
Reflecting on the Impact of a Course on Inclusive
Strategies for Teaching Computer Science

Alark Joshi
Department of Computer Science

University of San Francisco
San Francisco, California 94117

Email: apjoshi@usfca.edu

Amit Jain
Department of Computer Science

Boise State University
Boise, Idaho 83725

Email: amit@cs.boisestate.edu

Abstract—As the number of teachers teaching computer sci-
ence grows, it is increasingly important to be mindful of the
training they receive with respect to broadening participation in
computer science. Through our program, we have trained over
50 teachers in the greater Boise Metropolitan region, who have
in turn taught over 1400 students computing concepts through
courses such as Exploring CS, AP CS Principles, and AP CS
A. These courses have an excellent curriculum that contains
a mix of computational thinking concepts such as a focus on
creativity, abstraction, coding, as well as increasing awareness
about the cyber footprint of the students with respect to security
and privacy. While the curriculum is excellent, we need to be
more mindful about incorporating pedagogical strategies that
promote inclusive teaching especially for women and minorities
who are traditionally underrepresented in computer science.

To address the challenges associated with teaching a truly
inclusive course, we developed a new course titled “Inclusive
Strategies for Computer Science Education” that draws attention
to the strategies that have been studied over the years in
STEM and CS education literature. We present the contents
of the course along with a post-hoc qualitative survey on the
applicability and practicality of the material discussed in the
course.

I. INTRODUCTION

With the National Science Foundation’s CS 10K pro-
gram [24] there was a huge push towards training teachers to
teach Computer Science courses in their respective schools.
The argument against introducing coding/computing in the
classrooms was the paucity of trained high-quality teachers.
The CS 10K program took that challenge head-on and has led
to many successful programs all over the United States where
universities, local non-profits, government organizations, and
local software industry have all worked together to make
teacher training possible.

The other challenge has always been curriculum that en-
gages and excites students and that is seen by teachers and
universities professors as rigorous enough to prepare them
for their first computer science course at university. This
challenge was met with enthusiasm by the creation of the
introductory Exploring Computer Science [35] course as well
as the subsequent new AP Computer Science course titled - AP
Computer Science Principles [4], [11]. While the Exploring
CS course provided teachers with detailed lesson plans and
hands-on activities regarding what can be done on a daily
basis, the AP CS Principles course focused on a framework

that provided principles that students should have before they
go on to take a computer science course at the university
level. These courses have been developed over the last 10
years and the AP CS Principles course was available as a
viable option for students for the first time in the 2017-
2018 academic year [11]. Based on the results, the number
of students taking the AP CS Principles exam has increased
significantly as compared to the other AP CS A course that
was mostly focused on teaching Java. There has also been
a substantial increase in participation by under-represented
students [20].

While this combination of teacher training and curriculum
development has created an ideal situation for students at
their local high schools to take computer science courses,
we believe that we need to incorporate inclusive pedagogi-
cal strategies into our curriculum as well. While access to
these courses is extremely essential, challenges with self-
efficacy [50] and self-identity [64] continue to persist within
under-represented groups in any STEM field. Fortunately,
there has been significant research that addresses the various
issues that under-represented students (women and minorities)
experience on a regular basis.

In our program over the last three years, we have trained
over 56 in-service teachers who in turn have taught computer
science courses to over 1400 students at their respective
schools during the 2016-2017 academic year. Based on our
past experiences with summer professional development of
teachers, we found that teaching computer science for in-
service teachers was a daunting task [63]. To address the
issues related to self-efficacy of the teachers, we created a
two-year Master of Science in STEM Education program with
an emphasis on Computer Science Education and a Graduate
Certificate - Computer Science Teacher Endorsement program.
These programs provide the teachers with the skills necessary
to teach courses such as Exploring Computer Science, AP
Computer Science Principles, and AP Computer Science A
at their respective schools. The curriculum comprised of a
combination of technical courses and pedagogical skills to
provided comprehensive coverage of the material.

In this paper, we discuss the content and impact of a course
in our curriculum that focuses on inclusive pedagogy in the
classroom. Through the readings in the course, the course



aims to increase awareness of the challenges that women
and minorities may be facing in their class as they take
their first/second computer science class. The discussion-based
format of the course leads to in-service teachers sharing their
stories with similar experiences in their other courses which
make the course content more relevant to the participating
teachers. After having taught the courses for the last three
years, we reflect on the course and present our findings on the
same in the paper.

II. RELATED WORK

Training Computer Science teachers is a crucial task in
addressing the inequity in computer science education. Short
professional development workshops are limited in their ability
to prepare and train teachers to teach a year/semester long
course at their school. Research by Bernier and Margolis [9]
showed that the majority of CS teachers in the past have been
trained computer scientists, which makes it hard to hire and
retain them. They found that the Los Angeles Unified School
District had ‘lost’ more teachers than were retained. Training
teachers to teach computer science through sustained support
by a community of practice [40], [52], [58] is a better way to
increase their self-identity [57] and efficacy in the classroom.

Our project (IDoCode) was inspired by the National CS10K
program led by Jan Cuny [25]. With the vibrant software
industry in the Boise Metropolitan area, there was a huge
need to train the next generation of computer scientists and
that led us to think about the entire pipeline from K-12 all
the way through the undergraduate curriculum. To broaden
the access to computer science education to women [48] and
minorities [47], we created a teacher-focused curriculum that
incorporates pedagogical considerations as well as computer
science education courses such as the Exploring Computer Sci-
ence [35] and the new AP Computer Science Principles [22].

