g
2
00 + b′2 g

4
00 + b′3 g

6
00

=
[
β0 g

4
0(Λ) + β1 g

6
0(Λ) + β2 g

8
0(Λ) · · ·

]
×
[
b1 + 2b2 g

2
00 + 3b3 g

4
00 · · ·

]
(16.22)

This tells us that

b′0 = b′1 = 0 ; (16.23)

hence b0 and b1 are constants, that we can calculate the-
oretically; call them c0 and c1. Moreover

b′2 = c1 β0 =⇒ b2 = c1β0 ln
Λ2

Q2
+ c2

b′3 = (b1β1 + 2b2β2) = c1β1 + 2c1β0 ln
Λ2

Q2
+ 2c2β0

=⇒ b3 = c1β0 ln2 Λ2

Q2
+ (2c2β0 + c1β1) ln

Λ2

Q2
+ c3

(16.24)

etc. Then

Dphys.

∣∣
g20(Λ)

= c0 + c1g
2
0(Λ) +

(
c1β0 ln

Λ2

Q2
+ c2

)
g4

0(Λ)

+

(
c1β0 ln2 Λ2

Q2
+ (2c2β0 + c1β1) ln

Λ2

Q2
+ c3

)
g6

0(Λ)

+ · · · (16.25)

At each order n in perturbation theory, a new constant
term cn arises. But this new constant is typically less
important than the preceding terms appearing in the co-
efficient of g2n

0 , that come with higher powers of logs. In
other words, c1 determines all the leading logs, c1 and c2
all the next-to-leading logs, etc. We can simplify (16.25)
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because we know it doesn’t depend on Λ. Organizing it
in terms of the ci coefficients we get

Dphys. = c0 + c1 α(Q2) + c2 α
2(Q2) + c3 α

3(Q2) + · · ·
(16.26)

where α(Q2) satisfies

dα(Q2)

d lnQ2
= β0 α

2 + β1 α
3 + β2α

4 + · · · (16.27)

If one could measure D at such a high energy that α(Q2)
was small and the series converged rapidly, it would pro-
vide way to determine λP ∼ 200 MeV.

17. RENORMALIZATION: APPLICATIONS
(1-12-88)

Renormalization is a confusing subject, and one factor
contributing to the confusion is the proliferation of dif-
ferent conventions. I am guilty of this by my preferred
normalization of the gauge coupling, which is not the
same as that of the rest of the world. For your conve-
nience, let me translate some previous results into the
more conventional form, where the coupling and its as-
sociated fine-structure constant are related as

α =
g2

4π
(17.1)

Then the running of the renormalized coupling, (16.18),
takes the form

4π

α(Q2)
= β0 ln

Q2

λ2
P

+
β1

β0
ln

4π

β0 α(Q2)
(17.2)

Now let’s review what we learned in the previous lec-
ture, concerning the utility of this expression, that sums
up the leading logarithmic dependences in the pertur-
bation expansion. Namely, we can take an amplitude
computed at tree level, and replace its α dependence by
eq. (17.2), to resum the most important subclass of loop
contributions to all orders, which improves the tree-level
prediction. Furthermore, we can extend this to sublead-
ing contributions. Suppose we computed an amplitude
at one-loop order and found a result going as

M = α0 + α2
0

(
ln

Λ2

Q2
+ c

)
(17.3)

The term with lnQ2 is already contributing to the lead-
ing logs that we obtain by replacing α0 → α(Q2) in the
lowest order contribution. Thus the correct way to in-
corporate the next-to-leading logs is to replace

M→ α(Q2) + c α2(Q2) (17.4)

I have avoided some of the complications of renormal-
ization so far by only discussing gauge invariant, physical

quantities. We could also consider the renormalization of
more general quantities like Green’s functions

〈A(x1) · · ·A(xn)〉 . (17.5)

Then it is not sufficient to talk about only the renormal-
ization of the couplings, but also the wave function renor-
malization, that contributes to anomalous dimensions in
the scaling of such a Green’s function. I am not going to
discuss these kinds of issues, but there are many refer-
ences that do so, for example Renormalization by John
Collins, Cambridge University Press, 1984. If you are
only interested in physical, measurable quantities, these
complications can be avoided.

One further point pertaining to the previous lecture is
about the dependence of the beta function on the number
of flavors. We have noticed that one of the nice features
of QCD is its good behavior in the ultraviolet. This as-
sumes there aren’t too many flavors of quarks. There are
five or six that we already know about, but there could
be more—nobody knows why there should only be three
families. But probably there are not 17 flavors of quarks,
which is the critical number that would ruin the good
UV behavior of QCD.

17.1. Power counting of divergences

Before embarking on explicit calculations of loop dia-
grams, it is enlightening to understand the general struc-
ture of divergences of the theory, and you are probably
already familiar with this, but I would like to review it
nevertheless. Consider some rather complicated diagram
like

∼
∫

d 4k d 4p

(p2, k2, p · k + · · · )7
× f(p, k, · · · )

(17.6)
We count 7 propagators, schematically indicated by the
denominator of (17.5), 8 powers of momentum from the
integration measure, and a numerator f that goes like
(momentum)5 from rationalizing the fermion propaga-
tors and counting the 3-gluon interactions. So according
to power counting, this goes as (momentum)−1 and is
therefore superficially convergent. We call this exponent
Nd, the superficial degree of divergence. It tells us that
a given diagram generically behaves as

Nd = 0, log divergence

Nd = 2, quadratic divergence

Nd < 0, converges

(17.7)

We call it “superficial” because it is possible to construct
exceptional cases in which there is a divergence even if
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Nd < 0. This would be the case if the integrals somehow
factorized into a product of one that was highly conver-
gent times another that diverged. More typically how-
ever, we will see that this Nd often overestimates the
degree of divergence, as a consequence of gauge symme-
try.

Now it would be rather tedious to have to do this kind
of counting for every possible diagram that may arise,
but fortunately we don’t have to. There is a beautiful
topological relation that does it for us, solely in terms of
the numbers of external lines of different kinds, indepen-
dently of how complicated the diagram is, such as the
number of loops. The relation is easiest to prove for a
vacuum diagram with no external legs. It is a fact from
topology that such a diagram satisfies

# of Edges + # of Vertices = # of Faces + 2 (17.8)

This is a relationship between the number of loops, the
number of vertices and the number of propagators.

An easy way to arrive at the result is to first notice that
a vacuum diagram, by dimensional analysis, must have
Nd = 4. Imagine that we cut an internal quark line in a
loop in such a diagram, to add two external quarks. We
thereby remove one integration over loop momenta and
one fermion propagator, which reduces Nd by 3. On the
other hand, imagine adding an external gluon to some
line on the diagram. It creates an extra fermion propa-
gator, or else an extra gluon propagator with a coupling
proportional to momentum in the numerator. Or we con-
vert a triple-gluon vertex with dimension 1 into a dimen-
sionless 4-gluon vertex. In any case, we reduce Nd by 1.
Therefore it must be that

Nd = 4−Ng −
3

2
Nq, (17.9)

where Ng (Nq) is the number of external gluon (quark)
lines.

Another way of deriving (17.9) is to use dimen-
sional analysis for the general case. Let’s illustrate
this for some diagram with an arbitrary number of
external particles, representing a process in which
particle 1 decays into N − 1 final state particles:
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N−1 final particles

1

2 N
3

Rate of decays of 1 into N − 1 particles:

dΓ =
1

2E1
|T |2

N∏
i=2

(2π)δ(p2
i −m2

i )
d 4pi
(2π)4

× (2π)4δ(4)

(
p1 −

N∑
i=2

pi

)
(17.10)

I have drawn them as though they are all external gauge
bosons, but we will also discuss the case when some of
them are quarks. The shaded blob could contain any
number of loops and internal lines; it doesn’t matter how
complicated the diagram is. Next to it I gave the formula
for the differential decay rate, that we know has dimen-
sions of mass or energy. Therefore we can determine the

dimensions of the amplitude |T | that corresponds to the
diagram. By moving the factor 1/E1 to the other side of
the equation, we get

[energy2] = [|T |2] [energy]2(N−1) [energy]−4

hence [|T |] = [E]4−N (17.11)

where N is the total number of lines coming out, regard-
less of whether they are bosons or fermions.

If the amplitude T had the same dimensionality as
the amputated loop diagram, we would conclude that
Nd = 4 − N , since the coupling g is dimensionless, and
so all dimensional factors are associated with momenta.
In the case where all external particles were bosons, this
would be the right answer. If some of them are fermions,
it is not right because the external fermions have spinors
associated with them, that have dimensions, and this
makes the mass dimension of the diagram differ from
Nd. But that is easy to correct for. You recall that
summing the exterior product of two spinors over their
polarizations gives the projection operator

∑
uū = /p+m;

therefore each spinor has dimension 1/2. This means we
have to correct the previous result for Nd to read

Nd = 4−Ng −Nq − 1
2Nq (17.12)

in agreement with (17.9).
I made a remark above, about gauge invariance, or

possibly other symmetries, causing some diagrams to be
more convergent than predicted by our formula for Nd.
The most famous example is the case of Ng = 2, which
are diagrams contributing to the gluon vacuum polariza-
tion. Gauge invariance tells us that they should depend
on the external gluon momentum q as

q2 δµν − qµqν (17.13)

This means that two factors of momentum that we
counted toward the degree of divergence are not loop
momenta; instead they can be brought outside of the
integral, making it more convergent that we naively esti-
mated. To remind ourselves of this possibility, we could
add an extra term −P, so that

Nd = 4−Ng − 3
2Nq − P (17.14)

where P is the known power of the coefficient in front of
the integral.

Exercise. Show that the power of couplings gP of an
arbitrary diagram is given by

P = 2× (# of loops) +Ng +Nq − 2 (17.15)

This is probably easiest to do in the usual normalization
of the fields, where the couplings appear in the conven-
tional way, g for the 3-particle vertices and g2 for the
4-gluon vertex.

A fortunate consequence of the formula (17.14) is that
only a finite number of the different kinds of diagrams
are divergent, when we classify them by their numbers of
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Ng 1 2 3 4 0 1

Nq 0 0 0 0 2 2

Nd 3 2 1 0 1 0

P 2 1 0 1 0

typical
diagrams

external lines. Therefore we can make a table to illustrate
all the possibilities:Table I: Superficial degrees of divergence, Nd (before ac-

counting for P), for graphs with Nq external quarks and Ng
external gluons. P is the power of external momentum fac-

tors.

The tadpole diagrams, with Ng = 1, provide another
example of our statement that symmetries can make a
diagram more convergent than power counting would
suggest,

∼ 〈Aµ〉 , (17.16)

This diagram is naively divergent with Nd = 1, but in
fact it vanishes. One can think of it as an expectation
value of the gluon field. Such a thing, if nonzero, would
spoil Lorentz invariance, as well as gauge invariance. And
it would break discrete symmetries like C and P.

We already discussed the vacuum polarization dia-
gram, the fact that it is proportional to

∼ δµνq2 − qµqν (17.17)

We will derive this result later on. It is an example of
how one must be careful about regulating the divergences
from the loops in a gauge invariant way. The behav-
ior (17.17) reduces its Nd by 2, so that instead of being
quadratically divergent, it is only logarithmically diver-
gent, but if the regularization method failed to respect
gauge invariance, it would be afflicted with this more se-
vere quadratic divergence.

Moreover, symmetry prevents the diagram

(17.18)

from being linearly divergent as its Nd = 1 would sug-
gest. The only kind of Lorentz-invariant loop integrand
one could write, consistent with this power counting,
has the form p · X/(p2)2, schematically, where p is the
loop momentum and X represents an external momen-
tum or polarization vector. But pµ/(p

2)2 is odd under

pµ → −pµ, so its integral must vanish, as long as the reg-
ularization procedure does not introduce any pathology
that would spoil this reasonable expectation. And we can
also argue that it must vanish by Lorentz symmetry, since∫
d 4p pµ/(p

2)2 would define some preferred direction in
spacetime if it were nonzero. Therefore the 3-gluon am-
plitudes are also only logarithmically divergent. In fact
gauge invariance provides yet another reason this must be
so: we know that the three-gluon interaction comes with
a power of external momentum, from its Feynman rule,
and this explains why the actual form of the integrand
must be qµ/(p

2)2, giving Nd = 0.
There is one possible caveat to the gauge invariance

argument that should be kept in mind however. There
is no guarantee that individual diagrams will be gauge
invariant; only the sum of all diagrams contributing to a
given process at a given order must necessarily be gauge
invariant.

17.2. Choice of gauge

Before we embark on explicit calculations of loop dia-
grams, I wanted to discuss the relative advantages of
some choices of gauge relative to others, when it comes to
defining the gluon propagator. In our earlier discussion
of gauge fixing, lecture 12, we discussed a particular class
of gauges η ·A = 0, involving an arbitrary four vector ηµ.
This is actually not the most convenient one for doing
perturbative calculations, even though it was conceptu-
ally appealing. For one thing, it spoils Lorentz invariance
temporarily, although these terms must cancel out in the
end.

A simpler choice would be the Lorentz gauge ∂µAµ =
0. Let us recall how the Faddeev-Popov procedure would
work in this case. The gauge-fixed path integral takes
the form

Z =

∫
ei

∫
1
4 (∂µAν−∂νAµ−A×µ Aν)2 ∆(A) δ[∂µAµ]DAµ ,

(17.19)
omitting for simplicity the quarks. We rewrite the de-
terminant ∆(A) as a path integral over ghost fields. We
take advantage of the fact that this determinant does
not change at all if we impose a slightly different choice
of gauge, ∂µAµ = f(x), with an arbitrary function f .
Therefore we are free to do a weighted average over the
path integral,

Z →
∫
Df e i2

∫
f2d 4x Z (17.20)

Then the delta functional gets rid of
∫
Df , and we are left

with a new term 1
2 (∂µAµ)2 in the Lagrangian, that allows

the propagator to be defined. To see this, consider the
modified equation of motion for the gauge field, including
a source term,

�Aν −����∂ν∂µAµ = Sν (17.21)
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and notice that the crossed-out term is removed by the
new gauge-fixing term, and therefore we may invert the
� operator and solve for the gauge field,

Aν =
1

�
Sν =

1

k2
Sν , (17.22)

which shows that the propagator is simply δµν/k
2 in this

gauge. That obviously simplifies many perturbative com-
putations, compared to the axial gauge propagator.

Of course nothing obliges us to choose e
i
2

∫
f2d 4x as the

weighting factor. One can equally well take eξ
i
2

∫
f2d 4x

with some arbitrary number ξ 6= 0. This yields a more
general class of covariant propagators of the form

Pµν =
1

k2

(
δµν − η

kµkν
k2

)
(17.23)

where η is related in some simple way to ξ.
Exercise. Find the relation between η and ξ.
The choice η = 0 is known as Feynman gauge. Another
very convenient choice is η = 1, the Landau gauge. It has
the property of being transverse, kµPµν(k) = 0, which
leads to some simplifications in loop calculations. For
example it greatly reduces the number of diagrams in the
process we are going to consider next.48 Nowadays you
can find computer programs that will do the symbolic
algebra for you, for computing such diagrams.49 Nev-
ertheless, it is much easier to avoid mistakes if you can
reduce the number of diagrams.

17.3. Explicit loop calculations

So far we have made numerous statements and exposi-
tions of a rather general nature, without getting into the
details of computing loop diagrams. I would now like to
go over some of those details, just to illustrate the cal-
culational techniques. The example I will consider is the
scattering of two quarks. To lowest order, as we know, it
looks like

q

j

i

l

k

∼ g2
0

q2

λAji
2

λAlk
2

(17.24)

48 In the lecture RPF says it reduces the number from 17 to 4.
Perhaps he had in mind that the number of terms in the 3-gluon
vertex is greatly reduced when taking only the transverse terms.
Also the ghosts decouple in Landau gauge.

49 Wolfram’s SMP (Symbolic Manipulation Program), the forerun-
ner of Mathematica, was in use at Caltech at this time.

When we go to the next order, there are quite a few
diagrams, including

+ +

+ + + +

−

x

+ + permutations

ghost

mδ

+ + + +

One simplification we can immediately make is to first
isolate the primitive divergences. For example, consider
the diagrams of the form

+ + . . . 

The interesting part of this calculation is the loop, not
the external currents nor the gluon propagators that con-
nect them to the loop. We might as well calculate the
diagrams

+ + . . . 

by themselves, since it is trivial to take that result and
add to it all the tree-level parts such as the gluon prop-
agators and the spinors for the external currents.

Now to illustrate the techniques, I am just going to
compute the simplest and dullest of all of these, namely
the quark loop contribution to the vacuum polarization,

q q

p−q

p

b
ν

jai
µ

Once you understand the principles, it is just a matter of
tedious effort to compute the harder ones.50 By apply-
ing the rules, we can write down the expression for this
diagram,

g2
0

(
−Tr

∫
d 4p

(2π)4
bjν

1

/p− /q −m
λj
2
γν

1

/p−m
λi
2
γµa

i
µ

)
(17.25)

50 RPF mentions in the transcript that it is not so straightforward
to get a gauge invariant result for diagrams with gluon loops,
using Pauli-Villars regularization.
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where I am taking aiµ and bjν to be combined spin-color
polarization vectors for the external gluons, but if you
prefer you could replace these by spin polarization vec-
tors εµ and εν , and consider the gluon colors to be simply
i and j. The trace here is a sum over all possible interme-
diate states, both spins and colors. Therefore it is really
the product of two traces, one for the Dirac matrices and
one for the color matrices.

Next, we should rationalize the quark propagators—
multiply numerator and denominator by (/p + m)—and
carry out the traces. This looks like

tr

[
1

/p− /q −m
γν

1

/p−m
γµ

]
︸ ︷︷ ︸ tr

(
λiλj

4

)
︸ ︷︷ ︸ (17.26)

tr

[
(/p− /q +m)γν(/p+m)γµ

[(p− q)2 −m2][p2 −m2]

]
δij
2

= 2

[
(p−q)µpν + (p−q)νpµ−δµν(p·(p−q)−m2)

]
[(p− q)2 −m2][p2 −m2]

δij

Notice that the gluon color is conserved by the loop.
Now we are left with the integral, that has exactly the

same form as in QED. There is a famous trick for combin-
ing the denominators, that I adapted from Schwinger by
eliminating a step from his Gaussian integral method,51∫ 1

0

dx

[ax+ b(1− x)]2
=

1

ab
(17.27)

This allows us to combine the propagators into the form

1

(p2 − 2p · q + q2 −m2)(p2 −m2)
=∫ 1

0

dx
1

[p2 − 2p · qx+ q2x−m2]2
(17.28)

so that the loop integral becomes∫ 1

0

dx

∫
d 4p

(p2 − 2p · qx+ q2x−m2)2
(17.29)

×
(
2pµpν − pµqν − pνqµ − δµν(p2 − p · q −m2)

)
To further simplify it, we wish to complete the square in
the denominator, by shifting the integration variable by
p→ p+ qx:∫ 1

0

dx

∫
d 4p

(p2 + q2x(1− x)−m2)2
(17.30)

×
(

2pµpν + (p · q terms) + 2qµqν x(1− x)

− δµν(p2 − q2x(1− x)−m2 + p · q terms )
)

Once it is in this form, it is not necessary to keep careful
track of the p · q terms in the numerator, since they are
odd in p and integrate to zero.

51 In my notes at this point I have written “stolen from Schwinger
by eliminating a step from his Gaussian integral method.”

17.4. Regularization

Everything so far seems perfectly innocuous and stan-
dard, but if we want to be careful, you will notice that
I have cheated. The integral is divergent, so how do we
know that the step of shifting the integration variable by
p→ p+qx is legitimate? It could conceivably change the
result in some unphysical way, unless we have carefully
defined what we mean by this integral. To be rigorous,
we must specify exactly how we are going to regularize
the integral, to cut off the ultraviolet divergence.

The method I want to use in this lecture is the histor-
ical one, invented by Pauli and Villars. As I alluded ear-
lier, it turns out to be too simplistic to change the prop-
agator as in (15.10). This was attempted by some of the
early workers in the field, and it was found to spoil gauge
invariance. Instead, one needs to apply this prescription
to the whole amplitude. The consistent way is to replace
the quark mass in the denominators by m2 → m2 + Λ2,
and subtract the resulting expression from the original
amplitude. The new integrand obtained in this way has
good behavior in the ultraviolet, and so the procedure of
shifting the integration variable is perfectly consistent,
and moreover it preserves the gauge invariance, as we
will see. And it is also consistent with our assumption
that integrals like ∫

d 4p
pµ

p2 −m2
= 0 (17.31)

should vanish, with the understanding that this is now
a shorthand for the fully regulated expression, where we
have subtracted the corresponding term with m2 → m2+
Λ2.

The statement (17.31) looks trivial, but we can use it
to derive a more interesting result, now that we are confi-
dent that shifts in the integration variable are legitimate.
By shifting p→ p− a, we obtain∫

d 4p
pµ

(p− a)2 −m2
= aµ

∫
d 4p

(p− a)2 −m2

And then by differentiating with respect to aν and setting
aµ = 0, we get the useful identity∫

d 4p
δµν(p2 −m2)− 2pµpν

(p2 −m2)2
= 0 (17.32)

Incidentally, this could also be obtained more directly,
using ∫

d 4p
∂

∂pν

pµ
p2 −m2

= 0

which should be true for the integral of the derivative of
anything. We could be suspicious of such a statement
in the unregulated theory, since the surface term might
fail to vanish, but it rigorously vanishes in the regulated
theory.



47

Let us now return to the calculation we started above,
the computation of the vacuum polarization diagram.
We want to reorganize the numerator of (17.30) so that
it has one term in the same form as (17.32):∫

d 4p

(p2+q2x(1− x)−m2)2

[
2pµpν−δµν(p2+q2x(1− x)−m2)

−2qµqνx(1− x)+2δµνq
2x(1− x)

]
This has the pleasing feature that the first term, which
appears to be quadratically divergent, actually vanishes.
We are left with the second term, having the form (17.13)
that I said must arise as a consequence of the gauge sym-
metry:

2(qµqν−δµνq2)

∫ 1

0

x(1−x)dx

∫
d 4p

(p2 + q2x(1− x)−m2)2

(17.33)
This leaves the logarithmically divergent integral, whose
evaluation I will take up in the next lecture.

18. RENORMALIZATION, CONTINUED
(1-14-88)

To remind you, we were computing the one-loop cor-
rections to quark-quark scattering, and had noted that it
is convenient to factorize the amplitude with the gluon
vacuum polarization correction in the form

= J iµ g
4
0

1

q2
B

1

q2
J iµ (18.1)

where B represents the simpler diagram with
the gluon lines amputated, and J iµ are the external quark
currents, with color indices i. We found that B takes the
form

B = 2(δµνq
2 − qµqν)I, (18.2)

I =

∫ 1

0

dxx(1− x)

∫
d 4p/(2π)4

[p2 −m2 + q2x(1− x)]2

Because the currents are conserved, q · J = 0, we can
simplify (18.1) slightly,

= 2J iµ g
4
0

I

q2
J iµ (18.3)

which has the same form as the tree-level contribution,

= Jµ
g2

0

q2
Jµ (18.4)

Written in this way, it is clear that the loop contribution
can be expressed as a change in the coupling constant,

g2
0 → g2

0 + 2g4
0I

→ g2
0

1− 2g2
0I
≡ g2

eff (18.5)

where the first arrow indicates a result that is consis-
tent to the order of perturbation theory at which we are
working, while the second one uses the hindsight of re-
summing the leading logs, that we discussed in the last
lecture.

