Artificial Intelligence Programming
Local Search and Genetic Algorithms

Chris Brooks

Department of Computer Science
University of San Francisco
7-0: Overview

- Local Search - When is it useful?
- Hill-climbing search
- Simulated Annealing
- Genetic Algorithms
So far, the algorithms we’ve looked at store the entire path from initial state to goal state.

This leads to memory/space issues on large problems.

For some problems, path information is essential
 △ Route finding
 △ Water Jugs
 △ 8-puzzle
 △ The solution is the sequence of actions to take.
 △ We know the goal what the goal state is, but not how to reach it.
For other sorts of problems, we may not care what the sequence of actions is.

CSPs fit this description.

- Finding the optimal (or satisfactory) solution is what’s important.
- Scheduling
- VLSI layout
- Cryptography
- Function optimization

The solution is an assignment of values to variables that maximizes some objective function.

In these cases, we can safely discard at least some of the path information.
A search algorithm that uses only the current state (as opposed to path information) is called a local search algorithm.

Advantages:
- Constant memory requirements
- Can find solutions in incredibly large spaces.

Disadvantages:
- Hard to guarantee optimality; we might only find a local optimum
- Lack of memory may cause us to revisit states or oscillate.
Local search is often useful for optimization problems

“Find parameters such that $o(x)$ is maximized/minimized”

This is a search problem, where the state space is the combination of value assignments to parameters.

If there are n parameters, we can imagine an $n+1$ dimensional space, where the first n dimensions are the parameters of the function, and the $n+1$th dimension is the objective function.

We call this space a search landscape

- Optima are on hills
- Valleys are poor solutions.
- (reverse this to minimize $o(x)$)
A one-dimensional landscape:

Linear Pricing for varying C and N. \(w = 10, k \sim U[0.0, 0.7] \)
A two-dimensional landscape:

(beyond 2 dimensions, they’re tough to draw)
7-7: Search landscapes

- Landscapes turn out to be a very useful metaphor for local search algorithms.
- Lets us visualize 'climbing' up a hill.
- Gives us a way of differentiating easy problems from hard problems.
 - Easy: few peaks, smooth surfaces, no ridges/plateaus
 - Hard: many peaks, jagged or discontinuous surfaces, plateaus.
The simplest form of local search is hill-climbing search.

Very simple: at any point, look at your “successors” (neighbors) and move in the direction of the greatest positive change.

Very similar to greedy search
- Pick the choice that myopically looks best.

Very little memory required.

Will get stuck in local optima.

Plateaus can cause the algorithm to wander aimlessly.
Find roots of an equation \(f(x) = 0 \), \(f \) differentiable.

Guess an \(x_1 \), find \(f(x_1) \), \(f'(x_1) \)

Use the tangent line to \(f(x_1) \) (slope = \(f'(x_1) \)) to pick \(x_2 \).

Repeat. \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_1)} \)

This is a hill-climbing search.

Works great on smooth functions.
Hill-climbing can be appealing
△ Simple to code
△ Requires little memory
△ We may not have a better approach.

How to make it better?

Stochastic hill-climbing - pick randomly from uphill moves
△ Weight probability by degree of slope
7-11: Improving hill-climbing

- Random-restart hill-climbing
- Run until an optimum is reached
- Randomly choose a new initial state
- Run again.
- After \(n \) iterations, keep best solution.
 - If we have a guess as to the number of optima, we can choose an \(n \).
Hill-climbing’s weakness is that it never moves ‘downhill’
Like greedy search, it can’t “back up”.
Simulated annealing is an attempt to overcome this.
“Bad” actions are occasionally chosen to move out of a local optimum.
7-13: Simulated Annealing

- Based on analogies to crystal formation.
- When a metal cools, lattices form as molecules fit into place.
- By reheating and recooling, a harder metal is formed
 - Small undoing leads to better solution.
 - Minimize the “energy” in the system
- Similarly, small steps away from the solution can help hill-climbing escape local optima.
7-14: Simulated Annealing

\[
T = \text{initial} \\
\text{s} = \text{initial-state} \\
\text{while (s \neq \text{goal})} \\
\quad \text{ch} = \text{successor-fn}(s) \\
\quad \text{c} = \text{select-random-child}(\text{ch}) \\
\quad \text{if c is better than s} \\
\quad \quad \text{s} = \text{c} \\
\quad \text{else} \\
\quad \quad \text{s} = \text{c with probability p}(T, c, s) \\
\quad \text{update T}
\]

6 What is T?
6 What is p?
What we want to do is make “mistakes” more frequently early in the search and more rarely later in the search.

We’ll use T to parameterize this.

T stands for temperature.

Two questions:
- How does T change over time?
- What’s the probability function wrt T?
7-16: Cooling schedule

The function for changing T is called a cooling schedule.