As per Goode et al. [34] though, merely an excellent
curriculum is not sufficient and requires careful attention to
ensure that women and minorities are truly included in the
computer science education at the K-12 level. We believe
that through our comprehensive education and reflection-based
approach to teacher training, we are able to instill a sense
of inclusiveness in our teachers to inspire them to provide
equal and excellent education in their respective schools.
Our comprehensive program instills a sense of identity [56]
and self-efficacy [45] into the teachers, which is crucial for
teachers with a non-CS background.

DesJardins et al. [28] discuss their efforts in Maryland to
provide high quality training for high school teachers through
community building, summer workshops, the creation of a
local CSTA chapter, and other meetings to increase aware-
ness among educators and administrators at their constituent
schools. Other similar efforts include Georgia Computes! [14].
It is a program that was started in 2006 to change the landscape
of computer science education through summer camps for K-
12 students, teacher training, 1-on-1 mentoring for high school
students by pairing them with graduate students, creation of

educational material that can be used by teachers at the high
school level, and so on.

In the state of Massachusetts, the Commonwealth Alliance
for Information Technology Education (CAITE) [1] is focused
on increasing opportunities for women and minorities in com-
puting. They have worked with local community colleges to
create pathways for students to transition into a 4-year college.
They have created new alliances with STEM initiatives to
train high school teachers and other constituents at local
schools such as principals and counselors. They are sustaining
their community of practice [52], [58] through professional
development workshops for their teachers. The CAITE effort
is led by the University of Massachusetts at Amherst. Similar
to our program, they have also been involved in the statewide
efforts for defining computing curricula and standards for the
Massachusetts K-12.

Illinois State University has spearheaded a program to
train high school teachers - Teacher Education in Computer
Science [41]. This program has some similarities with our
program where a teacher can receive Illinois State endorsement
through their program for middle-school and high-school
teachers.

The course by Carol Fletcher titled “Strategies for Effective
and Inclusive CS Teaching” [29] from the University of
Texas at Austin has some similarities with our course, but
their focus is more on social justice. Their course objectives
include topics such as “Gain an understanding of equity and
social justice as it applies to computer science field from
classroom to career”, and “Explore their own unconscious
biases, beliefs and stereotypes can influence their teaching and
student recruiting; program and material selection, and even
their subjectivity.” They also propose that student will learn
to ”Develop the skills to advocate for computer science using
facts, dispelling myths, and sharing the impact on the bottom
line when students gain life-long career skills.”

Our course is for a focused audience that includes in-service
teachers that are about to teach Exploring Computer Science,
AP Computer Science Principles, AP CS A or some other
computer science related course. Our course is designed to
instill a reflective pedagogical approach towards creating a
truly inclusive and welcoming culture in the classroom for
all.

III. COURSE CONTENT

Our course was titled “Inclusive Strategies for Computer
Science Education” and was aimed at in-service teachers who
were enrolled in our two-year Master of Science in STEM
Education or the Graduate Certificate program. The primary
reading for our course was the excellent book “Stuck in the
Shallow End: Education, race, and computing” by Margolis
et al. [47]. The book contains a comprehensive landscape
of the problems and opportunities with respect to teaching
computer science at the high-school level. The authors discuss
various schools each of which have their set of problems and
highlight that an ideal setting is one where the teacher is
prepared, the curriculum is exciting, the students are engaged



and the technological resources are available for them to learn
effectively.

A. Course Structure

The course was structured in a way where the participants
would read the textbook as well as research papers from the
computer science education and STEM education literature.
In addition to participating in an online forum to discuss
the reading before class, the students were also expected to
turn in three existing lesson plans at the beginning of the
course. These lesson plans were to be modified as the semester
progressed and the modified lesson plans were submitted by
the students at the end of the course. Therefore, in addition
to watching the discussions and concepts impact the students,
it was also possible to compare the lesson plans that were
submitted before the course with those that were submitted at
the end of the course.

The main modules of our course are:
• self-identity,
• strategies (pair programming, team-based learning),
• curriculum design,
• growth mindset,
• and teachers as change agents.

B. Self-Identity

In this module, the emphasis was on increasing the teach-
ers’ awareness about issues that their students may face in
their classroom. We discuss the ambient belonging paper by
Cheryan et al. [18] that presents the various stereotypical cues
that affect the sense of belonging for women and minorities
in Computer Science. The researchers found that “objects
that are stereo typically associated with computer scientists”
such as a Star Trek poster, video games, and so on affected
the women’s perception of belonging and they were less
drawn to that environment. On the other hand, women were
drawn to potentially working at a company whose environment
contained non-stereotypical objects such as nature posters,
plants, and so on.

Self-Identity deals with the ability of an individual to see
themselves as a working professional in that field. Under-
represented students frequently struggle with a self-identity
issue [64] either due to the impostor syndrome [42] or the
lack of role models [10] that they see around them or in
the media. The National Center for Women and Information
Technology (NCWIT) has distilled various research papers
into an article on “Ways to Engage Underrepresented Students
in Computing” [55]. Articles like these provided our teachers
with tangible strategies that they could use to help underrep-
resented students succeed in their classes.