Now to do the logarithmically divergent integral I, I
will continue to use Pauli-Villars regularization, although
later on we will introduce the more elegant method of
dimensional regularization. Hence we must subtract from
I the similar quantity with the modified propagator

1

(p2 − (m2 + Λ2) + q2x(1− x))2
(18.6)

Rather than directly subtracting, there is a nicer way to
implement this, by first thinking of I as a being a function
of m2,

I(m2) =

∫ 1

0

dxx(1− x)

∫
d 4p/(2π)4

[p2 −m2 + q2x(1− x)]2

(18.7)
and then differentiating with respect to m2. Doing this
makes the integral convergent, even without subtracting
anything. If we then integrate I ′ with respect to m2,

−
∫ m2+Λ2

m2

I ′(M2) dM2 = I(m2)− I(m2 + Λ2) (18.8)

the result is the subtraction we originally wanted to carry
out. The trick then is to evaluate the convergent integral
appearing in I ′(M2), and postpone doing the integral
over M2 until afterwards:∫ m2+Λ2

m2

dM2

∫ 1

0

dxx(1− x)

∫
d 4p/(2π)4

[p2 + q2x(1− x)−M2]3︸ ︷︷ ︸
≡
∫

d 4p

(2π)4

1

(p2 − L)3
=

1

32π2iL

(18.9)

In performing the integral, I have glossed over a few steps
that I assume you are already familiar with, from a pre-
vious course on quantum field theory, notably doing the
Wick rotation to avoid the poles from the iε prescription,
which gives the factor of 1/i.

Next we carry out the integral over M2,∫ m2+Λ2

m2

dM2 1

16π2i

1

M2 − q2x(1− x)
(18.10)

=
1

16π2i
ln

(
m2 + Λ2 − q2x(1− x)

m2 − q2x(1− x)

)
.

Since we are ultimately interested in the limit as Λ →
∞, this can be simplified by ignoring the finite terms in
the numerator of the argument of the logarithm. As we
discussed before, the ln Λ divergence gets absorbed into
the tree-level contribution by redefining the bare coupling
g0.
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To further simplify the discussion, I would like to con-
sider momenta such that −q2 � m2, so that we can
ignore the quark mass. You might be concerned that
this could give rise to an infrared divergence from the
places where x = 0 or 1 when we perform the integral
over x, but because the integrand is a log, these singu-
larities are integrable and lead to no difficulty. In this
approximation, we have∫

dxx(1− x)

16π2i

[
ln

(
Λ2

−q2

)
− lnx− ln(1− x)

]
=

(
1

6
ln

(
Λ2

−q2

)
− 5

18

)
(18.11)

Remember that −q2 ≡ Q2 is positive, since ~q is the mo-
mentum transfer in the electron-electron scattering. The
integral of the logarithm can be done using integration
by parts.

Now we have evaluated the integral I, and we can put
it back into the expression (18.3):

J
1

Q2
J

g2
0 +

g4
0

16π2

(
∆β0

(
ln

Λ2

Q2

)
+ a

)]
(18.12)

where ∆β0 = −2

3
nf and a =

10

9
nf (18.13)

where nf is the number of quark flavors having mass less
than Q2; otherwise our approximation Q2 � m2 is not
valid. Here ∆β0 is just the quark contribution to β0; the
full β0 gets an additional contribution of +11 from the
gluon loop, that we are not calculating here.

We can now see more explicitly how the renormaliza-
tion of the bare coupling is derived, which absorbs the
dependence on the cutoff arising from the loop diagram.
Consider the effective coupling defined in (18.5),

g2
eff =

g2
0

1− g20
16π2 β0 ln Λ

Q2

=
16π2(

16π2

g20

)
− β0 ln Λ2

Q2

. (18.14)

The second line makes it clear how g2
0 must depend on Λ

in order that geff be independent of Λ,

16π2

g2
0(Λ)

≡ 1

ĝ2
0(Λ)

= β0 ln
Λ2

λ2
P

+ c1 (18.15)

where I have inserted a renormalization scale λP , since
g0 is a Lagrangian parameter that cannot depend on the
external momentum Q. As I previously mentioned, we
are free to choose a convention for defining λP such that
the arbitrary constant c1 vanishes, if so desired.

18.1. Effective Lagrangian perspective

Although we imagined that the value of g2
0 has been

fixed in this example by comparing to a particular ob-
servable, the scattering cross section for two quarks, it is

important to emphasize that once g2
0(Λ) has been deter-

mined, it is now valid for the study of any process; we
do not need to define a separate g2

0(Λ) for every differ-
ent observable. One way to understand this is from the
fact that there is a finite number of primitively divergent
diagrams in the theory, repeated in this table,
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0
N

Degree

of

divergence actual

naive

You recall that the tadpole diagram vanishes. The renor-
malizability of the theory implies that all the divergent
diagrams can be related to an effective Lagrangian con-
tribution that has the same form as the bare Lagrangian.
So for example, all the divergent diagrams with only ex-
ternal gluons must correspond to terms in the Lagrangian
in this manner:

(∂µAν − ∂νAµ)2 A×ν A
•

µ∂µAν A×ν A
•

νA
×
µ Aν

A priori, we would have to renormalize three different pa-
rameters to absorb the divergences. But because of gauge
invariance, we know that they must organize themselves
into the form trFµνFµν , that depends only on the single
parameter g0. Therefore these divergences are related to
each other in such a way that they can all be absorbed by
the renormalization of the single parameter g0. This is
perhaps easiest to see in the convention where we keep g0

out of the field strength definition and put it as a prefac-
tor in the Lagrangian, (1/g2

0)trFµνFµν . Then the three
divergences indicated above would all contribute to the
shift in the effective Lagrangian that goes as

ln Λ2 trFµνFµν (18.16)

This of course assumes that the regularization method
did not spoil gauge invariance. Otherwise we would have
to fudge the results to make this work out.

A similar argument applies to the terms with external
quarks. The self-energy diagram requires us to renormal-
ize an additional quantity, the quark mass. But the ver-
tex correction does not need anything new; gauge sym-
metry guarantees that the same renormalization of g0 as
needed for the gluons also suffices for the coupling to
quarks.

To make this clearer, let’s rephrase these statements
in the context of the path integral. We could imagine,
if we were sufficiently adept, being able to carry out the
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integral over quarks for a fixed gauge field background,∫
DAµ e

i 1

g20

∫
FµνFµν

∫
DψDψ̄ ei

∫
ψ̄(i /D−m)ψ

=

∫
DAµ e

i 1

g20

∫
FµνFµν

det
(
i /D −m

)︸ ︷︷ ︸ (18.17)

G(A) ∼ ei ln Λ2
∫
FµνFµν

giving a functional determinant of the covariant Dirac op-
erator, that I am calling G(A). Even though we can’t cal-
culate G(A) exactly, from perturbation theory we know
that it has a divergent contribution like I have indicated,
which has the same form as the tree-level gluon action.
We can then rewrite the bare coupling in terms of a renor-
malized coupling, which is finite as Λ → ∞, plus a cor-
rection designed to cancel the ln Λ divergences. In the
convention I have chosen above, it would be easier to
think of it as a correction to 1/g2

0 :

1

g2
0

=
1

g2
ren

+ δ

(
1

g2
0

)
(18.18)

These extra terms labeled as δ(1/g2
0) are known as the

counterterms.
There is an interesting consequence of the running for

the convergence properties of the loops when we start to
think about the higher-order contributions, such as

+ + + . . . 

One can think of such diagrams as though they were at
one order lower in perturbation theory, but constructed
from propagators that have already been dressed at one
loop,

+ + . . . ∼ 1

Q2 lnQ2

(18.19)
An integral that is normally considered to be logarithmi-
cally divergent would instead behave like∫ Λ dp p

p2 ln p2
∼ ln(ln Λ2) (18.20)

This is still divergent, but more mildly so. And going to
higher order, one could get higher powers of logs in the
denominator, which would make the integral converent,∫ Λ

c

dp p

p2 ln2 p2
∼
∫ Λ

c

d ln p2

ln2 p2
∼ 1

ln c
− 1

ln Λ
(18.21)

This could be understood as a consequence of replacing
the vertices at the ends of the dressed propagator by the
dressed vertices, that behave as α(Q) ∼ 1/ ln(Q2) to give
this more convergent behavior.

18.2. Misconceptions

I would like to discuss a different viewpoint of the run-
ning coupling, that you may encounter in the literature,
and that I consider to be misguided. The idea is to choose
some physical amplitude—suppose for simplicity that at
tree level it is linear in α—and to consider it as a function
of Q. One could then define a running coupling α(Q2)
to be exactly determined by this physical observable. An
example would be the amplitude for the scattering of two
quarks, to all orders in perturbation theory,
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≡ α(Q2)

Q2
(18.22)

However there would be no such thing as perturbation
theory in regard to this particular process, since there is
nothing to expand in: α(Q2) is the exact result. Another
example is the correction R − 1 for the process e+e− →
hadrons that we discussed previously. It gives rise to a
different definition of the coupling, call it

α(Q2) = π(R− 1) (18.23)

If we were to compare these two definitions, we would
find out that they approximately agree, and a useful way
to compare them would be by differentiating and trying
to reconstruct the beta function. We would find that
both definitions satisfy equations of the form

dα

d lnQ2
= β0α

2 + β1α
4 + β2α

6 + . . . (18.24)

and that the first two coefficients β0, β1 agree for both
definitions. But beyond that, the remaining coefficients
are in general different between the two definitions, and
unrelated to the values of β0, β1. Contrast that to the
definition I made,

dα

d lnQ2
=

β0α
2

1− β1

β0
α2

= β0α
2 +β1α

4 +
β1

β0
α6 + . . . (18.25)

where the higher coefficients are all determined. In our
procedure, the amplitudes for the two processes have to
both be calculated perturbatively in α. This is how
physics should work: we have a definite theory that is
independent of the process and we predict the observ-
able from it. The theory should not be predicated on
one particular process or another.

Adding to the confusion caused by such proposals is
the misconception that there is a momentum-dependent
coupling constant in the Lagrangian. As I explained be-
fore, the Q dependence in α(Q) is just a shorthand to
remind us how the loop-corrected amplitude depends on
Q, that we can deduce by replacing λP → Q in the def-
inition of g0(Λ). But the actual coupling that goes into
the Lagrangian is g0(Λ), which does not depend on Q.
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18.3. Dimensional regularization

Let me finish by giving a preview of how the logarithms
arise in dimensional regularization, that we will discuss
in more detail in the next lecture. Because the action
must be a dimensionless quantity, when we continue the
dimension of spacetime to some value D = 4 − ε, the
coupling that was dimensionless in D = 4 is no longer so.
For this discussion I will adopt the field normalization
where F ∼ ∂A+[A,A] and the coupling constant appears
in front of F 2. Because of this form of F , there is no
choice but to say that the dimensions of A are [A] =
1/[L] = [M ], and therefore the action looks like

1

g2

∫
F 2
µν d

Dx︸ ︷︷ ︸
dimensions of M4−D = [M ε] (18.26)

Therefore to make the action dimensionless, we must
have

[g2] = [M ε] (18.27)

To make this explicit, it is convenient to relate g to a
dimensionless coupling g0 and a mass scale that I sug-
gestively call λP ,

g2 = g2
0λ

ε
P (18.28)

Now imagine redoing the calculation that led to eq.
(18.5) using dimensional regularization. The result takes
the form

g2 + g4Q−ε
(

2β0

ε

)
→ 1

1
g2 −

2β0Q−ε

ε

(18.29)

≈ 1
2β0

ε λ
−ε
P −

2β0

ε Q
−ε

in which the ln Λ2 divergences of Pauli-Villars get re-
placed by 1/ε poles. Here I have resummed the leading
logs and observed that necessarily g−2

0 = 2β0/ε+ const.,
in order to cancel the divergence. Then we notice that

2

ε
(λ−εP −Q

−ε) = ln(Q2/λ2
P ) +O(ε) (18.30)

just like the outcome of the cutoff method of regulariza-
tion.

19. RENORMALIZATION (CONCLUSION);
LATTICE QCD (1-19-88)

I would like to add something to our previous discus-
sion concerning the renormalization group equation. Re-
call that the definition

16π2

β0g2(Λ2)
− β1

β2
0

ln
16π2

β0g2(Λ2)
= ln

Λ2

λ2
P

(19.1)

tells us (in an implicit way) how the coupling g must
depend on the cutoff Λ. Now imagine some physical pro-
cess, whose amplitude M—for definiteness I will pick
an example where it is dimensionless—we compute from
the theory with the cutoff, using the coupling g0. M
is generically a function of g0, some momenta which for
simplicity I will represent by a single scale Q, and the
cutoff, of the form

Mtheory

(
g2

0 , ln
Λ2

Q2

)
(19.2)

The explicit Λ dependence goes away, if we replace
g0 → g(Λ) using the coupling defined by eq. (19.1). In
perturbation theory, we would find that

Mtheory = g2
0 + g4

0

(
β0 ln

Λ

Q
+ c1

)
+ . . .

= α(Q2) + c2α
2(Q2) (19.3)

Now sinceMtheory

(
g2(Λ), ln Λ2/Q2

)
is independent of Λ,

we are free to set Λ2 = Q2. Then the physical amplitude
is

Mphys =Mtheory(g2(Q2), 0) (19.4)

where g2(Q2) is defined by eq. (19.1), or explicitly

16π2

β0g2(Q2)
− β1

β2
0

ln
16π2

β0g2(Q2)
= ln

Q2

λ2
P

(19.5)

and now the physical amplitude is

Mphys = g2
0(Q2) + c1g

4
0(Q2) (0 + c2) + . . .

(19.6)

Comparing to (19.3), we can see that

g2
0(Q2)

16π2
= α(Q2) (19.7)

since

Mphys = α(Q2) + c2α
2(Q2) + . . . (19.8)

This makes clear what is the correct interpretation of the
running coupling constant that I was criticizing in the
previous lecture. The Q2 dependence is not present in
any fundamental coupling in the Lagrangian, but rather
it arises from taking advantage of the Λ-independence
of the physical amplitude and using our freedom to set
Λ equal to the relevant scale of the process, to get rid
of the log.52 Of course, this is a consequence of solving
the renormalization group equations, but this point of
view seems to me simpler and more intuitive than the
RG equations.

52 The preceding sentences are not in my notes, but seem to be the
logical connection to the previous lecture.
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19.1. Lattice QCD

Now we will move on to the main subject of this lec-
ture, which is a comparison of different kinds of cutoff
schemes, including the lattice and dimensional regular-
ization.53 As we have mentioned before, the path inte-
gral ∫

eiSDA =

∫
e
i 1
4g2

∫
FµνFµνd

4x+...DA (19.9)

is meaningless until a UV cutoff is introduced. I find
that the lattice is the most physically satisfying way of
accomplishing this. We approximate spacetime as a lat-
tice, and discretize all the field variables and notions of
differentiation; for example

(∂φ)2 → 1

ε2
(
φ(x)− φ(x+ ε)

)2
(19.10)

K. Wilson invented this technique especially for solving
QCD on the computer. In this framework, the gauge field
Aµ is a connection that relates the relative orientations
of the color frames at neighboring points on the lattice;
these can be different from each other by an arbitrary
SU(3) rotation. Hence it is natural to regard Aµ as living
on the links connecting neighboring lattice points, rather
than sitting on the lattice points themselves. Consider
two neighboring points, labeled by 1 and 2, and define
the link variable

U12 = ei
∫ 2
1
Aiµ

λi

2 dxµ (19.11)

where the path is a straight line connecting lattice points
1 and 2. The quarks, on the other hand, live on the
sites. In this formulation, the Uij become the dynamical
variables rather than Ai.

Now we need to formulate the action in terms of the
link variables. Of course it has to be gauge invariant. An
invariant quantity must involve a closed path in configu-
ration space,

1 2

34

y

x

a

a

: U14U43U32U21 (19.12)

= 1 + iF ixy
λi

2
a2 +O(A2)

The small a× a planar region together with this prod-
uct is known as a plaquette. U14U43U32U21 is invariant
under gauge transformations at any of the interior points

53 RPF called it “dimensional renormalization” in his lectures, but
would have adopted the more common terminology for the ver-
sion to be published.

4, 3, 2, but to make it also invariant at site 1, we must
take the trace:

tr [U14U43U32U21] = tr 1 + 0 +O(A2) (19.13)

The O(A2) term is the interesting part. Notice that

U = 1 + i
∑

bi
λi

2
+ . . .

Ū = 1− i
∑

bi
λi

2
+ . . .

tr ŪU = tr 1 +
∑

bibi
1
2 + . . . (19.14)

But since U is unitary, it must be that all the terms
of O(b2) cancel out, implying that we need to also keep
track of such terms in the individual U matrices. It turns
out that the relevant ones are

U = 1 + i
∑

bi
λi

2
− 1

4

∑
bibi + . . .

Ū = 1− i
∑

bi
λi

2
− 1

4

∑
bibi + . . . (19.15)

When we keep these second-order terms in the expansion
of the Uij variables in the plaquette, and expand the
result to O(A2), the resulting expression is the finite-
difference version of the free part of the gauge kinetic
term,

F aµνF
a
µν a

4 (19.16)

where µν = xy in the example shown in (19.12). Sum-
ming on all plaquettes gives a sum on µ, ν as well as the
sum over all locations, resulting in the action

S =
2

g2

∑
plaquettes

(
tr[UUUU ]− tr 1

)
, (19.17)

where the additive constant is unimportant. We must
be careful about the relative orientations of the U ’s on
the links, as indicated by the arrows in (19.12), to re-
spect gauge invariance. This is not indicated explicitly
in (19.17) but it should be kept in mind. The factor of
a4 in (19.16) represents the integration measure, since∑

F 2 a4 →
∫
d 4xF 2 (19.18)

in the continuum limit.54

Next we turn to the interaction of gluons with quarks.
How do we represent ψ̄ /Dψ? Consider∑

links

q̄(x)γµ [q(x+ µ)− q(x)] (19.19)

54 I have in parentheses the question “take real part of tr[UUUU ]?”
in my notes. The answer is yes; for a nice review from this era,
see J. Kogut, 10.1103/RevModPhys.51.659.
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using the shorthand that x + µ = x + a~eµ, in terms of
a lattice unit vector ~eµ that points in the µ direction.
But this is not yet gauge covariant, and it is missing the
integration measure factor. Instead, take

ia3
∑
links

q̄(x)γµ [Ux,x+µq(x+ µ)− q(x)] (19.20)

In fact, the second term q̄(x)γµq(x) can be dropped, since
it has no effect on the dynamics, but just contributes an
overall phase to the path integral.55

Let’s look more closely at the gauge invariance of the
gluon kinetic term. One can transform the color axes
independently at each lattice site. Suppose we transform
site 1 by the SU(3) matrix Λ(1), and similarly at site 2
by Λ(2). One finds that U21 changes by

U
12

21

Λ(2)Λ(1)
U21 → Λ†(2)U21 Λ(1) (19.21)

Therefore the action is invariant because

tr

[
. . . U32 Λ(2)Λ̄(2)︸ ︷︷ ︸U21 . . .

]
= tr [. . . U32U21 . . . ]

1 (19.22)

This reasoning also shows how the quark kinetic term is
invariant.

However we must still specify the form of the path inte-
gral measure for the link variables. Since U is an SU(3)
transformation, a gauge invariant measure is required.
This is known to mathematicians as the Haar measure.
Since SU(3) is a compact group,

∫
dU is finite at a given

site, unlike the usual measure
∫
dA. We will not go into

the mathematical details of the Haar measure here, but
it is intuitively similar to the more familiar integration
measure for rotations (sinβ dα dβ dγ for SO(3) in terms
of Euler angles).

Just like for a Pauli-Villars cutoff Λ, we need to find
out how g must vary with the lattice spacing a in order
for the theory to give results that are independent of a
in the continuum limit, a → 0. Technically, this is not
so easy to do as for the Λ cutoff, but conceptually, it
can be carried out in the same way. We would have
to work out perturbation theory on the lattice to do it
properly. Less rigorously, one can expect that g(a) has
a similar structure to our previous expression for g(Λ) if
we identify Λ = c/a for some constant. Then the task
becomes determining the correct value of c. Another way
of thinking about it is in terms of the renormalization
scale we called λP in eq. (16.1). We could define Λ = 1/a,
but we would find that some other value of λP is needed
to describe the same physics on the lattice relative to the
Λ cutoff.

55 I have elaborated here on what is written in my notes: “because
it is just a number (?)”

To my mind, the lattice is the most concrete and least
mysterious of all regulators, and it is the most physi-
cally sensible. But—and now I’m going to speculate—it
seems like we are missing something by having to rely on
these rather ad hoc schemes for defining our theories. It’s
comparable to Leibnitz and Newton inventing the inte-
gral calculus, which also looks like taking the continuum
limit of a lattice,

lim
h→0

∑
m

f(x+mh)h =

∫
f(x) dx . (19.23)

The value of the integral does not depend on the machin-
ery of cutting off the small scales and taking the limit, so
one need not be preoccupied with the details of exactly
how to discretize, like we are doing with all of our differ-
ent regulator schemes for the path integral. We know how
to do the ordinary integrals directly. Similarly we believe
that the path integral has some kind of intrinsic meaning
that does not depend on the cutoff scheme, but the dif-
ference is that we can’t avoid that whole discussion, and
the dependence on details of whether we use this kind
of cutoff or that kind of cutoff. This makes me dream,
or speculate, that maybe there is some way, and we are
just missing it, of evaluating the path integral directly,
without having to make this detour into the machinery
of renormalization, since we know that the physics has
to be independent of it in the end.

19.2. Dimensional regularization

Previously we already discussed dimensional regular-
ization in a preliminary way. Here I would like to do it
in somewhat more detail. The basic observation is that
an integral like∫

dDp

(p2 −m2) ((p− q)2 −m2))
converges for D < 4 .

(19.24)
Hence we define D = 4 − ε, and take the limit ε → 0 in
the end. An integral like (19.24) gives a pole 1/ε. This
idea was used to great advantage by K. Wilson to under-
stand phase transitions in statistical mechanics, and it
was applied to gauge theories by ‘t Hooft and Veltman:

K. Wilson, Phys. Rev. D7, 2911 (1973)

G. ‘t Hooft and M.J.G. Veltman, Nucl. Phys. B44, 189
(1972)

Exercise. Prove the following statements in D dimen-
sions:
1. g2 has dimensions of E4−D.
2. Defining ηg and ηq as the number of external gluon or
quark lines, and L as the number of loops, the power of
g for any diagram is 2(L− 1) + ηg + ηq.
3. The dimension, in powers of mass, of the matrix
element (amplitude) |T | is d = D + N − DN/2 where
N = ηg + ηq.
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4. The dimension of the integral for a diagram is d =
4− ηg − 3

2ηq − L(4−D).
Now I would like to consider the defining properties

of the momentum space integrals in D dimensions, to
show that they can be evaluated rigorously and with no
ambiguity. There are four basic properties.

1.
∫
f(p) dDp is linear:∫

[αf + βg] dDp =

(
α

∫
f + β

∫
g

)
dDp (19.25)

Among other things, this means that we can use Fourier
and Laplace transforms in D dimensions.

2. Shifts of the integration variable are allowed,∫
f(p+ a) dDp =

∫
f(p) dDp (19.26)

where a is a constant vector.

3. Scaling:∫
f(αp) dDp =

1

αD

∫
f(p) dDp (19.27)

4. Normalization:∫
e−p

2/2 dDp = (2π)D/2 (19.28)

since
∫
du e−u

2/2 =
√

2π.

We can define Fourier transforms in the usual way,∫
dDp f(p) e2πip·x = φ(x)∫

dDp φ(x) e−2πip·x = f(p) (19.29)

Next let us evaluate some integrals. Notice that∫
e−

α
2 p

2

dDp =

(√
2π

α

)D
(19.30)

Then we can use the shift property to find that∫
e−

α
2 p

2

eip·xdDp =

√
2π

α

D

e−x
2/2α (19.31)

Other integrals can be generated from this one by differ-
entiating with respect to α.

Exercise. Prove that∫
e−

α
2 p

2

(a · p)(b · p) dDp = X(a · p) (19.32)

and find X. Further prove that∫
e−

α
2 p

2

p2 dDp = DX (19.33)

Another useful integral is

∫
dDp

(2π)D
(p2)R

[p2 − C]M
=

i(−1)R+M

(4π)D/2CR−M+D/2
(19.34)

× Γ(R+D/2) Γ(M −R−D/2)

Γ(D/2) Γ(M)

The reader is invited to derive this one as well.