The most commonly used schedules are:

- **Linear:** \(T_{new} = T_{old} - dt \)
- **Proportional:** \(T_{new} = c \times T_{old}, \ c < 1 \)
7-17: Boltzmann distribution

The probability of accepting a mistake is governed by a Boltzmann distribution

Let s be the current state, c be the child considered, and o the function to optimize.

$$P(c) = \exp\left(\frac{-|o(c) - o(s)|}{T}\right)$$

Consider boundary conditions:
- $|o(c) - o(s)| = 0$, then $P(c) = 1$.
- T very high: almost all fractions near 0, so $P(c)$ near 1.
- T low: $P(c)$ depends on $|o(c) - o(s)|$, typically small.

Boltzmann gives us a way of weighting the probability of accepting a “mistake” by its quality.
Simulated Annealing is complete and optimal as long as T is lowered “slowly enough”

Can be very effective in domains with many optima.

Simple addition to a hill-climbing algorithm.

Weakness - selecting a good cooling schedule.

No problem knowledge used in search. (weak method)
Genetic Algorithms can be thought of as a form of parallel hill-climbing search.

Basic idea:
- Select some solutions at random.
- Combine the best parts of the solutions to make new solutions.
- Repeat.

Successors are a function of two states, rather than one.
7-20: GA applications

- Function optimization
- Job Shop Scheduling
- Factory scheduling/layout
- Circuit Layout
- Molecular structure
- etc
7-21: GA terminology

- Chromosome - a solution or state
- Trait/gene - a parameter or state variable
- Fitness - the “goodness” of a solution
- Population - a set of chromosomes or solutions.
pop = makeRandomPopulation
while (not done)
 foreach p in pop
 p.fitness = evaluate(p)
 for i = 1 to size(pop) by 2:
 parent1, parent2 = select random solutions from pop
 child1, child2 = crossover (parent1, parent2)
 mutate child1, child2
 replace old population with new population
7-23: Analogies to Biology

- Keep in mind that this is *not* how biological evolution works.
 - Biological evolution is much more complex.
 - Diploid chromosomes, phenotype/genotype, nonstationary objective functions, ...

- Biology is a nice metaphor.
 - GAs must stand or fail on their own merits.
Encoding a problem for use by a GA can be quite challenging.

Traditionally, GA problems are encoded as bitstrings.

Example: 8 queens. For each column, we use 3 bits to encode the row of the queen = 24 bits.

\[\text{100 101 110 000 101 001 010 110 = 4 5 6 0 5 1 2 6} \]

We begin by generating random bitstrings, then evaluating them according to a *fitness function* (the function to optimize).

- 8-queens: number of nonattacking pairs of queens (max = 28)
7-25: Generating new solutions

- Our successor function will work by operating on two solutions.
- This is called crossover.
- Pick two solutions at random.
- First method: Fitness-proportionate selection
 - Sum all fitnesses
 - \(P(\text{selection of } s) = \frac{\text{fitness}(s)}{\text{total fitness}} \)
- Pick a random point on the bitstrings. (locus)
- Merge the first part of \(b_1 \) with the second part of \(b_2 \) (and vice versa) to produce two new bitstrings.
Crossover Example

\[s_1: (100 \ 101 \ 110) \ (000 \ 101 \ 001 \ 010 \ 110) = 4 \ 5 \ 6 \ 0 \ 5 \ 1 \ 2 \ 6 \]

\[s_2: (001 \ 000 \ 101) \ (110 \ 111 \ 010 \ 110 \ 111) = 1 \ 0 \ 5 \ 6 \ 7 \ 2 \ 6 \ 7 \]

Pick locus = 9

\[s_3 = (100 \ 101 \ 110) \ (110 \ 111 \ 010 \ 110 \ 111) \ 4 \ 5 \ 6 \ 6 \ 7 \ 2 \ 6 \ 7 \]

\[s_4 = (001 \ 000 \ 101) \ (000 \ 101 \ 001 \ 010 \ 110) \ 1 \ 0 \ 5 \ 0 \ 5 \ 1 \ 2 \ 6 \]
Next, apply mutation.

With probability m (for small m) randomly flip one bit in the solution.

After generating a new population of the same size as the old population, discard the old population and start again.
7-28: So what is going on?

- Why would this work?

- Crossover: recombine pieces of partially successful solutions.

- Genes closer to each other are more likely to stay together in successive generations.
 - This makes encoding important.

- Mutation: inject new solutions into the population.
 - If a trait was missing from the initial population, crossover cannot generate it unless we place the locus within a gene.

- The *schema theorem* provides a formal proof of why GAs work.
How should we select parents for reproduction?

Use the best n percent?
- Want to avoid premature convergence
- No genetic variation
- Also, sometimes poor solutions have promising subparts.