We discussed maintaining an open climate in the classroom
rather than a “defensive climate” [6] where students constantly
feel judged and where there is low tolerance for disagreement.
Even though a teacher may want to foster cooperation, a de-
fensive climate can make it more competitive for the students
in that class. We discussed how teachers must make an effort
to call on all students equally and not only on the students who

Fig. 1. This word tree representation [68] of the discussions on the
online forum show that there was signification conversation related to pair
programming and its impact on students with varying levels of exposure to
computer science.

they know. In computer science, there are frequently students
who have more programming experience than others and they
are perceived by their peers as being “better/smarter” than the
rest of the class. It is the instructor’s responsibility to dispel
any such myths and discuss that those students have more
experience due to their previous training/exposure to coding
and that the rest of the class need not judge themselves because
you are not judging them.

C. Strategies - Pair Programming and Team-Based Learning

To increase the awareness of various teaching strategies that
promote cooperation, teamwork, and community in the class-
room, we introduce the Pair Programming as well as the Team-
Based Learning strategies to our students. Both strategies have
their strengths and weakness and we discussed when each of
them could be used in their respective classrooms.

Pair Programming [19] is a technique that was popular in the
late 90’s and consists of two students/programmers working
together to solve a problem. The key to pair programming
is that only one of the programmers can type at a computer
(known as the driver) at a time whereas the other individual
(known as the navigator) provides verbal help and feedback
to the one typing. This technique was widely used in industry
to help with increasing productivity of their employees, but
was subsumed by other software engineering paradigms such
as Agile development. Seasoned programmers found that,
in some cases, they were twice as productive using pair
programming [8].

Computer Science Education researchers [26] have studied
pair programming for its use in educational settings and have
found that it leads to increased confidence and an ability to
solve problems quickly. Denner et al. [26] found that teams of
middle-school students that are stuck ask for questions more
frequently than an individual who may feel uncomfortable
asking for help in a classroom. They also found that less
experienced students in class gained computational thinking



skills as well as gained knowledge from their partners as they
worked together.

Figure 1 shows a Word Tree [68] representation of all
the discussions on the online forum that were pertaining to
“pair programming” and their pros and cons. A Word Tree
allows the exploration of large amounts of text by providing
a keyword/phrase which in turn is used to filter the data and
show only the themes that emerge from that keyword/phrase.

Thomas et al. [66] conducted a study into the composition
of the pairs. Should one pair consisting of two strong students
work together or should each pair consist of a student with
more experience and one with less experience? Based on
their study with first-year students in a university course, they
found that students actually enjoyed working with students
who were approximately at the same level. Students who
were more experienced did not actually like pair programming
as compared to students who had less experience. The less
experienced students gained a lot from the exercise.

We discussed these resources in class and in an online forum
where teachers shared their experiences with group work in
class and how it needs to be managed carefully. One of them
responded with “ [...] the studies overwhelmingly show that
pair programming is beneficial. It would be in the teachers
best interest to be mindful of the groups that are paired up.
During introductory courses, I think its better to bring students
together that have the same or similar level of coding skill.”
Another teacher shared “ I think that paired programming is
an idea that I will try to include in my math classroom as well
allowing opportunities for the students to work with multiple
different partners over the course of the school year.” Almost
all teachers expressed excitement about pair-programming and
were interested in trying it out in their respective classrooms.

The other pedagogical strategy that we discussed was Team-
Based Learning [49]. Team-Based Learning (TBL), as estab-
lished by Michaelsen, is unique from other forms of team-
based pedagogy strategies. Specifically, the components of pre-
class preparation for students, individual Readiness Assurance
Test (iRAT), team Readiness Assurance Test (tRAT) using IF-
AT (Immediate Feedback Assessment Technique) cards, and
application exercises are unique to TBL. The formation of
teams also follows a specific procedure to distribute talent
more equally across the teams. TBL was developed to provide
a local community among students in class, especially for large
class settings. While the strategies of in-class group work are
ideal for large classrooms, they work perfectly well for smaller
(30-40 students) class sizes too. The benefits of working in a
team and applying your knowledge towards solving a problem
provide the students with an increased sense of self-efficacy
and a positive experience with respect to team work. The IF-
AT cards used by teams lead to more discussion and stronger
learning and retention by students. Teachers in our program
practice TBL in their teacher preparation courses so they have
direct experience with it. Several teachers have adopted TBL
in their high school courses as a result of their exposure in
our teacher preparation program.

D. Curriculum matters

In today’s day and age with students always dependent on
their phones for information, communication, entertainment,
and so much more, it is crucially important to have a cur-
riculum that resonates with students. Students are excited to
learn concepts related to mobile apps, the world-wide web,
online privacy and security, artificial intelligence, and so on.
These concepts can help them understand the world around
them and help them appreciate why it is crucial to learn about
the fundamentals of computer science.

With these goals in mind, the Exploring Computer Science
course [35] was developed. The curriculum focuses on un-
derstanding that problem solving is at the heart of computer
science and that programming languages and algorithms are
tools that can help us solve problems. It also introduces
students to data analysis and showcases robotics and web
design as interesting and relevant applications of computer
science.

The AP Computer Science Principles course was designed
to provide teachers with the flexibility to design a curriculum
given a set of principles and big ideas. These principles focus
on creating and analyzing computational artifacts as well as
learning to communicate the results of your analysis to others
using the appropriate terminology. The big ideas show students
that creativity, abstraction, and the ability to use data are at
the heart of computer science and that with the ubiquity of the
Internet it is critical to be mindful of power and perils that it
presents to today’s software developers.