20. DIMENSIONAL REGULARIZATION,
CONTINUED (1-21-88)

Another very useful class of integrals is that where
the integrand f depends only on the magnitude of p.
(Imagine that we have already Wick-rotated to Euclidean
space.) Then

∫
f(p) dDp = CD

∫
f(ρ)ρD−1dρ (20.1)

To determine CD, we can consider the case where f =

e−ρ
2α/2, since we already know the value of this integral

from (19.30). Comparing with (20.1),

√
2π

α

D

= CD

∫ ∞
0

e−ρ
2α/2 ρD−1 dρ (20.2)

= CD

∫ ∞
0

e−uα/2 u
D−1

2
du

2
√
u

= CD

(
2

α

)D
2

1
2

∫ ∞
0

e−uα/2 u
D
2 −1 du︸ ︷︷ ︸

Γ(D/2)

hence

CD =
2πD/2

Γ(D/2)
(20.3)

Exercise. Find a general formula for
∫
dDp f(p2, a · p).

Hint: relate it to
∫
e−αp

2/2+ip·x dDp.

To combine denominators, we can use formulas like56

∫ 1

0

dx
xm−1(1− x)n−1

[ax+ b(1− x)]m+n
=

Γ(m)Γ(n)

Γ(m+ n)

1

ambn
(20.4)

56 In my notes there is a question mark over the = sign and a
parenthetical note to check the formula, probably a caution from
RPF. It is correct.
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Then∫
dDp

((p− q)2 −m2) (p2 −m2)
(20.5)

=

∫ 1

0

dx

∫
dDp

1

(p2 − 2p · qx+ q2x−m2)
2

=

∫ 1

0

dx

∫
dDp′

1

(p′2 + q2x(1− x)−m2)
2

=

∫ 1

0

dxCD

∫ ∞
0

dρ ρD−1 1

(ρ2 + q2x(1− x)−m2)
2

Claim:∫
dDp f(p2)(a · p)(b · p) =

a · b
D

∫
dDp f(p2) p2 (20.6)

Similarly,∫
f(p2)(a1 · p)(a2 · p) · · · (an · p) dDp (20.7)

= #
[
(a1 · a2)(a3 · a4) + . . .

] ∫
dDp f(p2)pn

where n is assumed to be even.
As we showed before, dimensional regularization re-

produces the logarithms that we get from Pauli-Villars
regularization, through the combination of the 1/ε poles
with terms like (p2/µ2)ε. One shortcoming however is in
the definition of chiral theories, since it is not clear how
to define γ5 in D dimensions, nor correspondingly the
totally antisymmetric tensor εαβγδ. This of course is not
a problem for QCD where parity is conserved.

A novel potential use of dimensional regularization,
which is not usually considered, is that it could provide
more than just a method for evaluating divergent loop
integrals: it is also possible to use it to define a quan-
tum field theory nonperturbatively in 4 − ε dimensions.
I spent some time thinking about this, but was not able
to get anything interesting out of it.57

20.1. Physics in D dimensions

Inspired by dimensional regularization, it is interest-
ing to try to formulate a more complete picture of what
physics would look like in an arbitrary number of dimen-
sions. We start by imagining a linear vector space in D
dimensions, with vectors x, y, etc. Given any two such
vectors, linearity implies that

αx+ βy is also a vector (20.8)

57 In the next lecture RPF expands on this, presenting a way to
formulate quantum field without recourse to the path integral or
canonical quantization.

We need a scalar product, a number associated with ev-
ery pair of vectors,

x · y maps (vectors)
2 → R (20.9)

It must be linear,

(αx+ βx′) · y = αx · y + β x′ · y (20.10)

and associative,

x · y = y · x (20.11)

Now suppose we had four such vectors. We could con-
struct the object

(a · b)(c · d) = aµcνbµdν (20.12)

where the indices are no longer numbers taking on dis-
crete values, but rather markers telling us which vectors
should be dotted with each other. It is just an alternative
notation. In this case, what would it mean to write an
expression like

nµ = aµcνdν (20.13)

in which we have an index that is not contracted? Such
an equation makes sense if we interpret it to mean that

xµnµ = xµaµ cνdν for all x . (20.14)

We can also think of nµ as being a linear map from vec-
tors into R. And we can generalize this to several uncon-
tracted indices, like

mµν = aµbν + cνdµ (20.15)

which means that mµν maps pairs of vectors into R, etc.
Hence there is no need for the indices to take on discrete
values as they would in an integer number of dimensions.

Contraction. In addition to operating on two vectors,
mµν can be contracted on its own indices, mµµ, which is
just a number in R. For the above example, it is obviously
a · b+ c · d. However there is a special bilinear mapping,

δ : (x, y)→ x · y (20.16)

that we call δµν in discrete dimensions. Then

δµνyν = yµ (20.17)

is a consistent definition of δµν . Now δµµ is a pure num-
ber, that we are free to choose. Let us make the definition

δµµ ≡ D (20.18)

Obviously, there is no restriction that D should be an
integer.

Next let’s consider how calculus should work. We can
consider a nonlinear mapping, F (x) : vectors → R, such
as

F (x) =
x · x

(1 + (a · x)2)2
(20.19)
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What is the derivative of F? We define

DcF ≡ lim
ε→0

F (x+ εc)− F (x)

ε
(20.20)

where c is some vector. This is the directional derivative,
along the c direction. It is a linear function of c, so it
must be of the form c·(something). Therefore we define

DcF ≡ c · ∇F = cµ∇µF (20.21)

This specifies the ∇µ operator, independently of c, since
(20.21) must be true for any c. For the example (20.19),

c ·∇F =
c · ∇x · x

[1 + (a · x)2]
2 −

2x · x
[1 + (a · x)2]

3 2a ·x(c ·∇)(a ·x)

(20.22)
as usual. Now

(c · ∇)(x · x) = lim
ε→0

(x+ εc) · (x+ εc)− x · x
ε

= 2c · x,
(20.23)

so ∇µ(x · x) = 2xµ, as expected, and (c · ∇)(a · x) = a · c,
giving ∇µ(a · x) = aµ and ∇µxν = δµν .

Next we construct the Laplacian, by considering suc-
cessive derivatives:

aµbν∇µ∇νF = (a · ∇)(b · ∇)F (20.24)

This allows us to isolate ∇µ∇νF , which is a tensor Tµν ,
whose contraction gives the Laplacian. For example,

∇µ∇µ x · x = 2δµν

∇2(x · x) = 2 δµµ = 2D (20.25)

So far, all of our results look completely reminiscent of
their counterparts in integer dimensions. But the concept
of orthogonal subspaces leads to a novelty. Suppose we
have a vector a such that a · a 6= 0. For any vector x we
can define the part that is orthogonal to a as

x′ = x− a · x
a · a

a (20.26)

so that a · x′ = 0. Then any vector can be written as
a piece proportional to a plus a piece in the orthogonal
direction. Furthermore the dot product of two vectors
splits into

x · y = x′ · y′ + a · y a · x
a · a

(20.27)

If we take away the external vectors, this gives the defini-
tion of the Kronecker delta of lower dimensionality, living
in the subspace orthogonal to a,

δµν = δµ′ν′ +
aµaν
a · a

(20.28)

with δµ′ν′ defined in the orthogonal subspace. Its trace
is

δµ′µ′ = D − 1 (20.29)

This procedure can be repeated to get subspaces of suc-
cessively lower dimensionality, which of course terminates
if D is an integer, but does not if D is noninteger. It
means that we can construct infinitely many directions
that are all mutually orthogonal in the noninteger case.

Exercise. Suppose that we have two vector spaces
of dimension D1 and D2, and vectors x1, y1, x2, y2 re-
spectively defined in the two spaces. There is a rule for
combining them to make a vector of dimension D3, such
that

x3 = x1 ⊕ x2, y3 = y1 ⊕ y2 =⇒
x3 + y3 = (x1 + y1)⊕ (x2 + y2) (20.30)

Prove that D3 = D1 +D2, and∫
F (p3) dD3p3 =

∫
F (p1, p2) dD1p1 d

D2p2 (20.31)

21. PHYSICS IN D DIMENSIONS,
CONCLUSION (1-26-88)

We have not yet discussed how to extend the Dirac al-
gebra to arbitrary dimensions. Let’s consider the gamma
matrices. For any vector aµ, we can associate a quantity

/a = aµγµ (21.1)

that has the property

{/a, /b} = 2 a · b (21.2)

Therefore {γµ, γν} = 2 δµν and /a
2 = a ·a, where δµµ = D

as usual.
For the trace properties, I like to define two traces,

that are normalized differently from each other. When
acting on the unit matrix in the Dirac space they give

tr[1] = 1; Tr[1] = D , (21.3)

so tr[X] = (1/D)Tr[X]. They satisfy the usual property

tr[ /A/B] = tr[ /B /A] (21.4)

from which you can derive that tr[/a/b] = a·b and tr[/a] = 0.
In fact, by using the property

tr[/a/b/c/d] =
1

2D

(
Tr[/a/b/c/d] + Tr[/d/c/b/a]

)
(21.5)

and its generalization to an arbitrary number of gamma
matrices in the products, one can demonstrate that the
trace of any odd number of gamma matrices vanishes.

The Dirac equation in D dimensions can be written as

i /∇ψ − V (x · x)γ0ψ = Eψ (21.6)

for a spherically symmetric potential. It can be solved
exactly; I have carried this out.
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Exercise. Reduce the problem (21.6) to a conventional
ordinary differential equation.

It turns out that the sum of two spaces of dimension
1/2 is not an ordinary 1-dimensional space. We would
expect that

(x · y)2 = (x · x)(y · y) in 1 dimension . (21.7)

But this property does not hold when you construct it
from two half-dimensional spaces, along the lines of the
exercise at the end of the previous lecture.
Exercise. Show that a D = 0 space constructed from
two spaces of equal and opposite dimension has nontrivial
properties.

Newtonian mechanics is quite straightforward in D di-
mensions. We define a time-dependent vector x(t) and
impose the principal of least action, with the action

S =

∫ (
m

2

(
dx

dt
· dx
dt

)
− V (x)

)
dt (21.8)

Here I do not insist on a central potential; for instance
V (x) could have the form

V (x) = f(x·x) +
∑

ai ·x g(x·c) + . . . , (21.9)

for example V (x) = (a · x+ x · x)/(1 + (x · x)2). You can
prove that orbits stay in the same plane—this is just con-
servation of angular momentum—for a spherically sym-
metric potential; it’s very dull.

One can solve the wave equation in noninteger dimen-
sions,

∇2φ = −κ2φ; φ = φ(x) (21.10)

where ∇2 = � · �, as we discussed in the last lecture.
It can be done using the Fourier transform, which works
in D dimensions, with φ = eik·x as usual. If there is a
source s, so that

∇2φ = −κ2φ+ s (21.11)

then by Fourier transforming one can solve

φ̃(p) =
S̃(p)

p2 − k2
(21.12)

and also do the inverse Fourier transform to obtain φ(x)
in position space.

In quantum chromodynamics we would like to be able
to generalize the path integral to D dimensions,

Z =

∫
eiS
∏
DA(x), S =

1

2g2

∫
Eµν · Eµν (21.13)

with Eµν = ∇µAν . . . . Here Aν(x) is just a vector field
defined on the space of vectors, both in D dimensions.
Therefore there is no difficulty in defining the action.
However the measure is problematic because the space-
time is too abstract in D dimensions. In particular, we

don’t know how to construct a lattice if D is not an in-
teger.

This motivates us to consider a different formulation of
quantum field theory. Imagine some superfunctional that
I will denote by {F [A]}, that acts on functionals F [A] of
the field in the same way as the usual normalized path
integral, for the cases of integer dimensions where we
know how to define it:∫

eiSF [A(x)]
∏
DA∫

eiS
∏
DA

≡ {F [A]} (21.14)

Even though the definition of the left-hand side is not
obvious for noninteger dimensions, we can generalize its
known properties in integer dimensions to obtain a func-
tional differential equation, that defines our mysterious
superfunctional. Namely, we know that the path in-
tegral is invariant under a change of variables Aµ →
Aµ + εαµ(x), that I take to be infinitesimal. Moreover,
the measure by itself is invariant under this trivial shift.
Recall that the functional derivative δF [Aµ(x)]/δAµ(x)
is defined by

δF =

∫
εαµ(x)

δF [Aµ]

δAµ(x)
dDx (21.15)

It follows that{
δF [Aµ]

δAµ(x)

}
+ i

{
F

δS

δAµ(x)

}
= 0 (21.16)

This equation is equivalent to the path integral, but more
fundamental since it extends to the case of noninteger
dimensions, and it can be used as our starting point.
It is a statement of Schwinger’s action principle, from
which one can derive the usual perturbation expansion,
but it can also serve as a nonperturbative definition of
the theory.

One issue we have glossed over is the signature of the
spacetime metric. This is a discrete choice in integer di-
mensions, and it is not perfectly clear how to deal with it
in arbitrary dimensions. Should the fractional difference
in the dimension be spacelike or timelike? In a more ex-
treme case, what would the world look like if the metric
of spacetime was

δµν =


−1

−1

1

1

 ? (21.17)

It might be advantageous to find some kind of geometrical
description of events to answer this.

Although it is a somewhat different issue than noninte-
ger dimensions, one could also think about derivatives of
fractional order. We know that conventional derivatives
have the form

df

dx
= lim

ε→0

f(x)− f(x− ε)
ε

(21.18)

d2f

dx2
= lim

ε→0

f(x)− 2f(x− ε) + f(x− 2ε)

ε2
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What about a derivative of order 1.5 or 1/2? I will illus-
trate the correct generalization for the 1/2 order:

d1/2f

dx1/2
= lim
ε→0

f(x)− 1
2f(x− ε) + 1

8f(x− 2ε)− . . .
ε1/2

(21.19)
where −1/2, 1/8 . . . are the binomial coefficients from
expanding (1 + x)1/2. This turns out to be a valid pro-
cedure. And it has an inverse: you can find half-order
integrals as well, in an analogous way.

Returning to dimensional regularization, I wanted to
show in slightly more detail how the Q2 dependence of
the coupling comes out from the perturbation series in
that method. Here I will set D = 4 + ε and take ε → 0
at the end. Recall that in our Λ cutoff scheme, the form
of an amplitude would look something like

g2
Λ + g4

Λ

(
β0 ln

Λ2

Q2
+ c

)
+ . . .

= α(Q2) + α2(Q2)c+ . . . (21.20)

In dimensional regularization, we must introduce an ar-
bitrary mass m0 to make the coupling dimensionless:

g2 = g2
0 m
−ε
0 ≡ α0m

−ε
0 (21.21)

The renormalization of the coupling constant now be-
comes

4π

β0α(Q2)
− β1

β0
ln

(
4π

β0α(Q2)

)
(21.22)

=
4π

β0α0
+

2

ε
+ ln

Q2

m2
0

+ γE − ln 4π

where γE = 0.5772 . . . is Euler’s constant. Nothing phys-
ical depends on m2

0, nor on ε. By choosing the arbitrary
normalization of m0 appropriately, we can cancel the 2/ε
pole (the minimal subtraction MS scheme), or the pole
along with the γE − ln 4π terms (modified minimal sub-
traction, MS scheme).

21.1. Scattering at high Q2

We have seen that at high Q2, the effective coupling
of QCD is supposed to become small. But this by it-
self does not guarantee perturbation theory is necessarily
very good, since the numerical coefficients of the expan-
sion might turn out to be large. In particular, there is
always a low-energy effect mixed in with any high-energy
process because of hadronization of the final state par-
ticles. This part of the process is taking place at scales
where the coupling is definitely not small and the cal-
culation is not perturbative. It might seem like after all
our wonderful efforts of using renormalization to improve
the perturbative predictions at high energy, we could get
foiled by these low-energy effects. However all is not lost,
because we can separate these two phenomena from each
other in a more or less clean manner. If we can argue

that the details of hadronization are independent of the
high energy scale Q2, then this separation can be done
quantitatively.

Recall that in e+e− collisions that produce qq̄, we will
see two hadronic jets,

e− e+

qq

γ 2 jets

or if a gluon is radiated at a large enough angle, we will
see three jets,

e− e+

qq

γ
3 jets

g

At low Q2, the third one is likely to be too soft to appear
as a distinct jet. In this case the envelope of momentum
vectors would appear to be a cylinder with a small bump
for the third soft jet

1 GeV

At high Q2, the cigar gets relatively narrower, and the
jets become better defined. The gluon jet starts to be-
come more distinct as Q2 increases, like bringing a pic-
ture into focus. And as Q2 continues to increase, greater
numbers of jets start to appear.

We can measure the distributions of hadrons in jets at
low Q2, described by what are known as fragmentation
functions. Although we don’t know the fragmentation
function for gluons, we can make some educated guess.
The important point, related to my claim above, is that
these functions do not change appreciably with Q2, which
leads to the factorization phenomenon that I described.
These distributions take the form

c
dpz
E

f(p⊥) d 2p⊥ (21.23)

where pz is the momentum along the jet axis, and p⊥ is
the transverse momentum (shown as having a spread of
∼ 1 GeV in the picture above). To the extent that f(p⊥)
is flat, within the jet, you will notice that this distribution
is Lorentz invariant.
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A useful quantity for characterizing particles in the
jets is rapidity. Consider the quantity E − pz, where
E =

√
p2
z + p2

⊥ +m2 is the energy of a particle in the
jet. Under a boost in the z direction, this becomes
γ(E + vpz)− γ(pz + vE) = γ(1− v)(E − pz): it changes
multiplicatively. Similarly E + pz → γ(1 + v)(E + pz).
Therefore the rapidity

w = ln
E + pz
E − pz

(21.24)

changes by

w → w + ln
1 + v

1− v
(21.25)

where v is the boost parameter. It is related to w by

v = tanhw (21.26)

and in terms of w a boost takes the form

E′ = E coshw =
E√

1− v2
,

p′ = p sinhw . (21.27)

It turns out that the distribution f(p⊥) is not quite
flat over its region of support, but instead goes as

f(p⊥) ∼ α(p2
⊥)

d 2p⊥
p2
⊥

∼ d ln p2
⊥

ln p2
⊥

∼ d ln ln p2
⊥ . (21.28)

Hence it is nearly constant, the log of a log. This small
deviation from flatness has been observed and provides a
confirmation of QCD.

21.2. Sphinxes

[The following figures appear without explanation in
my notes.]

tα( )
sα(t)

α0 ′ + αtα( )

p π−

π0

n

t

σ ∼

= 

22. FINAL LECTURE (1-28-88)

22.1. Schwinger’s formulation of QFT, continued

I would like to come back to the alternative formulation
of quantum field theory that I started to discuss last time,
eq. (21.16). To understand in more detail how to use it,
let’s consider the simpler example of a scalar field theory,
where it takes the form{

∂F

∂φ

}
+ i

{
F
∂S

∂φ

}
= 0, (22.1)

and now

S = 1
2

∫ (
(∇φ)2 − µ2φ2 − λφ4

)
d 4x . (22.2)

Remember that we are free to choose any functional F ;
it is instructive to take

F [φ] = ei
∫
σ(x)φ(x) d 4x . (22.3)

From it, we can generate Green’s functions by taking
functional derivatives δn/δσn. Then, with n = 1,

iΣ(x) ≡ {iσ(x)F} = −i
{
F (−∇2 − µ2)φ

}
(22.4)

to zeroth order in λ. If we define f(x) = {F φ(x)}, we
see that

i(∇2 + µ2)f = iΣ(x), (22.5)

which can be solved to get

f =
(
∇2 + µ2

)−1
Σ(x) (22.6)

This of course is just the propagator acting on Σ. Fourier
transforming to momentum space, it reads

f(p) = − 1

p2 − µ2
Σ(p) (22.7)

To define what happens at the pole, we need to make an
iε prescription, as usual.

Now we can write

{φ(x)F} =

∫
dy
{
I(x− y)σ(y) ei

∫
σ φ d 4x

}
(22.8)

where I(x−y) is the propagator in position space. Hence{
φ(x) ei

∫
σ φ d 4x

}
=

∫
dy I(x− y)σ(y)

{
ei

∫
σ φ d 4x

}
(22.9)

or

δ{F}
δσ(x)

=

∫
I(x− y)σ(y)dy {F} . (22.10)

We can integrate this to get

{F} = e
1
2

∫
σ(x)I(x−y)σ(y) dx dy . (22.11)
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This is all at the level of free field theory so far. I leave it
as an exercise for you to show that eq. (22.10) generalizes
to

δ{F}
δσ(x)

=

∫
I(x− y)σ(y)dy

[
1− 2λ

(
−i δ

δσ(y)

)3
]
{F}

(22.12)
in the presence of the interaction. This can be solved per-
turbatively, or perhaps if you are clever enough, in some
nonperturbative fashion. Obviously, there is no very sen-
sitive dependence on the number of spacetime dimensions
in this formulation, so it could serve as a nonperturbative
definition of the theory in 4− ε dimensions.

22.2. Parton model; hadronization

Now I would like to come back to some things that we
started to discuss earlier in the course, during the first
few lectures. Remember the parton picture of the proton,

where the quarks and gluons have various momentum
probability distributions inside the proton, that we de-
noted by u(x), d(x), etc. I had mentioned a conceptual
problem, the fact that even if we knew the wavefunction
of all the constituents for a proton at rest, this is not
sufficient for determining u(x), d(x), . . . . The problem
has to do with how the wave function transforms under
a boost,

t x x x φ(x,y,z)

φ
inform

ation

x,y,z)ψ(′t xx x

In one reference frame, at t = 0, the wave function for
three quarks at respective positions x, y, z is φ(x, y, z),
while in some boosted frame, at t′ = 0, it is ψ(x, y, z).
It is a nontrivial task to get ψ from φ, since we need to
solve the Schrödinger equation to propagate the quarks
forward in time. As we saw before, this is complicated

by the fact that the concept of the wavefunction is not
relativistic.

But once we know the distribution functions at high
energies, it turns out that they don’t change very much
as you go to even higher energies. We can determine
these functions by doing proton-electron scattering,

e−

p

The reason that the distributions continue to change at
higher energies is that the kinematics are not so simple
as in this diagram: in reality, gluons are radiated, in
particular in the forward direction, where we don’t see
them as distinct jets. In fact as we increaseQ2, gluons are
more likely to be emitted, which leads to u(x) depending
on Q2 and not just the momentum fraction x. This gives
a correction to the naive parton picture, that neglected
such effects. Qualitatively, the correction looks like

α(Q2)

x

u(x) QCD 

naive parton prediction

You might think that gluon emission should decrease at
high Q2 because of the running of α(Q2), but it turns
out that the increase in phase space outweighs this effect.
It is similar to the infrared/brehmsstrahlung problem in
QED.

Consider electroproduction of quarks, e+e− → qq̄.
Many soft gluons will be emitted, but they all get lumped
in with the quark jets, and are of little consequence a pri-
ori. Our concern is how this description may change as
a function of Q2.

Recall the fragmentation functions, Dh(z,Q2), that tell
us the distribution of the momentum fraction z carried
by hadron h in the jet. We would like to know how it
depends on Q2. Since the main dependence on Q2 comes
from the coupling, and this log dependence is also tracked
by the cutoff, we can infer that

dD

d lnQ2
=

δD

δg2
Λ

∂g2
Λ

∂ ln Λ2

=
δD

δα(Q2)

∂α(Q2)

∂ lnQ2
, (22.13)

or, defining τ = lnQ2,

dD

dτ
=
δD

δα
β0α

2 . (22.14)
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So we need δDh/δα, which arises at first order in per-
turbation theory, and is related to the probability for
emitting a gluon (or possibly a q-q̄ pair) that carries away
some fraction (1− y) of the momentum:

q 1 q y

(1−y)

This leads to the evolution equation

δD

δα
=

∫
P(y)Dh(z/y,Q2)

dy

y
(22.15)

where P(y) is the probability of emitting a gluon that
leaves the quark with momentum fraction y, if it was
normalized to be 1 initially. One can show that

P(y) =
2

3π
ln
Q2

m2

(
1 + y

1− y

)
+ . . . (22.16)

where the . . . represent terms with weaker dependence
on Q2.

Exercise. Consider e+e− → qq̄ with the kinematics
indicated below:

e−e+

q
p2p1 q

g

γ

z direction

pp

k

Show that the probability to emit the gluon is propor-
tional to

P ∼ α
ε21 + ε22 + p2

1z + p2
2z

ε1ε2

∼ 4
3α(ε21 + ε22) (22.17)

where εi is the energy of quark i, and the second expres-
sion is the result from integrating over the quark direc-
tions.