Purely random?
- No selection pressure
Roulette Selection weights the probability of a chromosome being selected by its relative fitness.

\[P(c) = \frac{\text{fitness}(c)}{\sum_{\text{chr} \in \text{pop}} \text{fitness}(\text{chr})} \]

This normalizes fitnesses; total relative fitnesses will sum to 1.

Can directly use these as probabilities.
Suppose we want to maximize $f(x) = x^2$ on $[0, 31]$
- Let’s assume integer values of x for the moment.

Five bits used to encode solution.

Generate random initial population

<table>
<thead>
<tr>
<th>String</th>
<th>Fitness</th>
<th>Relative Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101</td>
<td>169</td>
<td>0.144</td>
</tr>
<tr>
<td>11000</td>
<td>576</td>
<td>0.492</td>
</tr>
<tr>
<td>01000</td>
<td>64</td>
<td>0.055</td>
</tr>
<tr>
<td>10011</td>
<td>361</td>
<td>0.309</td>
</tr>
<tr>
<td>Total</td>
<td>1170</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Select parents with roulette selection.

Choose a random *locus*, and crossover the two strings

<table>
<thead>
<tr>
<th>String</th>
<th>Fitness</th>
<th>Relative Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110</td>
<td>1</td>
<td>0.144</td>
</tr>
<tr>
<td>1100</td>
<td>576</td>
<td>0.492</td>
</tr>
<tr>
<td>01000</td>
<td>64</td>
<td>0.055</td>
</tr>
<tr>
<td>10011</td>
<td>361</td>
<td>0.309</td>
</tr>
<tr>
<td>Total</td>
<td>1170</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Children: 01100, 11000
Select parents with roulette selection.

Choose a random *locus*, and crossover the two strings.

<table>
<thead>
<tr>
<th>String</th>
<th>Fitness</th>
<th>Relative Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101</td>
<td>169</td>
<td>0.144</td>
</tr>
<tr>
<td>11000</td>
<td>576</td>
<td>0.492</td>
</tr>
<tr>
<td>01000</td>
<td>64</td>
<td>0.055</td>
</tr>
<tr>
<td>10111</td>
<td>361</td>
<td>0.309</td>
</tr>
<tr>
<td>Total</td>
<td>1170</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Children: 01100, 11000

Children: 10000, 11011
Replace old population with new population.

Apply mutation to new population.
△ With a small population and low mutation rate, mutations are unlikely.

New generation:
△ 01100, 11001, 11011, 10000

Average fitness has increased (293 to 439)

Maximum fitness has increased (576 to 729)
The subsolutions 11^{***} and $^{***}11$ are recombined to produce a better solution.

There’s a correlation between strings and fitness.

△ Having a 1 in the first position is correlated with fitness.
△ This shouldn’t be shocking, considering how we encoded the input.

We’ll call a 1 in the first position a building block.

GAs work by recombining smaller building blocks into larger building blocks.
We need a way to talk about strings that are similar to each other.

Add ‘*’ (don’t care) symbol to \{0,1\}.

A *schema* is a template that describes a set of strings using \{0,1,*\}

- 111** matches 11100, 11101, 11110, 11111
- 0*11* matches 00110, 00111, 01110, 01111
- 0***1 matches 00001, 00011, 00101, 00111, 01001, 01011, 01101, 01111

Premise: Schemata are correlated with fitness.

In many encodings, only some bits matter for a solution. Schemata give us a way of describing all the important information in a string.
GAs actually process schemata, rather than strings.

Crossover may or may not damage a schema

- **11* vs 0***1

Short, highly fit low-order schemata are more likely to survive.

- Order: the number of fixed bits in a schema
 - 1**** - order 1
 - 0*1*1 - order 3

Building Block Hypothesis: GAs work by combining low-order schemata into higher-order schemata to produce progressively more fit solutions.
Propagation of schemata

1. Suppose that there are m examples of a schema H in a population of size n at time t: $m(H, t)$

2. Strings are selected according to relative fitness. $p = \frac{f}{\sum f}$

3. At time $t + 1$, we will have $m(H, t + 1) = M(H, t) \times n \times \frac{f(H)}{\sum f}$, where $f(H)$ is the average fitness of strings represented by this schema.

4. In other words, schema grow or decay according to their fitness relative to the rest of the population.
 - Above average schemata receive more samples
 - Below average schemata receive fewer samples.