Due to the fact that the AP CS Principles course was
mostly a framework, there are many implementations of the
course available to a teacher to choose from. Mobile CS
Principles [51] is one such implementation that uses the
App Inventor [69] program to create Android apps in their
first programming class. Similarly, the Beauty and Joy of
Computing [31] implementation provides students with a
blocks-based environment to get familiarized with computing
in a web-based environment. Code.org also provides a similar
implementation that uses Javascript and App Lab. There are
many more such implementations for teachers to choose from.
Students do have to take an exam at the end of the year
which tests general concepts in addition to their computational
artifacts that they submit for their final grade.

Our in-service teachers were interested in knowing more
about the various options and we discussed the various of-
ferings in class as well as online. Both the Exploring CS
(ECS) course as well as the AP CS Principles course have
emerged from the CS Education literature and has benefited
from years of hard work from the experts in the field. This has
made the courses exciting as well as relevant to the students
who may consider taking a programming intensive course at
their respective universities. In fact, Ryoo et al. [62] provide
a success story related to ECS that is based on inquiry, a
culturally relevant curriculum, and equity-oriented pedagogy.
Their paper debunks the myth that females and students of
color are inherently uninterested in rigorous CS learning.



E. Growth Mindset

In the field of Computer Science, there if often talk of the
“geek” gene [44] and some teachers look at their bimodal
grades (particularly for the first programming class [2]) and
agree with their prejudice. This unfairly biases the educators
about the ability of the other students who do not have the
same level of exposure to computer science as their peers.
Robins [61] proposed a Learning Edge Momentum theory that
states students who gain a concept easily are more willing to
work hard to understand the next concept that in turn they end
up mastering. This momentum helps students do well in class
by mastering the material over time through persistence and
grit.

Fig. 2. A Word Tree [68] of all the discussions on the online forum pertaining
to the growth mindset shows that the teachers were aware of the growth
mindset and were eager to use it in their classroom to remind students that
they are not inherently bad at something and that they can get better with
practice.

While the teachers in our classes are well aware of the
growth mindset philosophy and grit, we remind them about
the fact that the students who have less experience with
computer science may be feeling self-doubt due to in-class
dynamics and that as teachers they need to provide these
students more encouragement. We discuss ways in which
teachers can provide feedback to the students using a growth
mindset [54]. Figure 2 shows a Word Tree [68] that highlights
the discussions surrounding growth mindset as it pertains
to computer science and the misconceptions of women and
minorities that they are not good at it.

Research by Murphy and Thomas [53] highlights the dan-
gers of a fixed mindset as it relates to computer science
education. The researchers found that students with a fixed
mindset frequently end up “having a helpless response to
challenges that seems to also lead to reduced self-esteem
during college”. On the other hand, students who have a
growth mindset seem to understand that their failures are due
to a lack of effort on their part rather than a lack of ability,
which is crucial for women and minorities taking computer
science courses.

F. Perceptions and Misconceptions

Zimmerman et al. [71] present a success story that high-
lights the significant benefits of an after-school program on
a predominantly Hispanic school. They found that males
and females were equally interested in pursuing a career in
computer science and their motivations were related to earning
more money, having a role model, and having exposure to
computers and coding at their after school program.

Based on a survey of 836 students by Carter [17], she found
most students incorrectly assume a career in computer science
involves sitting in front of a computer all day. She recommends
new interdisciplinary courses need to be offered that showcase
the applications of computer science in a variety of fields to
engage a wide range of students.

In the article by Philip Guo [38], he mentions the privilege
that came with being an Asian student taking Computer
Science courses at MIT. He mentions how his presence at
MIT was never questioned even though he had only one year
of programming experience compared to his peers. Here is an
excerpt from the article - “For instance, whenever I attended
technical meetings, people would assume that I knew what
I was doing (regardless of whether I did or not). ”

While biases and prejudices are part of our lives, as edu-
cators we need to remember they can affect the way we deal
with our students and we need to remind our students that they
have certain biases and false expectations from their peers too
based on their past experiences.

G. Teachers as Change Agents

As this course was designed to introduce in-service teachers
to inclusive pedagogy with respect to computer science, the
module on “Teachers as Change Agents” was particularly
engaging to the teachers. In addition to the relevant chapter
from the course textbook [47], the teachers also read an
article from Goode et al. [33] that discusses how teachers
can have a significant impact on historically underrepresented
students. Their study found that frequently teachers do not
have enough resources to teach computer science, but if you
provide appropriate training to the teachers they can “increase
opportunities for underrepresented students to study computer
science. ” A student in the class responded to the reading on
the classroom discussion forum by saying “The Goode article
reinforces all other research that shows the best way to have
a successful classroom is to have an effective and qualified
teacher.”

Interestingly, the paper by Baker [5] that discusses the
need for better curriculum and pedagogy to engage women
in STEM fields. While the students in the various offerings of
the course agreed that the strategies in the paper such as early
science experiences/exposure, hands-on activities curriculum
that addresses student’s interests, activities that build self-
efficacy, discussing role models, and student-centered teaching
are important, many students expressed that those were just
good teaching strategies and were not specific to engaging
women in STEM fields. Some of the students in the class
were disturbed by seemingly condescending comments in the



Fig. 3. Word Cloud of all the discussions based on the reading in all the sections of the course. The main themes of teachers, students, computer science come
through as being widely discussed. Notably, the text in green shows that the environment in a classroom was discussed as they had read that stereotypical
cues can affect self-identity for women and minorities in the paper by Cheryan et al. [18].

paper such as “one way to increase participation in computer
programming classes is to have single-sex classes that em-
phasize programming with girl-friendly design and drawing
activities.” One student further expanded on this theme with
“I believe that students rise to the expectations we have for
them. A girl who works hard and ’gets it’, builds a greater
sense of self-confidence.”