We can write

dD

dα
= τP ·D + . . . (22.18)

where P ·D denotes the convolution
∫
PDdy/y, or defin-

ing κ = β0 ln τ ,

dD

dκ
= P ·D . (22.19)

Hence if we evolve from Q2
0 to Q2

1, the change in κ is

∆κ = β0 ln
τ0
τ1

= β0 ln

(
lnQ2

0/λ
2

lnQ2
1/λ

2

)
(22.20)

This is a double logarithm, so the change is typically
quite small. Take for example

Q0 = 6 GeV, Q2
0
∼= 40 GeV2,

Q1 = 4000 GeV, Q2
1
∼= 2× 107 GeV2 (22.21)

This gives ∆κ ∼= 1
2 . To get a change as large as ∆κ = 1,

we would need to go to Q1 = 400, 000 GeV!
So it is necessary to vary the energy quite dramatically

to see any appreciable change in the fragmentation func-
tion Dh. And only by starting from rather low energies
will we observe much variation at all. Notice that at such
low energies as 6 GeV, many of our approximations that
were appropriate for high Q2 are not very good. The
important point is that the details of hadronization are
indeed insensitive to Q2 as long as Q is well above the
QCD scale.
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contains scans of RPFs hand-written addenda and cor-
rections to revised drafts of two lectures. The remaining
appendices are material that RPF handed out to the class
participants, some of them written in his own hand.

Appendix A: Transcription: Scale dependence
(1-5-88)

Okay. Now that we’re starting the second term, we’ve
formulated several times, in many different ways, in dif-
ferent kinds of gauges, the rules for perturbation the-
ory; also the formulas in terms of path integrals. One
of the purposes of path integrals is a statement of the
equations which is not strictly speaking necessarily simply
perturbation theory. If there was some way to compute
the path integrals, and there is for instance numerically,
there would be a scheme for making calculations which
would not rely simply upon the need for perturbations.
Because of our limited ability in doing path integrals until
the present time, we’re only pretty good in perturbation
theory. We got so good at it from working with quan-
tum electrodynamics where the coupling constant is very
small, and therefore we’ve had lots of practice. But please
don’t think that we have to do everything by perturbation
theory.

During this term we are going to talk in the first half
of it about perturbation theory and what we can learn
of quantum chromodynamics 58 from perturbation theory.
The second half of the term will be an attempt to under-
stand the behavior of this theory, the fact that it confines

58 RPF says electrodynamics but it is clear he meant to say QCD.
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quarks and so on, in some way by looking at the path in-
tegrals, without actually expanding them in perturbation
theory. It will not be mathematically accurate; it will be
qualitative. Say this will get big, this will get small, I
think this will be bigger than that, and therefore this will
happen. You will be very dissatisfied if you want preci-
sion. One of our problems as we’re discovering, right,
is doing these things with precision. The state we are in
now is one where we will have to discuss it in a qualita-
tive way. So that’s all I can do, but we’ll do that in the
second part of the term. In the first part of the term, we
will find out how much we can do by perturbation theory
to test the theory.

So far we made only passing reference to the running
of the coupling constant. This subject requires some care
to avoid confusion. But I must say that it would not be
at all difficult, there would not be any particular problem,
and it is a very simple matter; the confusion comes be-
cause we can’t calculate anything, and so we try to say
as much as we can without calculating . . . It’s something
like the subject of thermodynamics, which appears to be
quite complicated, but if you use always the same vari-
ables, such as temperature and volume, to represent the
system, it’s much simpler than if you suddenly say now
wait, let’s suppose I want to plot this on entropy and
pressure; it’s the perpetual change of variables from one
to the other that makes the subject so complicated.

So there is a certain apparent complexity here, which
is due to our inability, or indefiniteness, in choosing a
method of calculation, or indefiniteness in deciding what
process to calculate. That makes it look a little compli-
cated. Let me make believe, at first, that we could calcu-
late whatever we want. Then the problem would be the
following. It would be straightforward. We would start
with our theory, with Lagrangian

1

g2
0

FF + ψ̄(i/∂ +m0)ψ . . .

Let me put the constant and call it g0. And then in the
part that has to do with the quarks, with different flavors,
there would be masses for the different flavors. So there
would be a number of constants which are in the theory,

g2
0 , m

u
0 , m

d
0, m

s
0, m

c
0, m

b
0

I’m putting a subscript 0 on them, which means those are
the values that we put into the equations; in case there’s
any question of what I mean, that’s what I mean: the
numbers that we put into the original Lagrangian to make
the calculation. So this is perfectly definite. There’s the
c quark; we may discover one day that there are others
[quark flavors] so we might need a few other parameters,
but for the future.59 So at the present time we’ve got

59 The top quark had not yet been discovered at this time, though
its existence was not doubted.

these six numbers, the parameters that we can put into
the theory.

Now suppose we start out with this theory, we put some
parameters in, and we compute something: the mass of
the proton, the mass of the pion, and so on. If we com-
puted six quantities, and we could compute perfectly and
the theory were right and experiments were available for
all those quantities, then we could determine these pa-
rameters. Then if I computed a seventh quantity, that
would be a completely predicted quantity and we begin to
test the theory. That’s simple and straightforward and
that’s all there is to it, except . . . First of all, we can’t
compute the mass of the proton, so we can’t determine
these constants. In view of that you also would know
that it would be very practical to compute some quanti-
ties rather than others.

For instance, if you wanted to compute the mass of the
b quark, you could probably do a pretty good job by trying
to compute the mass of the Upsilon, which would be pretty
close to the mass of two b’s, 2mb

0. We’ve got a very
crude beginning for mb

0 without being able to calculate.
We would get mb

0 most likely from masses of the Upsilon
and its excited states, and we learn about the interaction
strength somewhere, we correct for the excitation states
that would make a very accurate value of 2mb

0, which
would presumably be very close to one half of the mass of
the Upsilon—reasonably close to a half the mass of the
Upsilon, in other words to, uh, 5, 10 GeV [speaking to
himself] the mass of the Upsilon is . . . so it has to be 5
[for mb

0]. Yes that’s right. In the same way the mass of
the c could be determined as being about 1.8. Now, if we
did the calculation more elaborately, you see we would be
picking out the light quantities; instead of having the mass
of the proton and the mass of the pion looking for some
tiny deviation which was due to the c quarks, which are
hardly affecting either one of them, neither one of them,
then to get the [c quark] mass, that’s not the way to do
it.

So it’s sensible to try to pick out physical quantities
that are more sensitive to particular parameters than to
others. Of course in principle you could compute any old
six quantities with infinite accuracy and deduce all the
parameters. But it would be more practical to choose six
quantities that are more directly sensitive to the masses.
I’ve already got rid of mb

0 . . . .

Now we want to try to concentrate on things which
depend—because there’s a great deal of interest in that
quantity—physical quantities that depend upon g2

0, and
are not very sensitive to the others. I believe that one
is the mass of the proton, because the mass of the u and
the d . . . we have good evidence are very small, and that
the mass of the proton is not due to the mass of the
quarks inside, I mean at least not directly . . . it has to
do with the value of g0. It’s hardly sensitive to ms

0, but
we could imagine that someday we could correct for that
. . . However at the present time it is hopeless to compute
the mass of the proton from these constants theoretically,
and therefore we can’t determine g0 from the mass of the
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proton, even though someday we could.
Another kind of effects where I look for g0 are those

phenomena that use high energy and which—so high that
the masses of these things [quarks] don’t make any differ-
ence. And insofar as these [quark masses] are involved,
we can presumably compute their effect. In other words
we look for processes in which we expect there would be
a limit, that limit would still exist for this process if the
masses of these things went to zero.

I’ll give you some examples. This is only to suggest
things to look at that we can calculate that will help us
to isolate parameters, in particular g0. One interesting
experiment is e+e− → hadrons.

e− e+

qq

qQ  e

(A.1)

And the idea of that is if you do that at high energies, the
electron and positron annihilate and produce a photon,
which you can understand. And then the photon produces
a pair of quarks, as a sort of initial disturbance. We have
an operator Qf ψ̄fγµψf for each quark flavor, and this
operator starts by generating a pair of quarks. Now what
happens after that is of course that this [quark] maybe
radiates a gluon, the gluon splits into quarks, and they
combine together and they make π’s and they make K’s
and you get a big splash of junk. The total cross section
for doing this is the chance that we got started, so to
speak. You can calculate the probability that we got these
things started by just figuring that they’re free, because
the energy is so high. And then after a while they scratch
their heads and say, “hey, I’m not supposed to be able
to come out, I’ve gotta do something else,” but they’re
already there. I don’t know if you feel this intuition very
well, I get it myself but I don’t know how to express it;
that at high enough energies, when we start this process
and then after that . . .

Let’s put it this way: suppose you did this, and you
thought one day that you made a ρ. The next time you
realize that you’re not going to see the ρ but the ρ actually
disintegrates into a pair of pions. Well the fact is, by the
time you got to the ρ, and then it went into π’s, it isn’t
going to change the total cross section; whether the ρ
does or doesn’t disintegrate doesn’t make any difference
to the total rate. The ultimate things that happen to these
objects are not much affected by things that happen late,
and therefore at low energy, and therefore involving the
masses of the quarks and so on. So therefore the total
cross section shouldn’t involve the masses of the quarks.
It shouldn’t involve anything in QCD, there’s no coupling
constant at all [the QCD coupling] because this rate to

produce this pair of quarks that act like free particles, we
calculate it directly.

In the same way we could compute the rate to pro-
duce a pair of µ’s and calculate that pure electrodynamic
thing and call it σµµ. Then I could calculate the prob-
ability of producing hadrons here [in the diagram (A.1)
with hadronization of the quarks]; the cross section would
be the cross section for producing µ’s—which also doesn’t
depend much on the mass of µ—we take a very high q2 so
the masses don’t make a difference; then we would have
the cross section for making, let’s say, u quarks. Then
the charge is 2/3 for a u quark and the cross section goes
as

σuū = 3

(
2

3

)2

σµ+µ−

to produce u quarks; so this would be the probability of
producing u quarks. We can produce the u quarks in three
colors: red, green and blue, and therefore the thing is
multiplied by 3. Is there any question about that? Yeah?
[a question is asked, inaudible] No sir, because this is an
electromagnetic phenomenon I’m talking about, this is a
[photon] not a gluon, so this coupling is not QCD. Any
other questions? You had me for a minute [laughter].

This three, I say you can produce any color but that’s
a lot of nonsense, you can’t produce any color, because
you have to go into a singlet state. So you’re going to go
into the state

1√
3

(
RR̄+BB̄ +GḠ

)
=

3 a√
3

=
√

3 a (A.2)

Now let’s say the amplitude to go into the red-anti-red
state, what I first calculated over there, let’s call that am-
plitude a. Then the amplitude to go into blue-blue would
also be a, and the amplitude to go into green-green would
also be a, so the amplitude to go into this state would
be 3a times 1/

√
3—this is a normalized state—which is√

3a. And the rate is 3 a2. In other words, three times the
rate of making RR̄. You can fake it if you like, i.e. slop-
pily, that there’s the same chance for red quarks or green
quarks or blue quarks, therefore I add them—multiply by
three. Or realize that you don’t produce that state at all
but you produce a superposition. But you come out with
the same answer.

So that’s for u quarks. But then we might produce d
quarks also. And by the same method of thinking,

σdd̄ = 3

(
−1

3

)2

σµ+µ− , etc.

And now, we might produce s quarks. Now s quarks
are not very heavy, so if an e+-e− experiment is done
at several GeV, or 10 GeV or something like that, then
that’s another one third [writes on board] . . . And then,
if we have enough energy to get above the c, we produce c
quarks [writes on board] and then maybe the b; depends,
but if we have a total energy between say 9 and 10, proba-
bly 9.65 . . . Then there’s another factor yet; for the ratio
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of the total cross section to the cross section of the µ, we
get a curve

µ+µ−σ

σ
total

4/3

3.7

2

M M
ψ 40 GeV

E

R =

which is an interesting thing, it bobbles around, there are
bumps and things for the ρ meson . . . And as you get
to high energies, here’s 3.6, it comes here and there’s a
wonderful resonance . . . and makes the ψ and then some
particles, and then the background comes up here, and
over here it starts to make the Υ . . . until we have 30 or
40 GeV, and we don’t see the resonance we expected for
the t quarks. But it does show more or less constant as
long as you’re in a region where you’re not at the same
order as a mass of a new kind of quark that you can
make. And it rises from these various plateaus with these
numbers [gotten by adding the squared charges from the
previous calculations] . . .

At any rate, that’s marvelous, but that doesn’t deter-
mine any of those constants—too bad. However, maybe
the idea if we do this at high energy, and worry ourselves
about the b quarks and the c quarks and the interactions,
we might be able to get a little accuracy this way. There
is, of course, an interaction; the trick is . . . that it doesn’t
involve the masses.

e− e+
e− e+

qq qq

g

γγ

g

(A.3)

. . . and therefore that should be a good approximation.

On the other hand there is the possibility that we can
calculate what happens with the possible emission of a
gluon . . . It could be that emitted a gluon. Or it could be
that there were interaction forces between these [quarks]
by the exchange of a gluon. Now it is not quite as ob-
vious that the effects of these things will not depend on
the masses of the particles; but calculations by putting
masses in show that it really doesn’t. And that there is a
correction that now involves, as you would like, the cou-
pling constant g which we discussed. And what happens
is, that we get that the same theoretical ratio [as we dis-
cussed before] is multiplied by a correction,

R = R pure free
particle

(
1 +

αg
π

+ . . .
)

(A.4)

which is proportional to the coupling constant. I’m go-

ing to use αg
60 . . . strong interactions, put the g just to

remind you for gluons . . . plus higher terms. This, then,
would be a way, if we could measure accurately enough,
to determine the αg, and therefore g0. It would be most
sensitive to g0. [Question from me: what was that sub-
script you put on R, those words?] The words say, “pure
free particle” theory. This is the real ratio, corrected to
the first degree for quantum chromodynamics. You can
make a power series expansion in the coupling constant,
the first term of which is αg/π. And this then is a way
to determine a quantity which is particularly sensitive
to g2

0 and which is presumably not sensitive to the other
masses, although we do have to do a little work to get
rid of these things, we make corrections for these things,
depending on what region of the graph you want, we cor-
rect for that mass . . . and we can do a fairly good job of
correcting for the masses . . .

So that’s one way of getting a quantity which depends
on g and it would be a possible thing. The trouble with
it is it’s a correction to an experiment which gives 99—
[pauses to think and correct himself, in undertone] no
this is I think this is 5% of the total—95% of the answer,
that doesn’t depend on quantum electrodynamics [QCD]
at all, and you’ve only got a 5% correction, it’s not very
easy, you can’t do it very well. So it would have been
a nice thing, and it would have been a nice experiment,
so if we’re talking ideally that would have been a place
to look for something to calculate and to measure to get
something that’s practically dependent on g0.

Alright, now there’s another thing that’s observed. Ac-
cording to this model, here, when we knock these two
quarks out, and they’re going very fast, and then they
just tear out and I don’t know what, radiate gluons, and
do all kinds of things, they fall apart and make whatever
strings there are . . . and what happens is that if we look
at the momenta—

—I draw it in a plane because it’s three-dimensional, the
momenta, what we get is thousands of hadrons, lots
and lots, most of them pions. Okay. And if we plot-
ted the momenta, and I’m only going to plot it in two
dimensions instead of three, we find that they’re all dis-
tributed in sort of a—at least if q2 is very large—in a kind
of a long ellipse, which is much longer than it is wide;

60 Noise interferes, but I believe he says that αg = g2, with the
usual factor of 4π absorbed into his unconventional definition of
g.
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this is . . . the order of, well if you added all the momenta
. . . conservation of energy, it’s a rather big number . . . but
they have a certain width, the width is of order of a half a
GeV . . . Now, suppose you try to calculate the chance that
this happens, and that this thing goes off . . . you remem-
ber what I do, I have to calculate this correction to this
diagram [RPF is apparently explaining how the three-jet
configuration on the right arises from radiation of a gluon
from one of the quarks as in the previous diagram (A.3)]
and I add that to the rate of this [the 2 jet].

Now in this case I could look at this one [the 2-jet] and
one would notice that there’s a small chance that what
happens, looking down on the plane, is that geometrically
there’s a momentum like that; you’ve got one quark com-
ing out over here in this direction, and this quark starts
out this way, if you want, if I employ the virtual diagram.
What you see, though, is a quark coming this way, and a
gluon going that way, the total momentum of which bal-
ances this [the other jet]. So if we didn’t see this region
here, it would seem . . .

That can happen, at wide angle, you can ask for wide-
angle gluons coming out. What we see experimentally
is that from time to time, it doesn’t look like this [pre-
sumably the 2-jet diagram], it looks more like this [the
3-jet diagram]. And if this is sufficiently . . . [probably
referring to the hardness of the gluon jet] and stuck out
. . . then we can interpret it as being this [the 3-jet pic-
ture]. Why I have to say that is of course, if it’s not
sufficiently obvious, it might be that [the 2-jet picture]
with a fluctuation. I mean if these two are close enough
together, how can you tell the difference? You can’t. So
you’d have to take the case where there’s a pretty good an-
gle, which turns out to be a low chance. It’s low because,
you see, when these two open out . . . [RPF explains on the
board that in this case where the gluon is hard, the extra
intermediate quark propagator is carrying large momen-
tum, which suppresses the amplitude]. So this happens
rarely, but we can see it. And although it does, from the
phenomenological point of view does involve soft masses
and so on in determining whether we get π’s or K’s and
how many, we can at least count how many jets we get,
and estimate these momenta fairly well.

The only uncertainty is whether we should include a
particular particle here; is that part of this jet or part of
that jet? So there is some sloppiness in it. The sloppiness
will become less as the energy of the experiment is in-
creased. There’s some sloppiness, but we can do a pretty
good job of guessing that these things come through this
[2-jets], and by measuring their rate, we get a pretty good
idea of this [3-jet] rate, that has an αg directly, because
the amplitude for this process has a coupling constant in
it, and this rate has a coupling constant squared, so this
is a direct measurement of αg . . .

Later on in the course therefore we’re going to calculate
that . . . and compare it to experiment to try to determine
the coupling constant. Okay? I’ve therefore illustrated
two examples, and there are others, . . . that seem to iso-
late experimental data and seem to be able to measure,

that we can roughly calculate. I say “seem to be able to
measure” because we have all these little uncertainties,
so it’s nothing exact, but a pretty good measurement and
a pretty good calculation by which we can determine αg
today and prove our claims . . . So that is a perturbative
effect of something that depends mostly on αg.

But what I wanted to explain mainly, the main thing I
wanted to explain, is that there are physical processes, for
which we can say that we don’t need to know the masses
of the other particles. That the process has the same
limiting value, the same probability, whether these are
all zero or not. It’s not so easy to correct for them; it
depends on the energy. Let us, since we’ve demonstrated
more or less that there are such processes, let us assume
that there are some physical data, which involve just that
[g2

0 ] and not these [the quark masses], because we make
corrections for this, and there are physical phenomena for
which we believe, theoretically, the phenomena will still
exist as the masses went to zero, of the quarks, and it
doesn’t involve any other length [scale].

So we could imagine those things, those are special
kinds of data that don’t involve the masses of the quarks,
and without saying so, from now on I’m talking about
that kind of data. When I talk about a physical quantity,
I’m going to suppose it’s that kind of a quantity, okay?
Not something like the mass of the π, which depends on
the mass of the u, or the mass of the K, or the difference
between the Λ and the proton, which is certainly depen-
dent on the mass of the s. Those are not the kind of
thing that I want to talk about here. Alright? . . . This
will focus our attention.

Now we’re ready to go, huh? No! Another compli-
cation sets in to . . . The theory doesn’t make sense. The
perturbation theory gives infinities . . . the theory diverges.
You all know that. I don’t have to prove it to you; we’ll
discuss it all later in detail. We’re going to go back over
all this and do it. I’m describing where we’re going to go
and what we’re going to see. So the theory has infinities.
In the case of electrodynamics, which you studied, and
as you know what this does in that case is that there is
some kind scheme for cutting off all the integrals that are
divergent, in other words∫

d 4k

k2(p− k)2
.

Then this is divergent logarithmically because you’ve got
four k’s down here and four k’s up there. And what peo-
ple do is they say that the propagator for instance for a
photon is replaced by subtracting from it what you would
get if the propagator had a mass and then taking the limit
as the mass goes to infinity,

1

p2
→ lim

Λ→∞

1

p2
− 1

p2 − Λ2
(A.5)

and obtain results which have logarithms in them; you
have cutoffs, actually, and what do you do with these in-
finities? What we do with these infinities is the following.
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If we discuss for example the scattering of two electrons
by a photon at large distances, where the potential is e2/r,
or the scattering amplitude is

Q

∼ 4πe2

Q2
(A.6)

If we were to compute this, at very low Q, and long dis-
tances, then this [the coupling e] is an experimental num-
ber. And now we discuss that this experimental number
is not the same as the number e0 that I would put into
the theory, right away, because there are virtual diagrams

where this may make a pair and the pair may annihilate,
and like that, and this has got that kind of a divergence
in it, and corrects this [(A.6)]. What we’ve discovered is
that [taking his time to write it from memory]

1

e2
exp

=
1

e2
0

+
1

3π
ln

Λ2

Q2

Yes. Now what we’re supposed to do is to make Λ go to
infinity and this gets some kind of nonnegative result. Q
is the momentum transfer, which is supposed to be small.
But what we say is, when we do the theory with a cutoff,
we change the theory, because the theory by itself doesn’t
mean anything. So we use a particular cutoff, and we
take an e0 such that the physics is independent—is cor-
rect, agrees with experiment. We choose a cutoff Λ and
an e0 so that it agrees with experiment. And now if we
change the cutoff, we change the e0 so that it continues
to agree with experiment. In this case, we could change
the e0—if we change the Λ we could change the e0 so that
this . . .

It’s very important, the right sign, and I get the right
sign by [long pause while RPF checks that the sign of the
running is correct]. That’s 137 [1/e2

exp].61 As Λ gets very

big, this [the log] can get bigger than 137, so this [1/e2
0]

would have to go negative which makes no sense. This
theory really doesn’t work, because it means this would
have to go negative; I must be missing a sign. . . In any
case, to encounter this problem you need to put in such a
large cutoff that the logarithm is 3π × 137 which is more
than 1000. Then we would need Λ ∼ e500Q, which is a
mass greater than the mass of the universe. So there is no
practical problem. So that’s why we repeat all these cal-
culations, without ever getting into any trouble, in prac-
tice. In practice, we never have to take the Λ so large to

61 Recall that RPF prefers to normalize the gauge couplings as
α = 1/e2.

get a good accuracy . . . From a theoretical standpoint that
seems satisfactory.

Alright. So what the trick is, and the point is, is that
when we’re putting our cutoff down, we’re changing the
theory. And when we use different kinds of cutoffs, we’re
using different theories. However, as it turns out that
by putting different g0’s in, we can get the same physics
from the different theories. For each theory you have to
have its g0, for each Λ there has to be an e0 . . .

But what happens in electrodynamics [QCD] is better,
because the sign is the other way around, and this is what
happens. We could ask, for any experimental data . . . we
could ask the following thing. . . . So we first have to mod-
ify the theory, to make it work. Really, we have to define
a process of calculation. There are several methods. One
is the method I mentioned before [(A.5)],

1.
1

k2
→ 1

k2
− 1

k2 − Λ2

plus some tricks to keep gauge invariance. It can be done,
it’s not very good about that without those tricks for gauge
invariance. . . . [Tape was changed here. RPF is describ-
ing dimensional regularization.]

2. dimensional regularization.

α becomes dimensionful when N 6= 4;

α = αs(ΛD)4−N

. . . as I will show you, physics with a fractional number
of dimensions. So we calculate with dimension N . And
then we write N 6= 4. As it turns out, when the number of
dimensions is N , the coupling constant, which I’m going
to write as α instead of g2, the coupling constant α has
a dependence on a scale, an energy scale; that is, it’s not
a [dimensionsless] number, it’s not a pure number as it
is in four dimensions; it has dimensions. So if I put a
dimension, say ΛD or something which is some kind of a
length, to a certain power, namely N − 4, then this thing
in front [αs] will be a constant, as we will vary Λ . . .