5. But how many more or less?
7-39: Propagation of schemata

6 Assume that schema H remains above average by an amount c.
6 We can rewrite the schema difference equation as:

$$m(H, t + 1) = (1 + c)m(H, t)$$

6 Starting at $t = 0$, we get:

$$m(H, t) = m(H, 0)(1 + c)^t$$

6 This is a geometric progression. (Also the compound interest formula)

6 Reproduction selects exponentially more (fewer) above (below) average schemata.
Selection is only half the story

Schemata with longer defining length are more likely to be damaged by crossover.

\[P(\text{survival}) \geq 1 - \frac{\text{defining length}}{\text{Strlen}-1} \]

We can combine this with the previous equation to produce:

\[m(H, t + 1) \geq m(H, t) \frac{f(H)}{\sum f} (1 - \frac{\text{defining length}}{\text{Strlen}-1}) \]

In words, short, above-average schemata are sampled at exponentially increasing rates.

This is known as the schema theorem.
Consider $H - 1 = 1^{****}, \ H_2 = *10^{**}, \ H_3 = 1^{***0}$ in our previous example.

<table>
<thead>
<tr>
<th>String</th>
<th>Fitness</th>
<th>Relative Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101</td>
<td>169</td>
<td>0.144</td>
</tr>
<tr>
<td>11000</td>
<td>576</td>
<td>0.492</td>
</tr>
<tr>
<td>01000</td>
<td>64</td>
<td>0.055</td>
</tr>
<tr>
<td>10011</td>
<td>361</td>
<td>0.309</td>
</tr>
<tr>
<td>Total</td>
<td>1170</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Parents: 2 (twice), 3, 4
- 2 and 4 are both instances of H_1

Children: 01100, 11001, 11011, 10000
- 3 instances of H_1
- Schema theorem predicts $m \frac{f(H)}{\sum f} = \frac{468.5}{293} = 3.2$ copies
7-42: Theory vs. Implementation

6 Schema Theorem shows us why GAs work.

6 In practice, implementation details can make a big difference in the effectiveness of a GA.

6 This includes algorithmic improvements and encoding choices.
7-43: Tournament Selection

- Roulette selection is nice, but can be computationally expensive.
 - Every individual must be evaluated.
 - Two iterations through entire population.
- *Tournament selection* is a much less expensive selection mechanism.
- For each parent, choose two individuals at random.
- Higher fitness gets to reproduce.
In practice, discarding all solutions from a previous generation can slow down a GA.
- Bad draw on RNG can destroy progress
- You may need monotonic improvement.

Elitism is the practice of keeping a fraction of the population from the previous generation.

use Roulette selection to choose a fraction of the population to carry over without crossover.

Varying the fraction retained lets you trade current performance for learning rate.
7-45: Knowing when to stop

6 In some cases, you can stop whenever your GA finds an acceptably good solution.

6 In other cases, it’s less clear
 △ How do we know we’ve found the best solution to TSP?

6 Stop when population has ’converged’
 △ Without mutation, eventually one solution will dominate the population

6 After ’enough’ iterations without improvement
The most difficult part of working with GAs is determining how to encode problem instances.

- Schema theorem tells us that short encodings are good.
- Parameters that are interrelated should be located near each other.

N queens: Assume that each queen will go in one column.

Problem: find the right row for each queen.

N rows requires $\log_2 N$ bits

Entire length of string: $N \times \log_2 N$
7-47: Encoding Real-valued numbers

- What if we want to optimize a real-valued function?
- \(f(x) = x^2, x \in \text{Reals}[0, 31] \)
- Decide how to discretize input space; break into \(m \) “chunks”
- Each chunk coded with a binary number.
- This is called discretization
Some problems don’t have a natural bitstring representation.

e.g. Traveling Salesman
 △ Encoding this as a bitstring will cause problems
 △ Crossover will produce lots of invalid solutions

Encode this as a list of cities: [3,1,2,4,5]

Fitness: MAXTOUR - tour length (to turn minimization into maximization.)
How to do crossover in this case?

Exchange *positions* rather than substrings.

Example:
- t1: 3 5 4 6 1 2 8 7
- t2: 1 3 6 5 8 7 2 4

First, pick to loci at random.
7-50: Partially Matched Crossover

- t1: 3 5 | 4 6 1 2 | 8 7
- t2: 1 3 | 6 5 8 7 | 2 4

Use pairwise matching to exchange corresponding cities on each tour:
- In each string, 4 and 6 trade places, as do 6 and 5, 1 and 8, and 2 and 7.
- New children:
 - c1: 2 6 5 4 8 7 1 2
 - c2: 8 3 4 6 1 2 7 5

Intuition: Building blocks that are sections of a tour should tend to remain together.
PMX is just one of many approaches to using GAs to solve permutation problems.
- Scheduling, TSP, route finding, etc

Can also encode the position of each city.

Can try to replace subtours.

Fertile research field, with many practical applications.
GAs use bitstrings to perform local search through a space of possible schema.

Quite a few parameters to play with in practice.

Representation is the hardest part of the problem.

Very effective at searching vast spaces.