IV. REFLECTION

As part of the assigned reading for the course, the students
in the class had to submit a reading response to every reading.
Some of the comments from the reading responses have been
mentioned before. Figure 3 shows a word cloud that was
generated based on all the discussions on the online forum
that we used for the course. The Word Cloud was generated
using a Context-Preserving Layout with a Cosine Coefficient
for Similarity and we used the Lexical Centrality measure to
rank the words. Similar words were grouped together and stop
words were removed to allow for interesting themes to emerge.
As can be seen in the figure, themes in red pertain to teachers,
technology, and school related topics whereas themes shown
in green are related to the environment in the classroom. This
may be due to the fact that early in the course students read the
ambient belonging paper by Cheryan et al. [18]. It seems to
resonate with the students and comes up throughout the course
when discussing strategies to include women and minorities
in their classes.

A. Survey results

We conducted a survey of the teachers who have taken the
course over the last three years and received responses from
11 of the 39 teachers. Not all of the 39 teachers are currently
teaching CS or had an opportunity to teach CS classes due to
a variety of school/school-district related reasons, which may
partially account for the low turnout for the survey.

The survey contained six questions that asked the partici-
pants about the strategies that

1) Which of these topics resonated with you from CS 518?
• Pair Programming
• Stereotypical cues affecting gender participation

• Using role models to engage female students
• Curriculum matters - Using a better curriculum to

engage interest in CS
• The role of teachers in maintaining an inclusive

culture in the classroom
2) Which of the following, if any, collaborative learning

strategies have you used in your class?
• Pair Programming
• Team-based learning
• Peer-led discussions

3) Which of the strategies for inclusion discussed in the
CS 518 class have you incorporated in your classroom?

4) What change, if any, have you brought about in your
courses/classroom based on the discussions in CS 518?

5) Are there specific strategies you loved from the class,
but haven’t been able to implement? If so, what is the
strategy and what has been the roadblock to implement-
ing it?

6) Are there any specific readings from the course that
stuck with you?

Based on the survey, we found that the teachers most
remembered discussions related to “Pair Programming” and
“The role of teachers in providing an inclusive environ-
ment” and course to all the students in their class. 10 out
of 11 teachers reported to using a combination of team-
based learning, pair programming, and peer-led discussions in
their classrooms. Teachers reported that “Learning and using
student’s names during class” made a big difference in the
classroom and they have “made their classroom environment
more inclusive for girls, used TED talks that feature women
in STEM, and used pair programming strategies.”

Based on the discussions related to ambient belonging
due to stereotypical cues [18], teachers reported that they
paid more attention to “How my classroom is decorated and
focusing the first couple of days [on] developing classroom
culture and maintaining it throughout the year.” Regarding pro-
gramming assignments and homework, one teacher reported
that “After designing a lesson or project I reflect to make sure
it is interesting to both genders.”



Fig. 4. Here is a bar graph that shows that Pair Programming and the Role
of teaching in maintaining an inclusive classroom most resonated with the
participants even two to three years, in some cases, after they took the course.

Fig. 5. Among the collaborative learning strategies discussed in class, the
teachers reported to have used all of them at some point, but the pair
programming strategy seems to be the most popular of them all.

For a question that asked teachers to recall a topic/reading
that most resonated with them and has made a long-lasting
impact on their teaching, they responded with reading about
the harmful effects of harboring a “Defensive climate in the
classroom.” When questioned about which of the various
collaborative learning strategies have they incorporated into
their respective classrooms, the participants reported that most
of them had used all of them at some point. It does seem like
the pair-programming paradigm not only resonated with the
participants, but was also incorporated into the student learning
experiences.

Teachers responded very positively about the book for the
course - “Stuck in the shallow end [47]” and one of the
teachers responded with “the reading began an inquiry process
into the nature of teaching and learning that was universally
applicable, but focused on programming as its lens.”

Most notably one of the more experienced in-service teach-
ers provided this feedback at the end of the course - “I went
into this class hoping I could glean a little insight into methods
I could improve underrepresented group retention/recruitment

in my program. I have to admit I got a whole lot more than I
was planning for. To date, I have restructured, repainted, and
remove elements in my classroom to make a more physical
friendly environment. I am still in the process of reviewing
each lesson I teach to remove what I now can clearly see
as a gender bias. I have invited a diverse group of local
guest speakers from local companies to talk with my students
attempting to bring CS out of the “basement”. And I have
become so deeply taken by the concept of pair programming
that I am attempting to develop a tool that will help find the
best match for pairs based off of factors we learned in this
class and character traits.”

B. Lesson Plans

As mentioned in Section III-A, the students turned in three
lesson plans at the beginning of the course. Since the students
were in-service teachers, they had lesson plans that they had
used before and so that was minimal work on their part. At the
end of the course they modified the original lesson plans such
that they incorporated strategies that they found appropriate
depending on the course, level of the student audience, and
subject matter.

In most cases, there was significant improvement with
respect to collaboration and working with a partner. This is
in line with the “pair programming” paradigm that seems to
have resonated well with the students. One of the teachers
mentioned that she had started thinking about the composition
of the groups/teams as well as specified in the modified lesson
plan - “Here I would make sure my groups are purposely
chosen to make sure there is cross-cultural and cross-gender
communication in the groups, and minimize grouping of the
same color/gender/language peers together, feeling isolated
from the rest of the class.”