Third method: we replace space and time—spacetime—
by a lattice of points in spacetime. And to define what to
do on that lattice, which is analogous to the Lagrangian
here, and I will discuss that, that’s called the lattice
model.

3. Lattice model.

Has a dimensionful parameter:

a =
1

Λa

The lattice model has a dimension to the lattice, how
small it is. The dimension a corresponds to an energy—
I’m going to talk about energies—1/Λa; this is the spacing
of the lattice, the lattice spacing. Later on in the course,
I will discuss both of these methods, not so much this one,
but I’ll talk about this one too.

Oh by the way! This method is not defined yet, we
also have to say in what gauge we do it in. There’s an
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axial gauge, there’s a ∂µAµ = 0 gauge, which propaga-
tor, whatnot. They’re all variations on a theme. All I’m
trying to say is, all these things are mutilations of our
beautiful scheme. Mutilations which we have to make,
because otherwise it’s all meaningless. However, we ex-
pect the following. Let’s take the lattice model; it’s the
easiest to understand. Surely, if the number of points
taken is sufficiently fine, we’ll get a damn good repre-
sentation . . . [he compares to numerical algorithms for
approximating differential equations as finite-difference
equations] if we don’t get enough accuracy we make the
lattice smaller. For any particular size of lattice, there
are artifacts—errors—if you want to talk about some-
thing this big and the lattice is that big . . . The size of the
physical phenomenon here would be something involving
the reciprocal of the momentum cubed . . . Then the q [mo-
mentum] is the reciprocal of the wave number, and we
would like to get our constant [a] smaller than the wave
number, or we’ll never be able to represent that . . . But
in order to get good accuracy, if we want to make it re-
ally good, we should make it still smaller, because as we
all know, the more fine we have the lattice, the better
the representation. This is some sort of limit, that if we
took the lattice fine enough, we should get more and more
perfect agreement with everything.

However . . . so we would like these Λ’s—or in this
case it’s a question of how fast you come to the limit
N = 4, and in this case it’s a question, surely putting
something like that [the wrong-sign propagator in Pauli-
Villars regularization] is going to change the physics if
Λ2 is not enormous compare to Q2. Right? The prop-
agator is different—you changed it. But you don’t think
you changed it much. So, we have the idea, and it turns
out to be right, that if we have a phenomenon at a cer-
tain scale Q, and if we take Λ’s much bigger than Q, and
we consider different Λ’s, we can always find a constant
[bare coupling] to put in that gives the same physics. At
first sight you might not have realized that you’ll have to
change the g0. You would have thought that’s going to
be fixed, but the theory with its divergences shows that in
the same way as in electricity there are going to be logs
. . .

And so what happens is, when we ask ourselves, how to
choose—let’s pick a datum to analyze, any one of them
. . . We imagine we could calculate it. Then we ask how to
choose the g0—the other constants are involved, but we
suppose that we select the datum as something sensitive
to g0 . . . [RPF is illustrating this on the board, but I
do not have it copied in my notes] . . . so the physics is
always the same. Or the physical datum comes out always
the same. The datum agrees with the theory . . . . With
one datum we can always make it agree with the theory
by adjusting for a given Λ2 by picking out the g2

0. For
another datum, we might not get perfect agreement, if
the Λ2 wasn’t large enough, right? Because the theory is
a little dopey at low Λ2. If it was a lattice, the lattice
scale is too big. So we really want this in the limit of
very, very large Λ. We aren’t interested in the formula

for a Λ of the same order as Q or 6Q or something like
that. That’s not the problem, because things will work
for one datum but the other one won’t work, because the
theory isn’t right on the scale of . . . Is there any question
about this idea? I’ve tried to explain the idea, and I hope
that if you don’t catch on tell me what’s bothering you,
and we’ll straighten it out now.

[Question from a student, inaudible] That’s right, we’re
assuming that this thing is going to work. Yes, this busi-
ness of choosing a lattice is analogous to the usual one,
choosing a lattice for, say, doing the diffusion equation.
And you expect it to become more and more accurate as
you make the lattice finer. The only complication is that
we have to keep changing the g0 as we do so, in order to
keep the physics the same. But the presumption is that
we will be able to do that, that there will be a definite
limit. That’s an assumption which is, well I don’t know
whether people can claim they have proved it, but it seems
to be true. Okay?

Anyway we want the physics to be the same when we
change the Λ2, but also, by the way, when we change
the method [of regularization]. Like I said [referring to
a previous illustration on board], various Λ2’s and vari-
ous methods; I’ve labeled the Λ’s differently for different
methods, but it’s the same idea. And I’m now going to
tell you the answer . . . and later on I’ll prove it . . . Is there
another question? Okay, the answer is that the value of
g2

0 that you have to choose has the following expansion in
ln Λ:

1

g2
0

= β0 ln Λ2 +
β1

β0
ln
(
ln Λ2

)
+ c+

( a

ln Λ2
+ . . .

)
(A.7)

where the further terms that are small [falling with ln Λ];
these don’t interest us. We’re supposing that Λ is big
enough . . .β0 and β1 are computable and known. c is ar-
bitrary; it’s where we have the room to choose, to make
the thing fit the data. That’s the constant we choose
to make it fit the data, so c is arbitrary, you can have
any constant there, and it’s chosen to fit the data. But
the formula, and what you have to choose, depends on
the method—by the method I mean whether you use the
lattice method or dimensional renormalization or what
method of ultraviolet . . . you use. a [in (A.7)] also de-
pends on the method; β1 and β0 do not depend on the
cutoff method.

[Question about the arguments of the logs not being
dimensionless.] Yes, now that’s ridiculous, isn’t it? Very
good, Λ’s are energies. And I’ve written logs that aren’t
any—ha ha ha . . . Well, the old professor can fix that,
we’ll divide by (1 GeV)

2
:

1

g2
0

= β0 ln
Λ2

GeV2 +
β1

β0
ln

(
ln

Λ2

GeV2

)
+ c+

( a

ln Λ2
+ . . .

)
(A.8)

But why 1 GeV2? We’d better contemplate that some
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other joe will come along and use 10 GeV2 in there. So
we’d better contemplate what happens if instead of writ-
ing with 1 GeV2 underneath with M2 underneath, before
somebody else comes along, he likes to write his thing dif-
ferent. He would write this. And I would like to explain
to you why it doesn’t make any difference. Because that
makes it look that it is still more arbitrary, that we have
another thing . . . we don’t. And I’ll show you why. We
might have a different constant [c′], that’s the clue:

1

g2
0

= β0 ln
Λ2

M2
+
β1

β0
ln

(
ln

Λ2

M2

)
+ c′ +

a′

ln Λ2

M2

+ . . .

= β0 ln Λ2+
β1

β0
ln
(
ln Λ2−lnM2

)︸ ︷︷ ︸+(c′−β0 lnM2) . . .

ln Λ2

(
1− lnM2

ln Λ2

)
= β0 ln Λ2 +

β1

β0
ln ln Λ2 +

(
c′ − β0 lnM2

)
+

(
a′ − β1

β0

)
1

ln Λ2
+ . . . (A.9)

You see that all I did was change the constant. If I had
used “1” in here [for M ], I’ve got a certain constant,
when I made them fit the data. If I had used 10 or M ,
I’d get a different constant, that’s all. So I’m still okay,
right? The M makes it look as if there is another pa-
rameter, which adds to the confusion of this damn thing.
Because when you hear about choosing M and choosing Λ
and choosing g0, there’s no choosing M , really: it doesn’t
make any difference. It’s just a question of the definition
of the constant when you go to fit the data.

Now the part that I hadn’t finished is here; you no-
tice that as Λ2 goes to infinity . . . [RPF explains that the
regularization-dependent term a′ becomes negligible as
the cutoff is removed.] So I must take my Λ2 big enough
that this term doesn’t amount to anything. So every-
thing’s okay, and that answers your question about the
units. Is that alright?

Sir? [Question from me: Is this equation just the two-
loop approximation?] Yes—no, it’s exact! [me again:
there aren’t more logs of logs?] Oh yeah, maybe down
here, there’s log log, this times log log, stuff like that.
But always smaller, okay? No, there’s no log log log, no.
There’s no log log log. I’ll explain to you why. It may be
wrong in that there may be a term—I’m not sure, okay,
like ln Λ times ln ln Λ, or something like that, which is
still smaller than this one, but not much. And things like
that, but these are all dropping out as Λ goes to infinity.
So, I should say, terms of this order or smaller are going
to drop out, that’s what this curly line means. Okay? All
we have to do is to take the Λ2 very large and then we
can do that.

Alright. And that’s the formula how then we believe,
that if we do that, choose the g2

0 so it’s equal to this and
adjust the constant c, we can fit the first physical da-
tum. And then a second physical datum . . . what with the
same thing, with the same constant, you should get a fit

to experiment, provided that we’ve chosen the Λ2 large
enough that this [the a term] is small enough that every-
thing’s okay. Alright. Are there any questions? That’s
all there is to it. That’s all there is to what we call the
way the theory’s supposed to work.

Review. The theory diverges. In electrodynamics that’s
really serious [the Landau pole problem] but we don’t
pay any attention to it for practical reasons, e2 is suffi-
ciently small . . . In quantum chromodynamics because of
the opposite sign, there isn’t any real difficulty [because
of asymptotic freedom]. We can choose the g in terms
of the method that we use to make the cutoff in such
a way that we would expect that the physical data agree
with experiment. That is what the theory is. The theory
is, strictly speaking, not the Lagrangian which we wrote
down or the path integral we wrote down, but the path
integral plus all this crap about how to make a cutoff,
plus this baloney about how we have to choose g. And
then we should take the limit as Λ goes to infinity to get
the most accurate result. That’s the theory. The theory
of quantum chromodynamics is not defined by the La-
grangian alone. To put it another way, you cannot say
to a mathematician “hey, here’s my Lagrangian . . . , fig-
ure out the consequences,” because you haven’t told him
the full physics of what you intend to do, which is—
because if you give him that he’ll find out that the answer
is infinity—it doesn’t make any sense. The true theory is
the Lagrangian plus a cutoff scheme, plus a proposition as
to how the g’s go, so that the results will be independent
of Λ, the cutoff scale, as the cutoff scale gets sufficiently
fine. And this has to be the way to do it.

Now you can find this out by perturbation theory, of
course. You’ll notice that as Λ gets very large, the g2

0’s
are very small. When the g’s are small we can compute
everything by perturbation theory, and that’s the way you
computed the β0 and the β1. Well why didn’t we com-
pute c? Because you can’t; it’s an arbitrary constant.
And why didn’t we compute a? Because that depends on
the method. We can compute it for each method, but
it doesn’t do us any good. I’ll tell you why. This is a
signal that there will be errors of 1/Λ2 [1/ ln Λ2] in the
end, because we haven’t taken a fine enough lattice spac-
ing, using the example of the lattice. Because the lattice
doesn’t really represent the continuum. And this is a kind
of measurement error. So it’s no use to compute this “a”
accurately for a given scheme . . .

Yes? [Question: Λ is something you choose arbitrar-
ily?] No, we try to make it as large as possible. [student:
We try to make it as large as possible, but we can choose
it to be as large as possible.] Yes, that’s true. [student:
Okay, it seems like we can always choose Λ large enough
to make g small enough that we can use perturbation the-
ory] That’s correct [student: and then we can use pertur-
bation theory on any problem.] That’s correct. [student,
not satisfied: I have been told that . . . ] But the series
diverges . . . for processes with small Q, small momen-
tum transfer, the corrections to the propagator get bigger
and bigger [student: even when g is small?] What hap-
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pens is, when you take this exchange between two quarks
. . . you get corrections . . . say a loop of gluons or some-
thing, which modify the propagator between two quarks.
Now this thing, when you calculate it, involves something
like ln Λ2/Q2, when you calculate it. This interaction will
now will have a term like this with an extra g2

0. Although
the g2

0 is small, the ln Λ2 is undoing it, and you get a
finite . . . which isn’t small. It gets to be small in its effect
if Q2 were big enough, as we will learn next time, but if
you ask the question at low Q2, it just doesn’t work. The
divergences of the perturbation theory undo the smallness
of the . . . [bare coupling in the UV]. Okay?

Alright. Well the difficulty with the perturbation theory
is not that it doesn’t exist; it’s that you can’t sum it. We
don’t know how. Sometimes we can sum some terms,
but we can’t do a very good job, we have to think about
it, rather than calculate it, even though with sufficiently
large Q2, the effect of g is small, for smaller Q2 the effects
are bigger . . .

[The following apparently refers to eq. (A.8) or (A.9).]
I’ll be putting a mass squared here from time to time,
maybe . . . you’ll appreciate that it doesn’t represent an
independent choice of . . . It does—there is a way of mak-
ing it look like an independent choice. Obviously, there
is . . . suppose that we finally fix the data and worked it
out and determined c. And somebody could find an M so
that this canceled out. And then he could say that this
formula for 1/g2

0 is exactly this. And there’s no constant
and the other constant is M . And there’s all these dif-
ferent ways of representing the same thing, which causes
a tremendous amount of confusion to a lot of people, and
I’m sorry for that, because we really . . . calculate it, so we
don’t know the M ; some people come out with 0.2 MeV or
something like that62 and say that’s what it is, 0.5 MeV,
whatever. So they don’t know it well enough, so we don’t
have the numbers accurate enough that we can do one or
another of these things once and for all and be done with
it, so we have to kind of leave all these balls in the air,
as to which way you would prefer to write it—whether to
choose an M and say that it’s the constant [c] I want to
determine, or to say the constant I’m going to choose is
zero and it’s the M I want to determine. So you’ll hear
different people saying different things, but you have to
understand that they’re all equivalent. It always makes it
a little easy to do it on the blackboard because I’ve pre-
pared the lecture, but then you have stop and think are
they really equivalent . . . or you’ll forget how I did that.

Are there any other questions about the idea? As you
can probably see, because of the logarithms, you might ex-
pect 1/g2

0 is not really converging, and if we are working
at 100 GeV or something like that, and you wanted to
change Λ to change the logarithm in order to get some-
thing that . . . it’s damned hard! . . . And therefore some-

62 RPF meant to say 0.2 GeV, referring to the scale ΛQCD that he
usually denotes as λP .

thing like the lattice . . . They have a technical thing; they
can do some calculations on lattices . . . The lattices really
aren’t small enough to get a good answer . . . They’re as
small as they can make them and still do the calculation,
because of the number of . . . that are available . . . But
when they try to make the Λ63 smaller to be more accu-
rate, they need a lot more computer time, because in four
dimensions if you decrease the lattice by one half, you
have sixteen times as many points to compute. Sixteen
times as much work. But even changing the lattice by 1/2
is only changing Λ by a factor of two, and ln Λ doesn’t
do much. And so it is very difficult, in fact I would say
virtually impossible, to make the numerical calculation
practical . . . limitations of computers. To make the nu-
merical calculations with greater accuracy . . . So I think
we have to study this theory, not only to figure out an
analytic way . . . to understand well enough what happens
at short distances . . . so that we have a better way of com-
puting that is less sensitive to this brute force scheme that
they’re now using. During this course I will discuss all
the numerical calculations, and more of these methods,
and everything else; this is just an introductory lecture to
explain where we have to go.

Appendix B: Transcription: Renormalization:
applications (1-12-88)

[A student is asking whether RPF is going to explain
the correspondence between dimensional regularization
and the cutoff to which he has been referring so far.] Yes,
I am. I worked it out the other day and it’s very simple;
I understood it [RPF says something to the effect that he
might get some details wrong here since he is going by
memory] The point is that in dimensional analysis [regu-
larization] the coupling constant has a dimension, so you
represent the physical coupling constant as g times some
dimension—some energy, which corresponds to our Λ—
to a power of 4 minus the number of dimensions. Now
when you do an integral over correction terms in pertur-
bation theory, all of those integrals converge if the num-
ber of dimensions is less than 4, and so the corrections
to the coupling constant—that’s what I’m trying to get
straight . . . Now as the d approaches 4 it turns out—let’s
say we write d = 4 − ε—then there’s an ε down here as
you approach . . . It ends up that you’re trying to work
out something like (1/ε)×Λ−ε which gives you 1/ε times
1− ε ln Λ . . . I was trying to get that straight just before I
came . . . I couldn’t figure it fast enough . . . but there’s a
direct correspondence . . .

We have been talking about the renormalization of the
coupling constant in a kind of abstract way, and as usual
at the beginning of each lecture I have to fix up some mi-
nor things . . . in order to make everything I said conso-

63 RPF means the lattice spacing
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nant with the outside world, all the equations in which
I wrote g2, in all those the g2 should be replaced by
g2/16π2; then

α =
g2

4π
(B.1)

This is the real world. This is me.64 My α was πg2 times
4π, which is not good to do. This is the right thing; first
you substitute this, then you substitute that . . . All the
equations are changed with the appropriate positions of
the 4π’s. There was one equation that we chose to define
α(Q2), and that was 1/α(Q2), which now becomes

4π

α(Q2)
= β0 ln

Q2

λ2
P

+
β1

β0
ln

4π

β0 α(Q2)
(B.2)

The equations I’d written before didn’t have the 4π’s. Al-
right?

Now I will just remind you of what we discovered, that
when we did perturbation theory to order g2

0 to some pro-
cess, that’s all the order we worked out. And this is re-
placed ultimately by α(Q2) . . . that’s in perturbation the-
ory; it becomes this if you would sum the leading logs,
because you always know they come in common. It can’t
be g, because that’s ln ln Λ . . . nothing depends on the cut-
off . . . In other words, when you do first order perturba-
tion theory, you simply replace the g0’s by α(Q), and you
get a much more accurate result. You’ve included all the
higher order leading logs. If you try to do it to next order
in the coupling constant, it gets a little more complicated.
You get

g2
0 + g4

0

(
ln

Λ2

Q2
+ a

)
(B.3)

—I’m not going to try to get my 4π’s right—and we know
already there was one of these [in the argument of the ln]
in there, that has to be there, and that’s just to get the
right coefficient. And then there will be some constant [a]
that has to be worked out when you do the second order
perturbation. If that’s the case, then this turns into

α(Q) + aα2(Q) (B.4)

So the way to do second order perturbation theory, is after
you do it, take away the logarithmic term and just look at
the constant term, and the constant term is the coefficient
of the second order term in α. And it will be a little
more complicated with the 3rd order term. But we can
work it all out. And it tells you, in other words, from
the perturbation expansion . . . to write it not in terms of
g2

0 but in terms of α(Q). It’s the effect of summing the
leading logs, that are evidently going to come in, although

64 Apparently RPF made a side-by-side comparison of the two no-
tations, but I only copied the “real world” version in my notes.

we haven’t worked it out for the higher terms. This is a
much harder . . .

So in fact therefore people say that the coupling con-
stant is dependent on Q2 because of the running—that’s
what running means . . . I just want to say it again, it
looks complicated but it’s relatively simple; at first order
you replace g . . . at second order . . . .

There’s many papers and places where you can read
about this process of renormalization; I mentioned a [ver-
sion of ?] the renormalization group equations which will
look much simpler than any ones you’ll see anywhere,
unless of course I have it physically right and have done
it nicely. The problem is making sure that the quantity
that we’re dealing with depends . . . And that the quantity
we’re dealing with is physical and doesn’t involve some-
thing like just a Green’s function, an expectation of φ at
one point and φ at another point. Because the φ’s–wave
functions, or field operators—also shift their coefficients
with various c’s and so on. If you deal with a physical
quantity that you measure, you don’t have any of that
stuff. For example, if we have an expectation of vector
potentials

〈A(x1) · · ·A(xn)〉

at one point times another point or something like that,
then you have to watch out that these vector potentials are
also changing their definition as we change the coupling
constant.65 So in the renormalization group equations
for Green’s functions . . . well it looks much more compli-
cated, but it really isn’t that much more complicated, it’s
just the physical ideas were adequately described . . . it’s
always a good idea to stick to physical questions . . . So
a lot of . . . book or any paper on renormalization, you
find it enormously more complicated than anything you’ve
seen; they’ve added all kinds of extra stuff. It also has
a lot about the history where people tried this and that
and did this and did that and proved it this way and
proved it that way . . . The subject looks worse than it is.
Okay. So try to look it up and . . . that I cheated you
somehow in describing it . . . I did find a nice book called
Renormalization by John Collins, Cambridge University
Press, 1984. I can’t read it all, it’s too complicated for
me. Now there’s thousands of references on renormal-
ization . . .

Now that’s the end of last time—I’m always fixing up
the lecture before. Oh, there’s one more [thing to fix
up]; I’ve forgot the β1/β0 here [eq. (B.2)], and I’d bet-
ter tell you where the π’s are . . . The fact that this is
positive, if it was only about electrodynamics and didn’t
have the solution to write the conclusion to be negative;
it also suggests, the fact that it’s positive means that ev-
erything will work . . . wonderful theory . . . [RPF refers to

65 In my notes I have written that RPF is talking about anomalous
dimensions here.
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the Landau pole problem of QED] However if the num-
ber of flavors is more than something like 17, then we’re
in trouble. So most people believe there is not 17 flavors
of quarks. We only know of five so far. It might be six,
since people like to fill out the symmetry with t quarks.
But there is no theoretical reason to say that there isn’t
another group of three, like u, d, s—(u,d), (s,c)–strange
and charm, and you have beauty and truth or something
. . . [inaudible, some other word starting with “t,” draw-
ing laughter from the class]. And maybe there’s x and y.
And maybe there’s w and v—we don’t know; there’s no
understanding as to why there’s more than one family,
or why it stops at three families . . .

Okay, well, . . . the problem is how do we actually calcu-
late something . . . and perhaps this whole problem . . . and
you’ll see it all coming out . . . So that’s what I’m about
to do. But even there, before I do a particular prob-
lem, I want to do something about guessing where the
divergences are going to come. We all know from do-
ing quantum electrodynamics and other field . . . I’m as-
suming you’ve taken a course in field theory . . . comes
out to be divergent because of . . . And so let’s try to find
out when we’re going to get . . . So if you were to take a
very complicated diagram to calculate, some crazy thing
. . . there’s a quark, quark, gluon, gluon . . . it doesn’t make
any difference . . . something like that . . .

∫
d 4k d 4p

(p2, k2 + · · · )6
× f(p, k, · · · ) (B.5)

And then such an object will end up with two integrals
over momenta, one for this loop and one from this loop,
four-dimensional integrals . . . Therefore we need to inte-
grate over eight variables, and in the end the question is
does it diverge? The real question is, will there be—what
kind of formula are we going to integrate? There will
be various k2’s, minus this and that, propagators, maybe
there’ll be six propagators. I don’t mean there’s a sixth
power of the propagator, I mean there are six of these
kind of things in a row. Perhaps . . . So I’m not going to
worry about whether it’s p or k. But there will be from
the gradients in the couplings, up here [the numerator f ]
there will be some k’s and p’s. And then the question
is when we go to do these integrals, we will get a diver-
gence, a logarithmic divergence or . . . depending on how
many powers are down here and how many powers are
up here. If there’s more powers downstairs than there
are upstairs, then it will be a convergent integral.

So what we have to do is count how many powers there
are upstairs and downstairs. And that means looking
at all these couplings and seeing if there are gradients
in them, taking two powers for every propagator of glu-
ons, one power for every propagator of quarks . . . Now I
think there are no gradients in the coupling of a gluon

to a quark and so on. And we get all . . . and have a big
counting job. And it will depend on the structure of the
diagram. And now, for a miracle. There are very many
relationships between the way diagrams are constructed,
and what kinds of topology you can take. Of course one
of the typical theorems of topology is that . . . I don’t know
why that should be relevant for this because it doesn’t have
to be a planar diagram, that 66

Edges + Vertices = Faces + 2 (B.6)

In other words, there’s a relationship between the num-
ber of loops, the number of vertices and the number of
propagators . . . But what I’m trying to say is that the
number of loops, the number of junctions, the number of
couplings, and all this stuff are not completely indepen-
dent of each other, but they’re related to each other. And
those relationships turn out to mean that I can make this
count and tell you the answer in a very nice way, it’s very
simple. The net power of any integral, the number of nu-
merator over the denominator—in this case for example,
one, two, four and four is eight . . . there are twelve down
here, let’s say there’s one more here, that would be four-
teen, so that’s a net of minus two, so that’s convergent.67

The net power of all the momenta, which is N , has this
property:

N = 0, log divergence

N = 2, quadratic divergence

N < 0, converges

(B.7)

and the wonderful thing is, no matter how complicated
the diagram, the formula is that

N = 4−Ng −
3

2
Nq, (B.8)

four minus the number of gluon lines coming in from
the outside, minus 3/2 the number of quark lines coming
from the outside, period! It doesn’t make any difference
how it’s all structured in there. That’s an entertaining
thing; you can play around and try to prove it to yourself
. . . by actually counting things up and showing various re-
lations of the number of intersections and junctions and
three-point couplings. See, for example, this relation be-
tween the number of junctions and the number of lines,
because each line has two ends, so you know, take the
number of lines divided by two, it’s going to tell you how
many junctions there are. At any rate, this ends up as be-
ing true, which is most remarkable. Well now I’m going
to prove . . .