To facilitate engagement and creativity so as to appeal to
a wider audience, another teacher modified her lesson plan
in such a way that she would ”Offer students to use their
own symbols for their cards, not just shapes - maybe animals,
flowers, sport items or cultural symbols.” She mentioned that
the ”Element of creativity, and opportunity to incorporate part
of their culture or interest will help students to have a feeling
of belonging, and have a feeling of ownership of final product.
Some creative students go a long ways to express themselves,
and it helps them to connect to concepts that seem foreign.”

Overall, there was a wide range of lesson plans but all the
teachers had incorporated at least a couple of the strategies
discussed in class with the goal to create and sustain a more
inclusive culture in their own classroom.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an overview of our course on
“Inclusive Strategies for Teaching Computer Science” and
reflect upon its impact on the various in-service teachers. Many
of these teachers who took the course have taught computer
science classes at their school and have found strategies such
as “pair programming” to be useful. They have also embraced
the need to be mindful of the culture in the classroom and truly



make it inclusive by even changing the physical environment
of the classroom including posters, figurines, and so on. Based
on the conducted survey, we found that the teachers have
incorporated collaborative learning strategies in their teaching
of computer science courses.

While our courses incorporated strategies for women and
minorities for now, we would like to incorporate principles
from the AccessCSForAll program for disabled students [15].
We can only create a truly inclusive classroom when we
include everyone in it.

Additionally, in future, we plan to conduct interviews with
all of our in-service teachers (who are currently teaching a
computer science class) and some of their students to see what
impact the pedagogical strategies have had towards creating an
inclusive classroom.

While the CS 10K program has led to teachers being trained
nationally, there is still much that needs to be done to make
sure that the trained teachers can teach one of the CS course
at their respective schools. Counselors need to be educated to
be unbiased and informed [27] so as to not act as gatekeepers
to computing classes at their school. Barr and Stephenson [7]
discuss all the challenges associated with bringing computer
science to various school districts. Specifically for school
administrators, they recommend “Provide materials that will
help school administrators understand computational thinking
so that they can see why this knowledge and skills are
important for todays students.”

ACKNOWLEDGEMENTS

We would like to thank the National Science Foundation
for funding the research under the NSF grant #1339403 - “CS
10K: IDoCode: A Sustainable Model for Computer Science
in Idaho High Schools.” We would like to thank the Idaho
Technology Council, the Idaho State Board of Education,
the Idaho Digital Learning Academy, and Local High School
Principals, Counselors, and Teachers who continue to support
the IDoCode program.

REFERENCES

[1] W. R. Adrion, S. Biskup, D. Boisvert, L. Clarke, J. Fountain, P. Grocer,
S. Mackler, A. R. Peterfreund, K. A. Rath, A. Smith, D. D. Snyder,
and A. Wiens. Broadening participation in computing: K12-community-
college-university-graduate pathways. In 2008 38th Annual Frontiers in
Education Conference, pages S4F–15–S4F–20, Oct 2008.

[2] A. Ahadi and R. Lister. Geek genes, prior knowledge, stumbling points
and learning edge momentum: parts of the one elephant? In Proceedings
of the ninth annual international ACM conference on International
computing education research, pages 123–128. ACM, 2013.

[3] O. Astrachan, T. Banres, D. D. Garcia, J. Paul, B. Simon, and L. Snyder.
Cs principles: piloting a new course at national scale. In Proceedings
of the 42nd ACM technical symposium on computer science education,
volume 42, pages 397–398. ACM, 2011.

[4] O. Astrachan, J. Cuny, C. Stephenson, and C. Wilson. The cs10k
project: mobilizing the community to transform high school computing.
In Proceedings of the 42nd ACM technical symposium on Computer
science education, pages 85–86. ACM, 2011.

[5] D. Baker. What works: Using curriculum and pedagogy to increase girls’
interest and participation in science. Theory Into Practice, 52(1):14–20,
2013.

[6] L. J. Barker, K. Garvin-Doxas, and M. Jackson. Defensive climate in
the computer science classroom. ACM SIGCSE Bulletin, 34(1):43–47,
2002.

[7] V. Barr and C. Stephenson. Bringing computational thinking to k-12:
what is involved and what is the role of the computer science education
community? Acm Inroads, 2(1):48–54, 2011.

[8] K. Beck. Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[9] D. Bernier and J. Margolis. The revolving door: Computer science
for all and the challenge of teacher retention. ECS report. http:
//www.exploringcs.org/wp-content/uploads/2014/04/The-Revolving-
Door-CS-for-All-and-the-Challenge-of-Teacher-Retention-Final.pdf,
2014.

[10] J. Black, P. Curzon, C. Myketiak, and P. W. McOwan. A study in
engaging female students in computer science using role models. In
Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education, pages 63–67. ACM, 2011.

[11] A. C. Board. Ap computer science principles. Online, 2015. Re-
trieved June 16, 2018 from https://apstudent.collegeboard.org/apcourse/
ap-computer-science-principles.

[12] A. Briggs and L. Snyder. Computer science principles and the cs 10k
initiative. ACM Inroads, 3(2):29–31, 2012.

[13] Q. Brown and A. Briggs. The cs10k initiative: progress in k-12 through
exploring computer science part 1. ACM Inroads, 6(3):52–53, 2015.

[14] A. Bruckman, M. Biggers, B. Ericson, T. McKlin, J. Dimond, B. DiS-
alvo, M. Hewner, L. Ni, and S. Yardi. Georgia computes!: Improving
the computing education pipeline. In ACM SIGCSE Bulletin, volume 41,
pages 86–90. ACM, 2009.

[15] S. Burgstahler and R. Ladner. An alliance to increase the participation
of individuals with disabilities in computing careers. ACM SIGACCESS
Accessibility and Computing, (85):3–9, 2006.

[16] CAITE. Commonwealth allication for information technology education.
http://caite.cs.umass.edu/index.html, 2008.

[17] L. Carter. Why students with an apparent aptitude for computer science
don’t choose to major in computer science. ACM SIGCSE Bulletin,
38(1):27–31, 2006.

[18] S. Cheryan, V. C. Plaut, P. G. Davies, and C. M. Steele. Ambient be-
longing: How stereotypical cues impact gender participation in computer
science. Journal of personality and social psychology, 97(6):1045, 2009.

[19] A. Cockburn and L. Williams. The costs and benefits of pair program-
ming. Extreme programming examined, 8:223–247, 2000.

[20] Code.org. Girls set ap computer science recordskyrocketing
growth outpaces boys, 2017. Retrieved May 3rd, 2018 from
https://medium.com/@codeorg/girls-set-ap-computer-science-record-
skyrocketing-growth-outpaces-boys-41b7c01373a5.

[21] code.org. Rethinking perkins to expand access to k-12 computer science.
https://code.org/files/RethinkingPerkins.pdf, 2017. Accessed: 2017-02-
09.

[22] College Board. AP Computer Science Principles. http://www.
apcsprinciples.org/, 2017. Accessed: 2017-4-11.

[23] O. S. Crutchfield, C. D. Harrison, G. Haas, D. D. Garcia, S. M.
Humphreys, C. M. Lewis, and P. Khooshabeh. Berkeley foundation
for opportunities in information technology: A decade of broadening
participation. ACM Transactions on Computing Education (TOCE),
11(3):15, 2011.

[24] J. Cuny. Transforming high school computing: a call to action. ACM
Inroads, 3(2):32–36, 2012.

[25] J. Cuny. Transforming k-12 computing education: an update and a call
to action. ACM Inroads, 6(3):54–57, 2015.

[26] J. Denner, L. Werner, S. Campe, and E. Ortiz. Pair programming: Under
what conditions is it advantageous for middle school students? Journal
of Research on Technology in Education, 46(3):277–296, 2014.

[27] P. J. Denning and A. McGettrick. Recentering computer science.
Communications of the ACM, 48(11):15–19, 2005.

[28] M. desJardins and S. Martin. CE21-Maryland: the state of computer
science education in maryland high schools. In Proceeding of the 44th
ACM technical symposium on Computer science education, pages 711–
716. ACM, 2013.

[29] C. Fletcher. Strategies for effective and inclusive cs teaching, 2018.
Retrieved May 3rd, 2018 from https://utakeit.stemcenter.utexas.edu/
media/syllabi/WeTeach CS Strategies for Effective and Inclusive
CS Teaching Syllabus 1.pdf.

[30] J. Freeman, B. Magerko, T. McKlin, M. Reilly, J. Permar, C. Summers,
and E. Fruchter. Engaging underrepresented groups in high school
introductory computing through computational remixing with earsketch.
In Proceedings of the 45th ACM technical symposium on Computer
science education, pages 85–90. ACM, 2014.



[31] D. Garcia, B. Harvey, and T. Barnes. The beauty and joy of computing.
ACM Inroads, 6(4):71–79, 2015.

[32] D. D. Garcia, O. Astrachan, B. Brown, J. Gray, C. Lin, B. Beth,
R. Morelli, M. desJardins, and N. Sridhar. Computer science principles
curricula: On-the-ground; adoptable; adaptable; approaches to teaching.
In Proceedings of the 46th ACM technical symposium on Computer
Science Education, pages 176–177. ACM, 2015.

[33] J. Goode. If you build teachers, will students come? the role of teachers
in broadening computer science learning for urban youth. Journal of
Educational Computing Research, 36(1):65–88, 2007.

[34] J. Goode, G. Chapman, and J. Margolis. Beyond curriculum: the
exploring computer science program. ACM Inroads, 3(2):47–53, 2012.

[35] J. Goode and J. Margolis. Exploring computer science: a case study of
school reform. ACM Transactions on Computing Education, 11(2):1–16,
2011.

[36] J. Gray, H. Abelson, D. Wolber, and M. Friend. Teaching cs principles
with app inventor. In Proceedings of the 50th Annual Southeast Regional
Conference, pages 405–406. ACM, 2012.

[37] K. Gunion, T. Milford, and U. Stege. Curing recursion aversion. In
ACM SIGCSE Bulletin, volume 41, pages 124–128. ACM, 2009.

[38] P. Guo. Silent technical privilege. Slate. Retrieved on February, 21:2014,
2014.

[39] M. Guzdial. Get cs into schools through math and science
classes: What we might lose. Computing Education Blog -
https://computinged.wordpress.com/2014/08/11/get-cs-into-schools-
through-math-and-science-classes-and-what-we-might-lose/, 2014.

[40] M. Guzdial. Learner-centered design of computing education: Research
on computing for everyone. Synthesis Lectures on Human-Centered
Informatics, 8(6):1–165, 2015.

[41] Illinois State University. Teacher education in computer science (tecs).
http://tecs.illinoisstate.edu, 2016. Accessed: 2017-5-21.

[42] J. Kolligian Jr and R. J. Sternberg. Perceived fraudulence in young
adults: Is there an’imposter syndrome’? Journal of personality assess-
ment, 56(2):308–326, 1991.