[Question from student: . . . superficial degree of diver-
gence?] Yes, yes, yes, superficial degree of divergence. It

66 In my notes I have written that this assumes a vacuum diagram,
no external legs.

67 The answer for the diagram in (B.4) should be −1
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is often called a naive counting divergence because, what
could happen, is that this whole problem, turns out there
are momenta up here, but they’re not the momenta of
the integrand that you have to integrate over, but they
might be the momenta of the outside lines—let’s call q
the typical momenta coming in, that we’re not integrat-
ing over. Then dimensionally, from the point of view of
the number of energy terms, it’s the same dimension, but
the integration is more convergent. [Student: Or what
could happen is that we have two integrals, over k and
q; the q integral is very convergent, and the k integral
is divergent.] That could happen, but it usually doesn’t.
[Another student: but anyway this is a worst case, this
counting?] Yes.

Let me explain how I did this. A way of looking at it,
one way of a direct count, the most obvious way . . . Here’s
another way. This, we could say, is part, it’s a diagram
for some process. It’s a piece of a lot of terms that are
going to be added together to produce a matrix element
T for a process. Now since they’re going to be added
together, they all have the same dimension, so the di-
mension of this is the same as the dimension of T . But
in the case of T , we have various rate formulas. Let’s
take an example. We have a single particle going into
. . . I don’t care how, and disintegrating into N − 1 parti-
cles, one coming in and N − 1 coming out. Then we
say that the rate at which this happens goes like this:

N−1 final particles

1

2 N
3

Rate of decays of 1 into N − 1 particles:

dΓ =
1

2E1
|T |2

N∏
i=2

(2π)δ(p2
i −m2

i )d
4pi

× (2π)4δ(4)

(
p1 −

N∑
i=2

pi

)
(B.9)

including the (2π)’s—which have nothing to do with di-
mensions, but I’m being accurate for a change—that’s
very rare.68 That’s the exact formula for the rate.
There’s a similar formula for the cross section, but that’s
with two particles coming in; let’s just take the case of
one.

What I’m going to use it for is to determine the dimen-
sions of T . By the way, in this case it’s very important
that the coupling constant has no dimensions. We’re go-
ing to have coupling constants, g, g, g, g all over this
thing, and those g, g, g, g’s is not going to make any
difference to the dimension. So all I have to do is find
the energy dimension of this thing, and thereby obtain
the maximum degree to which it could possibly diverge.
Okay, now the rate is one over the lifetime of that object,
and which is therefore an energy,

[Rate] =

[
1

τ

]
= [energy] (B.10)

68 The factors of (2π)−4 for each d 4pi are missing

and multiplied by this energy [moving E1 to the left-hand
side], we get

[energy2] = [|T |2] [energy]2(N−1) [energy]−4

Okay? And so we find out that

[|T |2] = [E]8−2N or

[|T |] = [E]4−N (B.11)

where N is the total number of lines coming out. And
that’s what this formula [(B.8)] was supposed to be, only
it’s slightly . . . Because we then can prove—you have to
watch out, we talked about the dimension of the inte-
gral that we’re going to get when we do this. Well that’s
not quite the same, because whenever a quark comes in,
there’s a spinor for that quark, and that spinor has a di-
mension. So the integral [the loops inside the diagram,
with external wave functions removed] is not the same
as the dimension of T . But you have [the dimension of]
the integral is four minus the number of gluons minus
the number of quarks, which is what I have there [(B.11],
that’s T , but for each of the quarks there was a spinor,
which has a dimension of 1/2, and so the integral doesn’t
quite have the same dimension as the T ,

I = 4−Ng −Nq − 1
2Nq (B.12)

To remind you, that a quark or spinor has a dimension
of 1/2, you remember that if you’re going to sum this
over spins, when you sum this over spins and there are
quarks in it, what you do is you say, oh I know, I’ll get
some kind of a matrix element, and then I put a projector∑
uū = /p+m in it when I sum over spins. That means

when you sum over spins, you put an extra energy in. So
the dimensions of the T when summed over all the spins
has these factors, one of these for every quark. That was
|T |2, therefore half an energy for each quark, so that’s
where this [last term of (B.12)] comes from.

And now finally if you have some good reason to know
that the final answer . . . for some reason you know, gauge
invariance might be such a reason, that you know the final
answer must have zero divergence [in terms of contracting
external momenta with the amplitude], for a gluon with
momentum q that it has to come in this way,

q2 δµν − qµqν (B.13)

so that it will automatically give that qµ on that is zero.
So let’s say we know there must be a factor like this in
front. Then of course we know the dimension of the in-
tegral is that much smaller. So the thing to do to remind
yourself of that is to take −p,

N = 4−Ng − 3
2Nq − p (B.14)

where p is the known power of the coefficient in front.
What I mean by that is the power of external momenta.
If you say well I’m going to take the worst case, then p is
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zero. We’ll consider p zero; I’m going to talk about the
cases where it isn’t . . . Alright?

Now let’s—oh, I had noticed something, that I copied
. . . scrap of paper; I’m not going to remember all of it,
therefore I can’t guarantee it, so you might like to try to
prove it. I also got interested in what the order in g is
for a given diagram. So I did all my algebra . . . to find
the order. And the particular way that I worked out the
order was the conventional way, in which the fields that
I usually use are replaced by gA so that the action looks
like (∂µAν − ∂νAµ − g[Aµ, Aν ])2—that’s not my conven-
tional way. That’s the way I want to calculate the order
. . . When I define it that way, and I find the order of g,
I find the following rule,

2× (loops) +Ng +Nq − 2 (B.15)

. . . to give you an exercise . . . I don’t guarantee it, because
I found it on an envelope without checking it. In case you
find that useful, maybe you could disprove it or prove it;
it would be interesting to try.

Let’s find out what kind of diagrams diverge. And to
be specific in drawing the diagrams, I’m going to draw
the lowest order in each kind. The lowest order in g,
not the lowest divergence . . . Then we can represent our
diagram by telling how many gluons there are, and how
many quarks there are. Here’s a little table, and for each
case I’m going to draw a diagram to illustrate it. Now
if there are no lines coming in, so the diagram has no
external lines, well we never have to calculate it . . . So
we start with one gluon. And that’s a thing that looks
like this: the gluon’s coming along . . . you can have a
loop of gluons, or you can have a loop of quarks; that’s
a typical diagram. I just draw one typical diagram of
this kind.69 There would be no electron lines coming in
from the outside, and this number [N ] would be three . . .

Ng 1 2 3 4 0 1

Nq 0 0 0 0 2 2

N 3 2 1 0 1 0

typical
diagrams

TABLE II: Superficial degrees of divergence, N , for graphs
with Nq external quarks and Ng external gluons.

[Question from student: you mean quarks?] Yes, always

69 In my notes I had added the extra examples.

I mean quarks, not electrons. I say “electrons” and I say
“photons,” but I mean gluons when I say “photons,” and
I mean quarks when I say “electrons.”

Now the next case would be that there were two gluons,
and there was something going around. It could be a
quark. Or if you prefer, to make it more interesting,
make it a gluon, I don’t care. Because these are typical,
I’m only illustrating. If there are two gluons coming in,
as you know, now the divergence is 2. Well you can keep
this going. Now we’ve got three gluons, with something
going around here, these are just to illustrate the idea,
and there is no quarks coming, the divergence is 1. Or
there could be four, [RPF makes sound effects as he draws
the legs] beep, beep, beep, beep, [and the loop] loo-loo-loo-
loo-loo; now we have four of these, and the divergence is
0. And now if I put five, then it gets convergent. And I
stop now; I’m only interested in the divergences.

So I start now, over again, this time putting in some
quark lines. Now you can’t just have one quark line be-
cause of the conservation of quarks, so the first case you
would get would be something like that, it would be no glu-
ons coming in, and two quark lines coming in, and that’s
[N =] 1. And then you could have two quark lines coming
in and one gluon line, and you get 0. Now the next thing
would be with four quarks, but that’s already convergent.
And that’s the end. Those are the only diagrams—sorry
the only types of diagrams—that will bring divergences.

Mind you, this diagram here, this is lower order, it’s
plus any internal complications, don’t forget. That is, the
same divergence will appear to occur if I draw a diagram
like this.70 It’s the same divergence. And that, due to
that theorem [eq. (B.12)] . . .

Now we discuss [in more detail] the individual terms
. . . Well if you have a gluon coming in . . . the vacuum
here . . .

∼ 〈Aµ〉 , (B.16)

a kind of expectation of the vector potential. The vector
potential could be in any direction in the vacuum, and it
averages to zero. So this is physically zero, and we never
calculate it, because of symmetry. The symmetry is this:
we can make A→ −A, the theory is unchanged; not true,
not true . . . a little more subtle way; there is a symme-
try in here. You change the sign of . . . something like
that; anyway there’s no direction you can . . . the gluon,
so there’s no expectation for the mean gluon field. So
there’s no term, you don’t have to worry about it now.
In fact we never calculate it . . . there’s never any . . .

Now ordinarily we would expect this

∼ δµνq2 − qµqν (B.17)

70 I did not copy the diagram, but the reader can imagine adding
loops to the lowest order diagrams.
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to be a quadratic divergence, from what it says here [in the
table]. It turns out that the conditions of gauge invari-
ance in the case of quantum electrodynamics for instance,
and also in quantum chromodynamics, means that there
has to be such a factor [q2 − qµqν ], and I’m not going to
prove it now, I’m just telling you about this, that gauge
invariance makes that p = 2 [in eq. (B.14)]. And this
turns this to a log divergence. In other words we over-
count . . . it’s not as bad as we think. However if we go
to calculate it, if we’re not very careful with the cutoff,
suppose that the method of cutting off doesn’t guarantee
gauge invariance, then we can easily get a quadratic di-
vergence . . . we screwed up, okay? But if you do it right,
so that you don’t lose the gauge invariance in the cutoff
process, then you can show that this will only be log.

Now the divergence of the first power,

(B.18)

really never occurs. Because if we would have–how could
we have it? We could have p dot something, like q or
something, and then you would have p · q/(p2)2 or some-
thing. This would be [in the denominator] spherically
symmetrical, and this would be [in the numerator] lop-
sided. If I change p → −p in the integral I get the same
thing with the minus sign. The mean value of pµ, a sin-
gle p, integrated over all directions, is zero. So for that
reason, this “1,” here and here both [in the 3rd column
of the table] the 1 is really equivalent in the end to 0; it’s
only log divergent. Although it looks like it’s linearly di-
vergent, the linear pieces average out, provided that your
cutoff isn’t lopsided, alright? . . . If you have a reasonable
cutoff that’s symmetrical, you only get log divergences.
And these [the terms with superficial degree of divergence
0] are log divergent. And so it turns out that this whole
mess, in practice, this whole thing, are all log divergent,
if the cutoff has any degree . . .

[Question from student: does gauge invariance reduce
the degree of divergence of some of the diagrams] There’s
this [the vacuum polarization] [student: but not the 3-
gluon diagram?] Yes actually, this cuts this down [by]
1 . . . The “1” has to be an external momentum. This
will produce an effect that is proportional to the original
coupling, which is like this. That comes from an AA
cross a curl A.71 So there’s one gradient that comes on
the external line. So it always turns out that this “1,”
in order to keep the dimensions right, ends up as some
external line [momentum]. So if we want the momentum
of the incoming particle to be in front . . .

Yes. [Another student: So you do get gauge invariant
couplings.] Something tells us that there will be an ex-
tra gradient in front. But it’s also true that the mirror
symmetry of the . . . the same result. Alright? Another

71 RPF means �×~A · ~A××~A; see eq. (8.15).

question? [Shouldn’t gauge invariance also reduce the
logarithmic divergence in the . . . ] Yes and no. That’s
. . . more difficult because there’s no procedure. This is
gauge invariant, but it’s coupled directly with A and we
don’t see any extra gradients. So there’s no way to de-
crease the apparent power. The only way to make it
smaller is by having momentum come in front. When
you have two quarks—talking about the last diagram—
two quarks and a gluon, you’re going to imitate a term
with a quark, and a quark or an antiquark, and a gluon,
and there’s no gradient, so it comes out that it’s logarith-
mic.

Now it is possible to choose a gauge, by the right choice
of gauge, you can make any of these damn integrals zero
[in terms of the degree of divergence], at the expense that
the others change [?] . . . 72 You have to be careful to
compute a complete physical process always. You want
to make absolutely sure to compute something, the to-
tal answer of which is gauge invariant. Then you can’t
really say—it is possible—you remember all the differ-
ent propagators we had for the gluon? Well it depends
on what propagator you use, whether you use a propaga-
tor with k · η/k2 or whether you use the propagator with
δµν , or still another propagator which is interesting. I
wanted to mention this before . . . When we were doing
the . . . business, with this gauge for instance; suppose we
started with this gauge ∂µAµ = 0, and we come out and
we have to do∫

ei
∫

1
4 (∂µAν−∂νAµ−A×µ Aν)2 ∆(A) δ[∂µAµ]DAµ (B.19)

and I’m not going to write the quark business in. Then
we had in addition the statement that there was a de-
terminant ∆(A), and this produced ghosts, it was repre-
sented by ghosts, and on top of that was a delta function
of ∂µAµ. And then we integrate over all A. But I sug-
gested that we get exactly the same ∆(A) here if you try
to make this δ[∂µAµ − f ], and that the answer was in-
dependent of that [f ]. And then suggested further that

you multiply by e−f
2/2 or something [times] Df . And

the result of that was to bring up a e−(∂µAµ)2/2—I’m just
outlining what I did. In order to eat, in the square of this
[(∂µAν − ∂νAµ)2] the divergence pieces, and then I could
show you that the equation of motion which was

�Aν −����∂ν∂µAµ = Sν (B.20)

At any rate this term [slashed out] didn’t appear at all,
and therefore

Aν =
1

�
Sν =

1

k2
Sν (B.21)

So we got the propagator δµν/k
2. Now the interesting

thing is what happens if you put a different number here

72 I don’t understand the claim, since the propagator (12.8) (with
µ2 → −k2) has the same power-counting properties as usual.
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[in the gauge fixing Lagrangian], a(∂ · A)2/2. And I’ll
just leave it as an exercise, because if you put a different
number in there, you get a propagator of this form,

1

k2

(
δµν − η

kµkν
k2

)
(B.22)

where η is not the same as a, I can’t remember exactly; η
is something like a/(1± a). Ah, it should be when a = 1
this disappears; when a goes to infinity, this should go to
1. Because a =∞ brings us all the way back to here; this
is Gaussian, such a tightly Gaussian, it’s equivalent to a
delta function. And it says you calculate everything ex-
actly when ∂µAµ = 0. And that’s a propagator like that
[δµν − kµkν/k2]. Now you see that if you take a kµ of
that, you get zero automatically, because the divergence
of Aµ is always exactly zero. Well, this general propa-
gator when η = 1 is called Landau’s propagator; when
η = 0 it’s called the Feynman propagator. And other η’s
are possible too; I call it to your attention because it’s in-
teresting . . . the effects of this going to zero . . . you’ve got
to be careful what propagator you use . . . what sizes you
get for the different . . . It’s only when you have a gauge-
invariant quantity that you get an answer that does not
depend on the . . . propagator you use.

[Some of the lecture was lost during the change of
tapes.] . . . Nowadays it’s possible to do all these diagrams
and all these calculations on machines, programs for alge-
bra . . . programmed specifically for working on these dia-
grams and integrals involving quark data, and therefore it
gets to be no big deal. You choose a propagator [gauge],
you turn on the switch, and it does all the 17 diagrams.
Whereas by hand, you are happy to discover that by using
Landau’s gauge, you only have four diagrams; remember
I had 17. This would be useful . . . without . . . machines.
The reason that four diagrams is better than 17 is mainly,
it’s impossible to do anything without making mistakes,
when you have too many pieces . . . Alright?

I am now going to calculate, at last; let us talk about
the scattering of two quarks. To lowest order we already
know that it looks like this

q

∼ g2
0

q2
(B.23)

and we computed it. I don’t remember what we got for the
color . . . but it involves a g2 and a one over q2 . . . That’s
the lowest order. Obviously this is g00 . . . now it’s going
to be α when we’re done . . .

Okay, now we get the next order, the g4. We’re trying
to get the next order in g . . . So what we do—this is the
lowest order—next order, we have a lot of possibilities,

+ +

+ + + +

−

x

+ + permutations

ghost

mδ

+ + + +

Could be that you had a quark loop here, coming out this
way. Could be you had a gluon loop coming out here.
Could be that you had a gluon loop like that—what?
Yes, with the four gluons that couple there; I believe
that’s zero when you work it out, but I’m not . . . It’s
obviously simple. Then there’s a diagram that looks
like this [vertex correction] plus one on the other side.
Then there’s a diagram that looks like this [3-gluon
vertex correction]—I wish the blackboard went a little bit
further, I’ll draw it up here, a diagram that looks like
this [quark self-energy correction and mass counterterm]
. . . subtract the effect of this, this thing is divergent,
the correction to the quark mass, you just have to
subtract it. Alright now I’ve drawn all the diagrams
except the mirror image of this one, the mirror image
of this one, this [self-energy] could be here or here or
here . . . Alright? Now any other diagrams you can think
of? [Student mentions the ghost.] Ah yes, I’m sorry,
the ghost. Important, important, the ghost, the ghost.
Very vital. Ghost, ghost, ghost, ghost. Thank you, yes.
Anyone else think of some oversight? . . . 73

Alright. Now the situation is, a lot of people will like
to compute this

+ + . . . 

and say, well this is just a gluon going along, so don’t do
all this, just do this,

+ + . . . 

on the gluon . . . [Student (me): there’s a box diagram
with . . . ] Just a moment. Just let me finish this part.
Just do these [now including the gluon loop contribution
to the vacuum polarization]. You can’t, because this de-
pends on what kind of gauge propagators you use, it’s not

73 I realize that the box diagram is missing a few minutes later in
the lecture and interrupt RPF.
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a gauge-invariant process . . . You have to finish it by hav-
ing quarks make the gluons . . . that’s why I made it more
complicated. The answer is that depending on what kind
of propagator you use, you get different answers for that.
It’s only when you put the whole mess together that you
get an answer that’s independent of what propagator you
use. Somebody was going to say something. [Student:
there’s a box diagram too, where you’ve got two gluons
connecting the quark propagators.] Of course, sure there
is. Yes. And crossed, right? 74 I thought we’d find some-
thing . . .

What we can do is do one as simple as possible, and
then say the rest of them, you know the rules for putting
this in and the rules for putting that in, they follow the
same kind of . . . the labor is enormous . . . how to sum
over the colors, various things . . . If you had to do it, you
would do it. Or find a book that will do it, okay? But in
order to understand the nature of the results that we’re
going to get, I’m going to take only one case. I’m going
to take the dullest and the simplest case, this one,

q q

p−q

p

b
ν

jai
µ

. . . The others teach you a little bit, but . . . you’ve prob-
ably done this . . . So here we go. Alright? . . . I’m going
to have something going around here; let’s say that the
momentum coming in here is q, and this has a momen-
tum p let’s say, and then since the momentum coming in
is the same as the momentum going out . . . If you don’t
know what I’m doing, then it’s because you didn’t take a
course that’s supposed to be a prerequisite for this, hav-
ing to do with perturbation field theory, and you’re going
to have to learn it. Alright? If you have taken such a
course, this will be very boring, and I’m sorry, but I’ll go
as fast as I can, and hope that you . . . will stop me and
ask some questions . . . Alright, now here we would have
a quark going around, and we would have a coupling in
here, which is a γµ in the direction of the polarization of
this, so let’s say that a is a vector polarization, and let’s
say ai is the color of the gluon. So this would be γµ and
it would be multiplied by aiµ. But there would also be a
λi matrix for the color matrix that this couples with,

g2
00

(
−Tr

∫
d 4p

(2π)4
bjν

1

/p− /q −m
λj
2
γν

1

/p−m
λi
2
γµa

i
µ

)
(B.24)

Now the next thing happens is that this damn thing prop-
agates, the quark propagates around to here, and the fact
that they’re propagating, one over /p minus the mass of
this quark. Sir: [student: Do you mean to have λi/2?]
Yes sir, I do, I do. Yes, thank you. Then comes this baby

74 There are many other crossed diagrams missing.

which I’ll call b, and we can say the polarization is γν ,
we’re going to be multiplying by bν and by j. And then
we’ll also have a λj, for the color business there, and
then we’ll have—I didn’t leave enough room did I?—well
maybe I just about did, I have the propagator p dagger
minus q minus m—oh, I forgot the 2 again, I shouldn’t
do that. And I have two g’s for the couplings at either
end. And those are the kind of g’s that I was tagging g00

. . .
Of course, that looks like this is second order, but I

didn’t put the rest of these two lines on [the external
quarks], and when I did that there would be two more
g’s, and this is important. The first diagram which got
two g’s and the second diagram has four g’s . . . Now, I
have to sum over everything. I have to sum over all the
possibilities for the momentum of the quark loop, and I
have to sum over the colors, and the spinors. Well, first
the spin. When you come around and come back, you’ve
got all these matrices, and it becomes a trace. So really
it should have been a matrix trace, a trace for the gamma
matrices,

tr

[
1

/p− /q −m
γν

1

/p−m
γµ

]
︸ ︷︷ ︸ tr

(
λiλj

4

)
︸ ︷︷ ︸ (B.25)

tr

[
(/p− /q +m)γν(/p+m)γµ

[(p− q)2 −m2][p2 −m2]

]
︸ ︷︷ ︸

δij
2

=
[
(p− q)µpν + (p− q)νpµ − δµν(p · (p− q)−m2)

]
/ . . .

. . . In addition, we’ll have a matrix operator for the color,
and then it carries all the way around here and goes to
this color, and then it carries all the way around so we
get another kind of a trace, this time on the colors. So
this is a trace on the gamma matrices, you might say,
and then there’s another . . . trace on the color indices, of
λjλi over 4. And this one is easy, we know the color of
this—without the 1/4—is 2δij, so that’s 1

2δij. So the first
thing it tells us of course is that the color of the quark
that comes out must be the same as the one that went
in. That’s the conservation of color; if it’s a red-antiblue
gluon here, it will be a red-antiblue gluon there . . .

This particular trace [the Dirac trace], the famous way
of handling that, is to multiply numerator and denomi-
nator by /p− /q +m and by p dagger plus m, and then in
the denominator, you’ll have the rationalized thing there,
(p − q)2 − m2 and p2 − m2, and then there will be this
factor we had before, δij over 2. Alright? . . . Any ques-
tion up to here? In fact it’s the same as the corresponding
correction in electrodynamics, except there’s some slightly
different number . . . from the colors. This trace here that
I’ve written can be directly simplified; this trace is ex-
actly the same as this dot this plus the other way around
. . . minus . . . it’s all memory . . .