[43] M. Leake and C. M. Lewis. Recommendations for designing cs resource
sharing sites for all teachers. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, pages 357–362.
ACM, 2017.

[44] R. Lister. Computing education research geek genes and bimodal grades.
ACM Inroads, 1(3):16–17, 2010.

[45] A. L. Luehmann. Identity development as a lens to science teacher
preparation. Science Education, 91(5):822–839, 2007.

[46] M. Marder. Uteach: Teacher preparation at the university of texas at
austin. Bulletin of the American Physical Society, 2005.

[47] J. Margolis, R. Estrella, J. Goode, J. J. Holme, and K. Nao. Stuck in
the shallow end: Education, race, and computing. MIT Press, 2010.

[48] J. Margolis and A. Fisher. Unlocking the clubhouse: Women in
computing. MIT press, 2003.

[49] L. K. Michaelsen and M. Sweet. Team-based learning. New directions
for teaching and learning, 2011(128):41–51, 2011.

[50] I. T. Miura. The relationship of computer self-efficacy expectations to
computer interest and course enrollment in college. Sex Roles, 16(5-
6):303–311, 1987.

[51] R. Morelli, T. De Lanerolle, P. Lake, N. Limardo, E. Tamotsu, and
C. Uche. Can android app inventor bring computational thinking to
k-12. In Proc. 42nd ACM technical symposium on Computer science
education (SIGCSE’11), pages 1–6, 2011.

[52] B. B. Morrison, L. Ni, and M. Guzdial. Adapting the disciplinary com-
mons model for high school teachers: improving recruitment, creating
community. In Proceedings of the ninth annual international conference
on International computing education research, pages 47–54. ACM,
2012.

[53] L. Murphy and L. Thomas. Dangers of a fixed mindset: implications of
self-theories research for computer science education. In ACM SIGCSE
Bulletin, volume 40, pages 271–275. ACM, 2008.

[54] NCWIT. 8 ways to give students more effective feedback us-
ing a growth mindset. Online, 2010. Retrieved April 22, 2018
from https://www.ncwit.org/resources/ncwit-tips-8-ways-give-students-
more-effective-feedback-using-growth-mindset/.

[55] NCWIT. Top 10 ways to engage underrepresented students in comput-
ing. Online, 2010. Retrieved April 22, 2018 from https://www.ncwit.org/
resources/top-10-ways-engage-underrepresented-students-computing/.

[56] L. Ni. Building professional identity as computer science teachers:
supporting secondary computer science teachers through reflection and
community building. In ICER, pages 143–144, 2011.

[57] L. Ni and M. Guzdial. Prepare and support computer science (cs)
teachers: Understanding cs teachers professional identity. In American
Educational Research Association (AERA) Annual Meeting, 2011.

[58] L. Ni, M. Guzdial, A. E. Tew, B. Morrison, and R. Galanos. Building
a community to support hs cs teachers: the disciplinary commons for
computing educators. In Proceedings of the 42nd ACM technical
symposium on Computer science education, pages 553–558. ACM, 2011.

[59] M. Papastergiou. Are computer science and information technology still
masculine fields? high school students perceptions and career choices.
Computers & education, 51(2):594–608, 2008.

[60] C. Reas and B. Fry. Processing: a programming handbook for visual
designers and artists. Number 6812. Mit Press, 2007.

[61] A. Robins. Learning edge momentum: A new account of outcomes in
cs1. Computer Science Education, 20(1):37–71, 2010.

[62] J. J. Ryoo, J. Margolis, C. H. Lee, C. D. Sandoval, and J. Goode.
Democratizing computer science knowledge: Transforming the face of
computer science through public high school education. Learning, Media
and Technology, 38(2):161–181, 2013.

[63] E. M. Skaalvik and S. Skaalvik. Dimensions of teacher self-efficacy and
relations with strain factors, perceived collective teacher efficacy, and
teacher burnout. Journal of educational psychology, 99(3):611, 2007.

[64] C. M. Steele. A threat in the air: How stereotypes shape intellectual
identity and performance. American psychologist, 52(6):613, 1997.

[65] R. Taub, M. Ben-Ari, and M. Armoni. The effect of cs unplugged on
middle-school students’ views of cs. ACM SIGCSE Bulletin, 41(3):99–
103, 2009.

[66] L. Thomas, M. Ratcliffe, and A. Robertson. Code warriors and code-
a-phobes: a study in attitude and pair programming. In ACM SIGCSE
Bulletin, volume 35, pages 363–367. ACM, 2003.

[67] US Congress. H.r.1020 - stem education act of 2015. https:
//www.congress.gov/bill/114th-congress/house-bill/1020, 2015. Ac-
cessed: 2017-02-09.

[68] M. Wattenberg and F. B. Viégas. The word tree, an interactive visual
concordance. IEEE transactions on visualization and computer graphics,
14(6), 2008.

[69] D. Wolber. App inventor and real-world motivation. In Proceedings
of the 42nd ACM technical symposium on Computer science education,
pages 601–606. ACM, 2011.

[70] A. Yadav, S. Gretter, J. Good, and T. McLean. Computational thinking
in teacher education. In Emerging Research, Practice, and Policy on
Computational Thinking, pages 205–220. Springer, 2017.

[71] T. G. Zimmerman, D. Johnson, C. Wambsgans, and A. Fuentes. Why
latino high school students select computer science as a major: Analysis
of a success story. ACM Transactions on Computing Education (TOCE),
11(2):10, 2011.