So the net result is that effectively I have to do this in-
tegral, an integral that you must have learned about when
you were doing electricity, QED, so I turn over here to do
the integral. But before I do the integral, I look at it, and
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notice how it diverges. We can see by counting there’s 2
p’s in the numerator, there’s 4 p’s in the denominator,
there’s 4 p’s in d 4p. That cancels but you’ve still got 2 so
it’s quadratically divergent. In exact agreement with the
prediction. But, now the trickery, the method for doing
this like this, is to have a whole list of integrals . . . a list
like this—I’ll do the integrals in a minute—but things like
this, ∫

d 4p

(2π)4

1

(p2 −m2)3
=

1

16π2im2
(B.26)

or something; I’m not chasing that, alright? This permits
you to do anything that has powers in the denominator,
by integrating over . . . But this [(B.25)] has two differ-
ent kinds of powers in the denominator, so there is an
invention for putting that together, which runs like this:∫ 1

0

dx

[ax+ b(1− x)]2
=

1

ab
(B.27)

The integral from 0 to 1 dx . . . and this you can verify
directly. And therefore if you take the product of two
pieces, you can write it as one denominator.75 I copied
it from Schwinger, actually, I cheated. He had another
way of doing it which was extremely clever. Involving a
Gaussian integral. I noticed that I could eliminate one
step . . . and make it look . . . [laughter].76

So therefore . . .

1

(p2 − 2p · q + q2 −m2)(p2 −m2)
=∫ 1

0

dx
1

[p2 − 2p · qx+ q2x−m2]2
(B.28)

Alright? Alright, . . . what we’re going to replace that
thing by, and so we would have this integral from 0 to
1 dx, to be done, later, and then we’ll have the integral
d 4p, and then we have something like . . .∫ 1

0

dx

∫
d 4p

(p2 − 2p · qx+ q2x−m2)2
(B.29)

×
(
2pµpν − pµqν − pνqµ − δµν(p2 − p · q −m2)

)
Alright. Now we have to do this [p] integral. But we
can’t, because it’s divergent. The first thing that’s a good
idea to do, always, is to shift the p, let me shift p, let
p→ p+ qx. Then we have∫ 1

0

dx

∫
d 4p

(p2 + q2x(1− x)−m2)2
(B.30)

×
(

2pµpν + (p · q terms) + 2qµqν x(1− x)

− δµν(p2 − q2x(1− x)−m2 + p · q terms )
)

75 Here RPF makes a joke that elicits laughter, something like
“Classic, right?”

76 Perhap RPF is saying something like “and make it look like my
own idea.”

I just completed the square here. And then there are some
terms with p · q, I don’t know what they are . . . they are
linear in p, you’ll see why I don’t care about them in a
minute . . . Anything linear in p that I didn’t bother to
write out, the reason is that when I integrate over all
directions of p, the plus and minuses are going to go out,
and since I’m going to get nothing from them, I didn’t
bother to be careful. Alright?

Now I have cheated. Why? We made a mistake. Be-
cause, the integral is divergent; I didn’t tell you how to
make it convergent. Therefore this business of shifting
p by qx—how do I know that the integral—that you can
shift p by qx and get the same result? I must insure that
my method of renormalization, whatever the hell I’m go-
ing to use, has that property that if you shifted the p, it
would be alright, okay? So that’s one thing. The second
is, what about the integral over p at zero? That’s right, if
the method of renormalization is round, okay, but round
against what? Against the shifted p? If you say it’s round
against this p, it’s not round against the shifted p. You
know what I mean, symmetric in both directions. It’s
cheating. So only if I made a method of renormaliza-
tion, I mean a method of cutting off the integral, specific,
and carefully, can I really do these things which I’ve been
doing.

Now it happens to turn out that one method that’s been
invented for this kind of loop of quarks or electrons is this:
you subtract the same expression with a larger value for
the mass of the electron. In other words, the method of
renormalization, I should have at least specified before I
made those steps. And the method that I want to use is
going to be this one. You take the value and then take
with m2 replaced by a bigger m2, which I like to write
as m2 → Λ2 + m2, and subtract. That’s the scheme.
That scheme, it so happens, will permit the steps which
I did of shifting. It was all right. But it’s very easy to
slide off the wagon and make operations which are not
quite right until you specify the right way . . . You see,
this method of subtraction maintains the gauge invari-
ance for this diagram. Because if this were electricity,
everything is exactly the same except for a number, and
if this is electricity, if this is any mass whatever, this is
a gauge invariant integral, and the gauge invariance is
maintained by subtracting the same expression. To show
you that it isn’t necessarily obvious what to do, an early
worker in the field first proposed or tried to subtract from
this propagator the propagator with a different mass. In
other words, to use for the propagator

1

p2 −m2
→ 1

p2 −m2
− 1

p2 − (Λ2 +m2)
(B.31)

That doesn’t work. That doesn’t keep the gauge invari-
ance. Pauli and Villars pointed out that if you sub-
tracted the whole thing, the whole closed . . . [amplitude]
then you maintain the gauge invariance. So you see
it’s easy to . . . if you don’t maintain the gauge invari-
ance . . . electrodynamics . . . Pauli-Villars . . . and that’s
the way if you do this then all these things are legitimate.
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Okay?
Now I’ll show you a very interesting—is that okay, you

had a question? It’s nerve-wracking, alright. But it’s
been straightened out, in the case of an electron. I want to
point out, that when we come to the second diagram here,
with the gluon, it’s more subtle and more complicated.
And the exact way to do it is very hard, and it took a
lot of finagling around to get it right, when I first tried
it. But I was able to guess and push and hammer. In
the meantime, another method of cutoff was invented,
which is called the dimensional renormalization, invented
by Wilson and ’t Hooft . . . for which gauge invariance and
covariance in space in four dimensions are automatically
maintained in [d dimensions], not a chance of losing it,
so that it’s a good scheme. We don’t have to have the
old-fashioned hammer tricks. Here we know a good trick
that will work, and I wanted just to point out . . . Now I
would like to point out—I think we could almost see—
Now I want to show you something. Suppose we had a
method of renormalization, that we knew was going to be
symmetric, and everything is going to be alright. Then,
I claim this integral,∫

d 4p
pµ

p2 −m2
= 0 (B.32)

if we could renormalize, to make it finite anyway, would
have to be zero because of the asymmetry. Provided we
had a good method to protect the asymmetry, and sub-
tracting this thing with a different mass obviously does
that. That’s it, no problem. Now differentiate both sides
of this . . . Now what I want to prove, let’s see . . . If you
differentiate inside the integral with respect to [p sub]ν,
you’ll get∫

d 4p
∂

∂pν

pµ
p2 −m2

=

∫
d 4p

δµν(p2 −m2)− 2pµpν
(p2 −m2)2

= 0

(B.33)
It’s not hard to prove, by the same kind of symmetry, one
way or another, you might not like the way I did it, that
this is also zero.

[Student: what did you differentiate?77] I differentiated
the integrand with respect to pν . Isn’t it legitimate to
differentiate the integrand if you’re going to integrate it
back anyway? Well, if you don’t like it this way, then
another way to do it is to shift p, and differentiate with
respect to the shift in p. You start out with some kind of
thing like∫

d 4p
pµ

(p− a)2 −m2
= aµ

∫
d 4p

(p− a)2 −m2

which is just this thing [(B.32)] with p substituted with
p−a. And then differentiate both sides of this expression
with respect to aν ; then put aµ = 0. Alright?

77 I reconstructed the previous equation from the tape rather than
my notes; apparently it was less explicit, leading to this question.

I write this particular thing by putting it all under the
same denominator, and putting this here [arranging the
numerator so that the first term is like in (B.33)]:∫

d 4p

(p2+q2x(1− x)−m2)2

[
2pµpν−δµν(p2+q2x(1− x)−m2)

−2qµqνx(1− x)+2δµνq
2x(1− x)

]
So we have this sort of general statement that it is a
displaceable method of doing things. You can think of
it as a shift of the origin; the method of renormalizing
doesn’t have anything to do with it. The question is, if
this were automatically zero. And then if we look at this
we expect that . . . we have just the right combination: we
have 2pµpν and δµν times the denominator—watch out
on that sign! [The q2 term in the numerator has the
opposite sign to that in the denominator.] This part’s
okay but this is wrong. Well I’ll fix it; I’ll put plus and
I’ll make it minus 2 [in the second line]. Alright, that’s
not wrong. Now this thing, times the delta, plus this one,
go to zero . . . by the argument about the way to do it . . . in
the integral . . .

The result of that is that all of this can be . . . the net
result of the whole thing, altogether, is

2(qµqν−δµνq2)

∫ 1

0

x(1−x)dx

∫
d 4p

(p2 + q2x(1− x)−m2)2

(B.34)
and I’m close to the end of the hour . . . I wanted to
subtract—this is only a logarithmically divergent thing—
and I subtract the upper limit and so on. It’s going to
introduce something that goes like the logarithm of this
cutoff divided by some pole mass which is practically the
q2 of the quark. It’s a little more complicated than that
and I’ll finish it next time. What I’m trying to say is
that we can get to this thing in front, and that is neces-
sary for gauge invariance, because q dot [the prefactor]
is zero . . . The current is conserved.

Now let me, since it’s just a few more minutes to ten,
just to remind you . . . I’ll explain that this means that
the vector potential that is coming in and out . . . finish
the job next time . . . and also next time I’ll start to ex-
plain . . . dimensional renormalization, which is so handy,
because the old-fashioned way you had to do a lot of
thinking, trickery, to make sure you didn’t screw up
. . . invariance.

Appendix C: Transcription: Renormalization,
continued (1-14-88)

We were doing one of a number of diagrams that have
to do with the correction to scattering of two quarks. The
scattering of these two quarks behaves as—g is the cou-
pling constant—something like g2 over q2 in the first or-
der. Or that’s sometimes called second order because it’s
in g2 . . . First order in g2. That’s straightforward. We
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want to get corrections for it. And the corrections ap-
peared to be a large number of diagrams which I wrote
. . . and you’ll see that there’s a g here and here and here
and here,

= Jµ g
4
0

1

q2
B

1

q2
Jµ (C.1)

where B = . So this is going to be a correction
which will be of the order g4

0. There will be two propaga-
tors 1/q2 here and 1/q2 there, and so on. So it will be
1/q4 multiplied by an integral,

B = (δµνq
2 − qµqν)I, (C.2)

I =

∫ 1

0

dxx(1− x)

∫
d 4p/(2π)4

[p2 −m2 + q2x(1− x)]2

What we’re going to discover is that this is—sorry, not
by the integral, but by B, the bubble . . . I left out all the
indices, the colors and all that. You can go away and
discover that the colors are all . . . multiplied by a certain
integral . . . in this integral there is a number of constants
which I inadvertently, carelessly dropped—twos and π’s
and things which presumably you can calculate . . . 78

Now, the currents [Jµ], which I didn’t write here, which
are operating here and here . . . this bubble, when acting
on the current, the q—the current is conserved—and the
q acting on the current is zero, so that q · J = 0. The
bubble gives you δµν , which means that these two currents
are in the same direction, and this q2 in the bubble eats
one of these q2’s. So this thing turns into

= Jµ g
4
0

1

q2
I Jµ (C.3)

So therefore, it’s the same form as this [the tree level
contribution]

= Jµ
g2

0

q2
Jµ (C.4)

except we have g4
0 times the integral up here instead of g2

0

in the correction. So the easy way to think about it is it’s
a correction to this coefficient at the top,

g2
0 → g2

0 + g4
0I (C.5)

Alright? Are there any questions about that?
In getting to this form we did a little hocus-pocus about

correcting, shifting origins and this and that, and talking
about tricks to get rid of the quadratic divergence which
originally arose. However we still have a divergence and

78 I had added the 1/(2π)4 factor as an afterthought in my notes.

we have to talk about how to handle it. And the par-
ticular rule that works for log divergences in quark loops
is to subtract—the rule I’m going to use here, now— is
the method of subtracting the same result for different
masses. But I will describe, perhaps today, but later, the
method called dimensional renormalization, which is to
change this d 4p to d 3.9p. This is a function of only p2,
so d 4p is something like p3 dp, with a coefficient that is
π2 or something, that depends on the number of dimen-
sions; in three dimensions it’s p2 dp times some other
number, 4π. And in d dimensions d dp is pd−1 dp times
some coefficient involving Gamma functions of d and so
on . . . That’s all there is to it—mainly that’s all there is
to dimensional renormalization; to use d = 3.9, and then
3.99, go to the limit. Alright? That’s what it’s about.
However it’s very pretty and I must have spent a lot of
time because I enjoy it . . .

Anyhow, the way of renormalizing is to subtract—this
is what we’re going to do now

1

(p2 − (m2 + Λ2) + q2x(1− x))2
(C.6)

[from the integrand of I]. That will make the results con-
vergent . . . It would be—another way to make this sub-
traction is to consider this integral as a function of m2,

I(m2) =

∫ 1

0

dxx(1− x)

∫
d 4p/(2π)4

[p2 −m2 + q2x(1− x)]2

(C.7)
and then consider taking I ′(m2), the derivative with re-
spect to m2, and integrating that

−
∫ m2+Λ2

m2

I ′(M2)dM2 = I(m2)− I(m2 + Λ2) (C.8)

Let’s take the derivative with respect to m2, but we’re
going to have to have a variable for it, so let’s call it
M ; integrate that with respect to this M2 . . . you can
certainly do this . . . This is a trick that I wanted to use
. . . converges . . . Well of course I need to differentiate and
then put it under the integral sign, calculate the integral
and then . . .

. . . This particular method would produce this final re-
sult without all those tricks about shifting and so on; all
those could be perfectly done by . . . and not notice all that
stuff . . . all that stuff that I did for quadratic divergences,
it’s also taken care of . . . I did that to show you how in
cases where there’s some confusion, it is always possi-
ble to get an answer. People were very clever to squeeze
answers out of these . . .

The logarithmic divergences are always much easier to
handle, much less uncertain than quadratic and higher
divergences. And when we were doing this stuff for ex-
ample we found that one of these things would produce a
logarithmic divergence directly. So another thing to do is
to compute a process that we know produces a logarith-
mic divergence, and then have no more trouble, and use
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gauge invariance to get the terms in front. But with di-
mensional renormalization, you don’t need any guessing
. . .

Okay, we’re going to do it this way [by Pauli-Villars
subtraction] here. So first I’ll differentiate that [(C.7)]
and I will find myself needing to do the integral∫ m2+Λ2

m2

dM2

∫ 1

0

dxx(1− x) 2

∫
d 4p/(2π)4

[p2 + q2x(1− x)−M2]3︸ ︷︷ ︸∫
d 4p

(2π)4

1

(p2 − L)3
=

1

32π2iL

(C.9)

And now at the end when I’m all done I have to integrate
with respect to M2 . . . Alright, so that’s where I’m at, you
see where I got that: differentiate that with respect to M2,
the second power . . . now it’s got the third power. Now
of course this integral will present no divergence because
there are six p’s in the denominator and four in the nu-
merator; then this integral can be done. We can do it
in lots of ways, and I’m not going to bother . . . Anybody
who’s ever done anything in perturbation theory is always
going to put this very same integral, sooner or later. It’s
the integral of d 4p/(2π)4 divided by p2 minus something,
cubed, and it’s equal to [one over] 32π2iL or something
like that. Factors of 2 or so I’m not going to . . . I can’t
remember and I didn’t bother to look it up . . .

This then, this integral here then—I’m keeping these
lines this way so that you don’t have to write that over
and over and over—this piece becomes∫ m2+Λ2

m2

dM2 1

16π2i

1

M2 − q2x(1− x)
(C.10)

=
1

16π2i
ln

(
m2 + Λ2 − q2x(1− x)

m2 − q2x(1− x)

)
Okay, now the idea is that Λ is the cutoff, it’s supposed
to be higher than any of this part with the mass, even q2.
We only want this theory as Λ → ∞. As Λ → ∞ then,
relatively speaking we can drop this [m2 − q2x(1 − x)].
Of course we get an infinite answer because we have a
divergence and that’s where all the trouble began. What
happens to that infinity? It’s fixed by changing the cou-
pling constant g0 with Λ, by making g0 a function of Λ, so
that the variation of the first order takes away the . . . if
you use different Λ’s you use different g0’s at the end.

I’m going to continue this calculation disregarding the
masses. Suppose you have a large momentum transfer,
and disregard the mass. The purpose of this is only to
do the arithmetic; if you want to you can always do it
with [nonvanishing mass]. . . I’m going to disregard this
just so to take a simple example where q2 is much larger
than the m2 . . . It looks like it’s dangerous because when
x is small, even if q2 is large, maybe that [the mass] is
important, but it turns out in the log it don’t make any
difference, but anyway you do it with m2, I don’t want

to do it with m2. I’m only illustrating, explaining what
comes up . . . So I’m going to write this as∫

dxx(1− x)

16π2i

[
ln

(
Λ2

−q2

)
− lnx− ln(1− x)

]
=

(
1

6
ln

(
Λ2

−q2

)
− 5

18

)
(C.11)

We suppose that −q2 is positive, actually. It’s going to
be a momentum transfer for the scattering . . .

Now I have to integrate this and I’m almost finished,
see? So I have to integrate x(1 − x). That’s a constant
[meaning that ln(Λ2/q2) does not depend on x] . . . that’s
well within my power. x− x2 [integrates to] x2/2− x3/3
that would be the integrand, and if I put x from 0 to 1—no
the integrand is the differential of that—I get 1/2 minus
1/3 is 1/6. It’s going to come out to 1/6. Silly now,
because I’ve lost the constant . . . so I have the logarithm,
I’m just trying to keep things that are relevant . . . Now I
have to do the log of x times this, which I’ll do by parts.
And I get 1/4 minus 1/9 actually, when I do it by parts I
get some kind of number here, something like 5/18, okay?
Coming from integrating those logs, which are easy to do,
and I’m sure you’ll . . . Yeah, 5/18. Anyway you get some
constant. And that’s it.

And that’s the integral “I,” and it will have the Λ there.
How are we going to look at the physics? Assuming the
physics is right, and we’re going to get an answer, now
we put that back: this “I” goes back in here [eq. (C.3)],
right? So, I’m just going to write the coefficient of the
term . . .

J
1

Q2
J

g2
0 +

g4
0

16π2

β0

ln
Λ2

−q2︸︷︷︸
+ a

 (C.12)

Q2

where β0 = −2

3
nf and a =

10

9
nf (C.13)

g2
0 plus g4

0 times the various numbers of π’s, which I have
recovered by looking at the answer in the book, alright?
Times a certain constant [β0] times the logarithm of Λ2

over −q2 plus another constant, where for us, β0 it turns
out is −2/3 when we put it in this form. Alright? And
the “a” for us is equal to—this is 5/3 of that, 5/3 minus
2/3, probably something like plus 10/9—highly question-
able . . .

Now first of all, to remind us all that −q2 is positive,
let’s call it Q2. So I’m going to make it like that. This
[eq. (C.12)] is all multiplied by 1/Q2, and by the currents
and so forth in the final interaction. That’s what comes
out, alright? . . . The reason I wrote it this way is that
there’s going to be more contributions that come from
the other diagrams that we haven’t worked out. And I’m
going to have to add those in when I discuss . . .

Oh—[the factor of nf was not written in eq. (C.13)
at first] there’s more than one flavor of quark, and each
flavor of quark makes a loop, and each one those is the
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same as this one. And insofar as Q2 is large enough to
neglect the mass of the quark, insofar and therefore for
the first few, certainly for the u and the d and very likely
for the s, maybe for the c quark, there will be a certain
number of flavors that we would use, that contribute to
this formula; it would be the number of flavors whose
mass is less than Q2. The flavors with masses higher than
Q2 are not much contribution. The flavors that are in
between, then you just have to do the integral better and
so on. So put the number of flavors [in (C.13)]. Alright?

It looks like this answer means that the probability of
scattering will depend upon the cutoff Λ—there it is, ex-
plicitly there. And therefore our original program, which
was that we were going to calculate somehow in quantum
chromodynamics and make predictions, but we found our
theory was divergent, and what are we going to do? Well
we have a . . . But the trick is to arrange that it doesn’t
depend on the cutoff, by supposing that g2

0 is chosen, for
each Λ that you choose, you must take a different g0. You
must choose a g0 which is a function of Λ, chosen so that
the answer to a physical question does not depend on Λ.
We need a formula for that to do that. Well this is very
hard to figure out here by looking at this thing, what kind
of a shenanigans, how you’re going to vary g0 to get rid
of this ln. Of course this could also be written as g2

0, and
to the same order as I have it here, it’s convenient to
write it this way,

g2
0

1− g20
16π2 β0 ln Λ

Q2

=
16π2(

16π2

g20

)
− β0 ln Λ2

Q2

(C.14)

There’s one other term I forgot about, this (16π2), this is
very much like . . . That’s equivalent to this approximation
[Taylor expanding to first nontrivial order]; we’re only
worried about this log part now; the “a” is something else
we have to work out a little more accurately. To this
order, as far as the ln Λ2, it’s like this . . . which could also
be written 1/g2

0, or I would prefer to put my 16π2 here,
so perhaps there’s a 16π2 here, minus β0 ln Λ2/Q2. Now
this [g2

0 ], we can suppose depends upon Λ, and we have to
make this [the right-hand side of (C.14)] not depend on Λ.
If we make 16g2

0, if we arrange all the time that 16π2 over
g2

0, which is by the way g2
0/16π2 . . . old notation where I

had forgotten the 4π squared, so you can remember this in
connection with the previous lecture, without seeing that
lousy 4π squared all the time. This, if we suppose this,
which is defined as this,

16π2

g2
0(Λ)

≡ 1

ĝ2
0(Λ)

= β0 ln
Λ2

λ2
P

+ const. (C.15)

is equal to, when we vary the Λ, we make sure that this is
some kind of constant, well we should make this is ln Λ2

plus a constant. And since it’s a constant, we can put
anything down here, that we want . . . This will cancel the
ln Λ2, yes? No, you’ve got to have a β0 in here [initially
forgotten in the above formula].

So if we suppose our g’s are chosen like this, then
we’ll get an answer that is independent of ln Λ2; that’s

the trick. When we do different degrees of convergence
with the cutoff, and we change the cutoff, and we change
g2 that we use appropriately for that cutoff, then we can
arrange the whole thing so that it doesn’t make any differ-
ence where that cutoff is, that’s the miracle of this theory,
and that’s why we have a theory. Because otherwise you
would have predictions that would depend on still another
parameter which is the cutoff, where we have to write
our theory with explicit formulas for the cutoff . . . This
way, we don’t; we just have to say that it’s going to hap-
pen, and hope that it does, it’s been proved that it does
. . . Alright?

Well this is explaining the machinery that we’re going
to . . . The thing is we haven’t gone to the next order, g6

0,
and discovered that this isn’t quite enough; that there has
to be a log-log term there. I’ll explain why there’s a log-log
term . . .

Yes? [Question about the constant in conjunction with
λP .] I don’t know that constant. It’s arbitrary, you choose
anything you want. Later on we chose, specifically, to
make Politzer’s λ, to make that constant serve for a spe-
cial method of cutting off dimensional renormalization,
which is not what I’m going to use, so the π, the 10/9 and
all that stuff is changed, because of the kind of handling
of the integral. And because it’s a different—yes, if you
had decided that the method of cutting off was going to be
the Λ method, then in that Λ, the way I did it, changing
the masses of the quarks, that would be enough . . . then
a more convenient λ Politzer might be to make that zero
[referring to the constant in (C.15)]. . . . Anything would
be alright. Somebody has to make a choice somewhere.
. . . There’s a choice to make that constant zero for di-
mensional renormalization . . . Let’s take the case of the
lattice. You say that the Λ corresponds to the wavelength
of the spacing. So is Λ [equal to] 1/a or 2π/a? One guy
does one way, another one another way; all he does is
change the scale of Λ. So you need to put that as the log
of 4π squared over here, or you can change the definition
of this . . . That’s why I like to put the constant here at
the end . . . Any other questions?

[Question: why does this procedure work for all pro-
cesses, using the same g2

0(Λ) for all of them?] That has
been proved. That we had to assume, that the theory was
. . . It’s not obvious at all. It turns out that . . . it’s not
true only of the calculation at second order, but at the
next order also it’s independent of the process. Only be-
yond that does it become dependent on the process. And
that’s connected to the discovery that the rate of change
of the 1/g2

0 with respect to Λ computed as a series . . . Oh
I shouldn’t say it that way, I should have used a real pro-
cess. The first two terms . . . how we know is something
I didn’t prove. [Student interjects, I think it is me: Isn’t
the answer to that question the fact that you have a fi-
nite number of . . . with primitive divergences?] Yes, we’ll
discuss that. Thank you. Yes, thank you. That’s good,
let’s discuss it. He’s got the right answer . . . We worked
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out the various divergences.
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0 0

1

0

0 1

0 0

0
N

Degree

of

divergence actual

naive

This one [the tadpole] vanishes. Then there was diver-
gences of this kind . . . two things coming out, never mind
what’s in here; there would be three gluons, remember
this little table I made? With the degree of divergence
. . . There was a table that said how many glues there
were and how many quarks there were on the outside
lines, from which we calculated as 4 minus this [num-
ber of gluon lines] times [minus] 3/2 that [the number of
quark lines]. And the result for N here was 2, 1, 0, 1, 0,
and everything else convergent. Now using gauge invari-
ance you can show always that in this case [N = 2] there
have to be two q’s outside, in front . . . and therefore this
is really . . . 0, logarithmic divergence. And this one [the
linear divergence] by symmetry again, a single power of
momentum . . . this is also a logarithmic divergence, so is
this. So altogether they’re all logarithmic divergences, it’s
no big deal. So these are the kinds of things that are di-
vergent. This [the vacuum polarization] will always have
qµqν−q2δµν , something like that. Because of dimensions
however, you see there must be, the whole thing has di-
mension one so there has to be at least one q sticking out
in front . . . these things [the two-point function], insofar
as they diverge, at high momentum, they must be num-
bers times these two A’s with q’s in it. And if you call
the vector potential of this A, and [of that] A, and you
make the Fourier transform back again, in other words,
if we hadn’t had those cutoffs and I’ve just got quarks in
here—er gluons in here—then this bubble . . . for having a
q2 in front, which I illustrated here . . . double gradient on
the A. And because of gauge invariance, the result must
be

(∂µAν − ∂νAµ)2 A×ν A
•

µ∂µAν A×ν A
•

νA
×
µ Aν

Likewise this term [the three-point function], involving
three potentials, is equivalent to the effect of some di-
rect contact—the divergent piece—is equivalent to some
kind of contact which involves three A’s and one gradient.
But because of gauge invariance, the only thing you can
write that has that property is this kind of thing, to go
along with this one [the kinetic term]. And furthermore,
these four, has four A’s, and they will turn out to be of
this form. Not only that, but the [coefficients] of every

one of these things will be adjusted just right so that the
combination of these things with their coefficients, all the
coefficients will be right, so that this is equal to

ln Λ2 FµνFµν (C.16)

times a number, which involves this divergent log . . . The
log divergent part looks like this. So if I had computed
this one or this one, I would have gotten the same result.
The reason it has to have this form is gauge invariance.
If I did not destroy the gauge invariance by the cutoff
method. Now the particular cutoff method I used was
forced to not spoil the gauge invariance . . .

Likewise this thing [the quark self-energy] is going to
involve two ψ’s. And this one [the vertex correction] is
going to involve two ψ’s and an A. This one [the ver-
tex correction] corresponds to changing the coupling con-
stant here, and this one [the self-energy] corresponds to
this—there is a term ψ̄mψ . . . corresponds to the idea of
changing the mass of the quark. Well I have just erased
something here that I think I need: when I change Λ, I’ll
change g because I’m going to suck that number into the
original zero order (1/g2

0)FµνFµν which is what I started
with, and this gives corrections—are going to produce
corrections—to this thing times FµνFµν , and I’m going
to say “Oh. I could have started with a g, I’ll make this g
change to eat that number.” In other words 1/g2 will vary
in such a way to eat that number. And that’s what those
formulas [(C.15)] are for 1/g2. They’re just designed to
eat these logs. The gauge invariance enables you to know
that all of these are going to all go together . . . you just
have to look to higher order divergences, and find out this
never stops . . . but you have to show that you don’t keep
getting more and more in trouble. Which I’ll show you
why . . . in a minute.

To make this even clearer, if I have to; to look at it
another way. We originally have to do an integral that
looks like this. Then there’s another term, which I’ll write
as a factor ψ̄ gradient dagger 79 minus A, which I will
write like this . . . You integrate this over ψ and also over
A, ∫

DAµ e
i 1

g20

∫
FµνFµν

∫
DψDψ̄ ei

∫
ψ̄(i /D−m)ψ

=

∫
DAµ e

i 1

g20

∫
FµνFµν

det
(
i /D −m

)︸ ︷︷ ︸
g(A) ∼ ei ln Λ2f(A) (C.17)

That’s the kind of thing we’re trying to do. Now we can
imagine first that I had just done this integral [over ψ]
completely, it would be nice if we could do it for arbitrary
A; this is some terrifying functional of A. [question from
student80] Yes, yes, yes, exactly. This is one over—no,

79 RPF habitually says “dagger” to mean what we call “slash”
80 Evidently RPF wrote g(A) first without identifying it as the

functional determinant.
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the determinant of the Dirac operator i gradient minus
m minus A, with some color terms; yes, that’s just what
it is; it’s the same thing, we can’t work this out either.
Now we can expand this by perturbation theory, and try to
make a calculation, and we discover that this is . . . at very
short distances, high momentum, at very short distances
there’s some trouble. The trouble comes from too many
gradients on top of each other, the propagators from this
thing have delta functions in the origin, delta functions
on a line, two of them on top of each other, they strongly
diverge. So for very high frequency A, this function has
to be discussed, this is a little bit wrong. So we had to fix
it a little bit. It’s still a determinant, we just fixed it by
a cutoff. When we fix it by the cutoff, we discover that
this thing is e to the i times ln Λ2 multiplied by another
function of A, of course you can always write it that way.
But insofar that this only involves high frequencies, short
distances, A is at two points very close together.

And, if everything has been done right, since this ex-
pression here [the determinant] is gauge invariant, with
respect to A, because if I make a gauge transformation of
A, and then fix up the ψ so as to get the same answer,
this has to be a gauge invariant expression . . . we discov-
ered over there that it involved the gradient of A squared.
But we know that it’s gauge invariant, and therefore if I
did it completely, I would get the whole string [the three
terms in F 2], I could only get this; this is the only gauge
invariant expression which starts like that. And that it
starts like that is a statement of the forms that we got—
by the way, although we didn’t notice it, but this A, this
kind of propagator, is just—see, if I put an A on each side
of this, this becomes Aν squared and two gradients. Well
that’s ∂µ squared. Let’s figure out which way [to con-
tract the Lorentz indices]. The other one is qµAνqνAµ
. . . Then assume an A which is a plane wave and sub-
stitute it in this expression [the gluon kinetic term]; you
would get this kind of thing back [δµνq

2− qµqν ], so this is
in fact the operation producing this kind of combination.
So we’re getting the first term right. Because we only
looked at the two-gluon. If we looked at the three-gluon,
we would be surprised to discover that it produces A
dot A to the cube [A×ν A

•

µ∂µAν ], which is just this com-
bination. And even more surprised to discover that the
coefficient is the same g0 exactly. The surprise would
disappear when we realized that it has to be with a cutoff
scheme that [preserved gauge invariance] . . .

And in the same way, when we go to integrate over A,
we know that there’s a problem with the meaning of this
thing [the functional measure]; let’s forget about it. But
we could imagine some kind of rule: stop the integrations
above a certain high frequency—unfortunately, that’s not
gauge invariant—do a lattice. Well let’s say stop high fre-
quencies, forget about . . . one of these days—dimensional
renormalization. So you cut this off at high frequency;
you say wait a minute, what if I cut it off at a different
high frequency? Then I could say that the intermediate
between the medium high and the very high frequencies is
what I’m integrating over to see what happens if I cut it

off at the medium frequency. That will produce a number
of terms that will involve the logarithm of the very high
and the medium high frequencies. And the coefficient of
that log . . . will again have to be gauge invariant and have
the same kind of form . . . [change of tape]

. . . it’s just pretty; the only place where there appear
to be divergences are just the places you need to make
the simple form to be the same shape as the original one.
Sometimes the good way to look at it is that this thing can
be compensated by putting a term like this with a g2. The
Lagrangian [gets a] correction term, this can be put in by
putting a term like that times some q times some number.
So the Lagrangian has a correction term, those are called
counterterms; in other words, if we started with a La-
grangian, instead of saying 1/g2

0 exactly, times FµνFµν ,
we say we’re going to with a Lagrangian which has al-
ready in it counterterms, this thing minus those numbers,
which you’re gonna find out what they’re gonna be, times
FµνFµν , which are counterterms. That’s the Lagrangian
that I started with, and then we’re going to have a cutoff
at Λ. And the cutoff at Λ is going to be equivalent to mak-
ing corrections—divergences—well, they’re not divergent
because we’re cutting them off, which undo these, to get
something which is independent of Λ. So if I write the
real g [the renormalized value]

1

g2
=

1

g2
0

+ δ

(
1

g2

)
(C.18)

this is equivalent to starting with some constant, call that
g0, the constant we started with, plus some counterterm
which will depend on Λ, and they’re built in such a way as
to compensate the divergences that we get here. The net
result when we’re all finished is just that constant times
FµνFµν , independent of the cutoff. And that’s where all
those formulas come from, that talk about the 1/g2 being
corrected by things that depend on Λ. Alright? Any other
questions? It’s just another way of describing the same
thing. But the beauty of it is . . . the divergent terms are
exactly right to reproduce the form of the Lagrangian, and
therefore by changing the coupling constant we can undo
the Λ dependence. Alright?

Now I do have to complete the discussion, to discuss
higher order calculations . . . I only did this one [the gluon
vacuum polarization] to lowest order—I didn’t do every-
thing, I didn’t do these loops, but let’s suppose I had; well
let’s say this one, I don’t care, look, it doesn’t make any
difference, quarks or gluons [in the loop]. I’m not go-
ing to worry about . . . However, we just noticed when we
were counting divergences that now we’re in trouble, be-
cause now after we did all that, then we look and we find
something like this, and that table of calculations says
that this will have the same divergence as this and this.

By the way, there was a step in here that was very
clever: taking this and putting it [in the denominator of
(C.14)] implies something about the higher orders—the
leading logs, what that’s all about, is that I have not only
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taken this [one loop] diagram,

+ + + . . . 

but I’ve added this diagram, and this diagram [two loops]
and so on, to get the sum of one plus x plus x2 plus x3

plus x4 . . . is equivalent to 1/(1−x), and when I did this
[(C.14)], I was already predicting the higher terms, but
I know where they’re coming from, obviously . . . So I’ve
done all the single loops.

Now, so this looks as if it’s going to produce another
contribution to the log, and so on, and the millions of
diagrams—but it’s not true. Because, I look at it this
way, every time from now on that I see a gluon propa-
gator, I really should correct it, or could—can correct it,
by putting a loop in there like so, or two loops or three
loops, and so on,

+ + . . . ∼ 1

Q2 lnQ2

(C.19)
I want to include all these loops. So what this ought to be,
this line now really means the propagation compensated,
or corrected by these loops. Now we found out that—I
guess I should have emphasized, that when I make this
choice, substitute that back in here, I find this thing, β
times the log of Λ2, minus this logarithm; this is the log-
arithm of Q2 . . . And therefore the effective propagation
is not really 1/Q2, but is really 1/(Q2 lnQ2) if the loops
are included. That’s slightly more convergent. That goes
down a little bit faster than Q2. So that these propagators
are not strictly speaking 1/Q2, they’re 1/(Q2 lnQ2). By
the way, we sometimes write that as α(Q2)/Q2; we talked
about that. Anyway it’s one over log, so these divergences
are no longer computed right by just saying things like∫
d 4p/p4 with zero powers left over, which is equivalent of

course to
∫
d(p2)/p2. But the propagators are not 1/p2,

they have logs in them, and I have to tell you how many
there are; the lowest possibility is that it begins with ln p2,∫ Λ dp p

p2 ln p2
∼ ln(ln Λ2) (C.20)

Indeed, there are terms, you might have higher powers of
logs . . . but not worse, you have at least the log. But you
see what this looks like, this differential log over log? This
is log log, less divergent. So if I integrate this to some
high frequency, this is still divergent, but it’s ln(ln Λ2).
And when I go to the next order, I’m going to get log log.
Of course there can be terms with log squared here, but
those will be convergent:∫ Λ dp p

p2 ln2 p2
∼
∫ Λ d ln p2

ln2 p2
∼ 1

ln Λ2
(C.21)

In other words this integral [(C.20)], this doesn’t quite
converge, but if I had more logs in there it would converge.
So that there are little log-log divergences, no worse.

So the next order terms, when you include the correc-
tions in them from the lower order, does not produce the
same divergence . . . You might say, well how do I know
that there are . . . maybe they’re only log squared or log
cubed . . .β1 terms . . . [Question from student: why did
you have just two powers of the momenta in the numera-
tor of that integral?] Well it’s a logarithmic divergence. I
don’t care about . . . it’s just to understand the log . . . The
differential log over log is log log, that’s it.

Now, you say well now I’m going to go on to the third.
But it’s no longer true that it goes on to the next one,
because the higher ones give more powers of logs down
here. And more powers of logs down here, it converges,
it stops. Thank God. Now you say, well, it wasn’t really
log p2, it was that plus ln ln p2, and I’ll let you make
the argument that this doesn’t change the divergence; it
doesn’t make it converge any better . . . [Question from
student about absence of triple logs] w Because the next
order produces an integral like this [(C.21)]. . . There’s no
way to isolate log-log. This correction is this propagator,
which is corrected by one over log. If it’s got a log-log in
it, it’s additional. In other words the corrections of β0

log plus β1 log log. So the correct thing to put in there,
if it’s anything, is ln p2 plus ln ln p2 at that order. But
that argument, that doesn’t make any difference compared
to the ln p2 when you calculated the divergence. What
happens in the higher orders, you get more logs down
here, but you get this to a higher power . . . there’s no
way to isolate this . . .

[Question from student] This has to do with the behav-
ior in terms of Q2. The propagator is lnQ2 . . . it’s true
that the correct formula has lnQ2 plus ln ln terms; that
doesn’t . . . you just get rid of this log and subtract it from
the . . . and try to get the log log isolated; there’s noth-
ing that comes out . . . as you would like it, as you might
imagine it. . . .Q2(lnQ2 + ln lnQ2). Of course there’s no
propagator that goes inversely to log log. That’s not the
way it goes. It goes inversely to the sum. And that would
be log log log. You don’t get this kind of a form, because
you can’t isolate that piece . . . My argument here is very
heuristic, but it does work and it gives you an idea of
why . . . this is the way the thing works out . . . more or
less why it works out . . . any other question?

In order to add to your confusion . . . different conven-
tions . . . different ways of looking at it; some are better
than others. If you want to read the literature, you have
to read everybody’s ideas. Some are better . . . because
they get rid of some confusion, so they straighten some-
thing out. Now if you learned only the way which is all
straightened out . . . then you have some trouble reading
literature in which something is a little older or some-
thing which the guy is using some old-fashioned idea;
well I wouldn’t say old-fashioned but less . . . then you
couldn’t understand the subject completely. What I de-
scribed, I had tried to prove differently than is general
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in any textbook—if it’s in some textbook, you don’t think
it’s original, not at all . . . I did it myself—but I have to
tell you about what I consider a kind of mistake, okay?
Which is very prevalent and it’s all over the place. It’s
not the way I’m trying to explain it. Now the way I’m
trying to explain it is that the coupling constant—when
you make a cutoff, you change the theory. And the an-
swers in general appear to depend on the cutoff. But it
turns out they depend on two things: the way you cut it
off, Λ, and also the coupling constant you put in. But
by the very wonderful situation we have of renormaliza-
tion, that when you adjust the coupling constant correctly,
when you change the cutoff, you change the coupling con-
stant, you’ll get the same predictions in the long-range
wavelength physics . . . And that’s what I wrote in the be-
ginning, was a formula for how you have to change . . . in
order to make the results independent of the cutoff. You
change the cutoff, you’d better change the [bare coupling]
. . .

Next. It turned out that in many circumstances where
you could expect the mass of the quarks to be unimportant
. . . that for such processes, the behavior of the process
could be worked out as a perturbation theory in g,

c1πg
2
0 + g4

0

(
b1 ln

Λ2

Q2
+ a1

)
+ . . .

= c1α(Q2) + a1α
2(Q2) + . . . (C.22)

These coefficients depend on the logarithm of the cutoff
and the momentum of the operation, the process, some
momentum associated with the process, some definition
of the momentum. And this sum, these logs, could be
summed so this was written in the form of α(Q2) plus
a1α

2(Q2) and so on, and this is for some physical pro-
cess. In other words, for some physical process, the cal-
culations go like this. For a different process, all the coef-
ficients would be different . . . there might be a π, so let’s
put one in here 81 . . . anyhow, it would go like this and
it would be—so, therefore when you start to work pertur-
bation theory there’s a rule . . . work at second order you
get the log, but you’ve already eaten that when you made
the substitution. So this is a way I managed to write
it, and it’s perfectly okay, and the formula for how loops
. . . describe . . . the type of thing that’s connected . . . which
we wrote down . . . I’m just repeating . . . thing I found out
by . . . or rather not the best way to do it.

Now let me tell you the wrong way, what I consider
not as good a way. It’s a way that you could have done
it, but it’s got annoyances in it. It works like this. You
start out to define an α. Now in order to make sure that
this α is not exactly the same as that α, I’m going to
put an underline on it, so you’ll always know which one
I’m talking about. Now define an α(Q2) by a physical
process. I’m going to give you examples . . . For instance,

81 I have the π in (C.22) crossed out in my notes

we recalculate the scattering of two quarks, to all orders,
exactly. All orders exactly, it’s going to be written as this
super-duper α over Q2,
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≡ α(Q2)

Q2
(C.23)

and that’s going to define α. There would be no such
thing as finding a power series expansion of the co-
efficient, which is what I would do there [eq. (C.22)];
. . . that’s alpha, by definition, to all orders. Another
thing would be, another way for example, when we talk
about e+e− → hadrons, the ratio [R], and remember that
the formula for that ratio in the first order perturbation
theory is 1 + α/π, remember that? Or rather 1 + g2/π?
I’m not worried about the 4π’s in the definition of α(g2),
that’s a pain in the ass that I can’t remember. Let me de-
fine α(Q2); this is another definition, let’s put two lines,
it’s another definition, it’s identically equal,

α(Q2) = π(R− 1) (C.24)

But anyway, we could do this to all orders, this is defined
to all orders. So there’s no such thing as a perturbation
expansion for this to first order and next order and next
order . . . it’s just a definition. That would be a possibil-
ity. As it turns out, that up to the first two orders, the
formula for this α and the formula for that α and my α
all agree, in terms of the first log and the log-log. All of
those formulas satisfy

dα

d lnQ2
=

β0α
2

1− β1

β0
α2

= β0α
2 +β1α

4 +
β1

β0
α6 + . . . (C.25)

And for every one of these definitions, for any one of
these alpha bar things, the α satisfies exactly the same
equation, up to the fourth order,

dα

d lnQ2
= β0α

2 + β1α
4 + β2α

6 + . . . (C.26)

but the next order depends on the process. These [the co-
efficients of the first two terms] don’t. In other words it
depends on the process needed to define . . . the α. So for
practical purposes up to second order it doesn’t make any
difference, but if you want to make things definite so that
one guy can compare his results to the other, in higher
order, they’re all mixed up, because one guy is using one
way, another is using another way, because of the dif-
ference in processes. You say what’s any better, why not
use a definite process? Because . . . Instead of using a def-
inite process, I used a definite theory . . . You’ll notice this
[β2 = β2

1/β0] is a special choice, but it’s definite, and this
involves . . . independent of process. And an advantage is,
you don’t have to compute this special process . . . you’ve
got it done . . . If you want to know some physics then you
have to compute. And that’s saying that you should really
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calculate the power series for this process, in terms of α,
my α . . . We should naturally expect to do each process
separately as a perturbation expansion, instead of arbi-
trarily choosing one . . . one is no better than the other
. . . it all adds confusion to . . .

They then said that the physical coupling constant de-
pends on Q2, but there’s no definition, it depends on how
you define it. You could say that the coupling constant
depends on momentum squared, but . . . So, people talk
about this as if it’s a running coupling constant, but you
can’t put that into the Lagrangian, as a running coupling
constant. The only thing you can put into the Lagrangian
is something that depends on Λ, not on Q, so I was rather
confused . . . You see how much confusion . . . in the defi-
nitions; Politzer’s λ . . . we saw the equations depend on
which method of cutoff you use, and how you define the
constant, is it zero or is it Euler’s constant times the log
of 4π . . . And on top of that, on top, I wanted to add the
ambiguities that slipped in . . . to define alpha and it’s not
. . .

Now in the electrodynamic world, there was a wonder-
ful special process to find the electric charge, which was
unique, which is, let me evaluate the interaction of the
particles when they’re very far apart—the very long wave-
length coupling of photons to electrons. In quantum chro-
modynamics you can’t find any . . . like that . . . For very
long wavelengths . . . so we have no simple phenomenon
which . . . Any other questions? Alright then.

Someone asked me last time how dimensional renor-
malization produces the same results. The answer is more
or less the following. You would make a process in the
scattering—first of all we have less than four dimensions.
We have something like

1

g2

∫
F 2
µνd

Dx︸ ︷︷ ︸
dimensions of Energy4−D (C.27)

and then integrate with respect to D dimensions of space-
time, D is not four. Now that means—and what about the
dimensions? In Fµν as you all know and must have writ-
ten . . . there’s the combination of ∂A and A A, and that
means that A is an inverse length or an energy. That’s
independent of dimension. And that Fµν is an energy
squared. And Fµν squared is an energy to the fourth. A
length is an inverse energy. So this quantity would have
dimensions of energy to the 4 − D. Therefore g2 is not
dimensionless. g2 has dimensions of energy to the 4−D,

[g2] = Energy4−D = Eε (C.28)

So here, one way is to just say, alright, I know that.
Another way is to write g as some other constant times
some particular length to the 4−D, I’ll call that epsilon:

g2 = c0λ
ε
P (C.29)

. . . Now what happens is, if you do perturbation theory,
g2 plus g4 times an integral, same way as we did before.
Except those integrals because they don’t have d 4p any
more, they only have a D integral, are less divergent, in
fact they converge. So you can actually do the integral,
and there’s no problem, and you find that the integral
varies as Q−ε

g2 + g4Q−ε
(

2β0

ε

)
=

1
1
g2 −

2β0Q−ε

ε

(C.30)

≈ 1
2β0

ε λ
−ε
P −

2β0

ε Q
−ε

minus ε because it’s D − 4 . . . so you get this kind of
a term and . . . it’s no problem, everything converges and
it’s fine. But as we vary ε, we discover that the coefficient
that we actually get, the coefficient here, is a certain con-
stant [2β0] over ε. That is, if I did the calculation with
different ε, I’d get something that varies with ε this way:
the coefficient diverges as ε→ 0.

I can go through all this usual stuff of rearranging the
sum and . . . when Q is very large this is small; but the
point is that aside from constants which will be taken out
[RPF writes out the right-hand side of eq. (C.30) at this
point] . . . and as ε approaches zero,

2(λ−εP −Q
−ε) = −ε ln(λ2

P /Q
2) (C.31)

The point is, the theory is convergent. It depends on ε,
and has a very high coefficient as ε goes to zero, and
in the limit produces logarithms, just like the logarithms
you see, and we have to adjust the coupling constant.
So it has the right behavior with ε . . . the same problem,
how does this g depend on ε? [Student: in dimensional
regularization, don’t you want to take λ to be close to the
energy scale of the . . . ] λP . . . In the end yes, it’s better,
yes I think that’s the right thing to do . . . So what we’re
saying is that the coupling constant has the dimensions
of the physical energies we’re interested in . . . but it turns
out the strength varies inversely as ε . . . 82
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Appendix D: Revision examples

Additions written by RPF to the revision of lecture 12.
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Additions written by RPF to the revision of lecture 13.
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There were sometimes also subtractions: edits by RPF to the revision of lecture 8.
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Appendix E: Hadron masses and quark wave functions

The following three pages were copied out of an unidentified textbook and handed out at the beginning of the
course. Handwritten corrections of quark wave functions were added by me.
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Appendix F: Tables of hadrons

These tables of meson and baryons were written by RPF.
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Appendix G: Rules for amplitudes and observables

These were also hand-written by RPF. Annotations in blue were made by me at the time the course was given.
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