Introduction

1. So far, we've talked about search, which is a means of considering alternative possibilities.
2. The way in which problem states were represented was typically pretty straightforward.
3. The other aspect of many AI problems involves representing possible states.
4. Our choice of representation influences:
 a. The problems our agent is able to solve.
 b. The sorts of environments an agent can deal with.
 c. The complexity of search.
 d. The sophistication of our agent.

Knowledge Representation

1. Choices we'll look at include:
 a. Logic-based approaches
 i. Propositional logic
 ii. First-order logic
 iii. Ontologies
 iv. Logic is a flexible, well-understood, powerful, versatile way to represent knowledge.
 b. Often fits with the way human experts describe their world.
 c. Facts are either true or false.
 d. Has a hard time dealing with uncertainty.

Declarative vs. Procedural

1. Knowledge representation entails a shift from a procedural way of thinking about agents to a declarative way.
2. Procedural: Behavior is encoded directly in agent program. Focus is on algorithms.
3. Declarative: Agent knowledge is represented as sentences. Focus is on data.
4. Goal: Separate knowledge about the problem from the algorithm used to select actions.

Knowledge Representation

1. Choices we'll look at include:
 a. Probabilistic approaches
 i. Bayesian reasoning
 ii. Bayesian networks
 iii. Probabilistic reasoning works well in domains with uncertainty.
 iv. Inference can be more complex.
 v. Requires more prior knowledge to use effectively.
 b. Representational power typically more limited.
Wumpus World

- R & N use the Wumpus World as an example domain.
- Environment: 4x4 grid of rooms.
 - Gold in one room, wumpus in another
 - Pits in some rooms
- Actions: Move forward, turn left, turn right, shoot arrow, grab gold.
- Sensors: Perceive stench, perceive breeze, perceive gold, sense wall, hear wumpus death.
- Goal: maximize performance, which means finding gold quickly without encountering the wumpus or falling into a pit.

Syntax and Semantics

- Syntax: Defines whether a sentence is properly constructed.
 - In arithmetic, \(x + 2 = 5 \) is syntactically correct, whereas \(x + 3 = 3 \) is not.
 - In a Python program, \(timeElapsed = 3 \) is syntactically correct, while \(3 = timeElapsed \) is not.
- Semantics: Defines when a sentence is true or false.
 - The semantics of \(x + 2 = 5 \) are that this sentence is true in worlds where \(x = 3 \) and false otherwise.
 - Logical sentences must be true or false; no "degree of truth".

Models

- Model: A model is an assignment of values to a subset of the variables of interest in our problem.
 - A model for the Vacuum cleaner world might indicate where the vacuum is, and which rooms are clean.
 - In the Wumpus World, a model would indicate the location of the pits, gold, agent, arrow, and wumpus.
 - A model provides an agent with a possible world; one guess at how things might be.
 - We'll often be interested in finding models that make a sentence true or false, or all the models that could be true for a given set of sentences.
 - Models are very much like states.

Logic

- Entailment: Entailment is the idea that one sentence follows logically from another.
 - Written as: \(a \models b \)
 - Technically, this says: for all models where \(a \) is true, \(b \) is also true.
 - \((a + 2 = 5) \models (a = 3) \)
 - Note that entailment is a property of a set of sentences, and not an instruction to an agent.

Knowledge base

- A knowledge base is composed of sentences that assert facts about the world.
 - What's the difference between a knowledge base and a database?
 - In principle, expressiveness and usage.
 - In practice, a knowledge base might be implemented using a database.
 - Sentences describe:
 - Objects of interest in the world (wumpuses, gold, pits, rooms, agent)
 - Relationships between objects (agent is holding arrow)
Inference
- A knowledge base plus a model allows us to perform inference.
- For a given set of sentences, plus some assignment of values to variables, what can we conclude?
- Entailment tells us that it is possible to derive a sentence.
- Inference tells us how it is derived.
- An algorithm that only derives entailed sentences is said to be sound.
- Doesn't make mistakes or conclude incorrect sentences.

An Algorithm that can derive all entailed sentences is complete.
- If a sentence is entailed, a complete algorithm will eventually infer it.
- If entailed sentences are goals, this is the same definition of complete we used for search.
- That means we can think of inference as search, and use the algorithms we've already learned about.

Propositional Logic
- A complex sentence is a set of terms conjoined with \lor, \land, \vdash, \models.
- Room1, 0Clean \land (Room0, 0Clean \lor Room0, 0Dirty)
- Breeze1, 1 \Rightarrow (Pit1, 2 \lor Pit(2, 1))

Propositional Logic
- This is the sort of representation you used when constructing scorers for the crawler in assignment 3.
- A document is represented as a series of words that are either present (true) or absent (false).
- The TFIDFScorer extends this to map words to numbers, but the representational power is the same.
- Note that there's no way to indicate relationships between words
 - Occur near each other
 - Synonyms
 - Antonyms
 - General/specific
 - Author, subject, date, etc

Propositional Logic
- Notice that propositional logic does not have any way to deal with classes of objects.
 - We can't concisely say 'For any room, if there is a breeze, then there is a pit in the next room.'
 - To say 'At least one room is dirty' requires us to list all possibilities.
 - We don't have functions or predicates.
 - There's a computational tradeoff involved; if we're careful about how we use propositions, we can do fast (polynomial-time) inference.
 - But, we're limited in what our agent can reason about.
 - Propositional logic is the logic underlying hardware design (Boolean logic)
More on predicates

- Often, people will replace atomic terms with simple predicates.
- Replace Room0,1Clean with Clean(Room0, 1).
- As it is, this is fine.
- What we're missing is a way to talk about all the rooms that are clean without explicitly enumerating them.
- We don't have variables or quantifiers.
- To do that, we need first-order logic (next week).

Notation

- $A \land B$ - AND. Sentence is true if both A and B are true.
- $A \lor B$ - OR. Sentence is true if either A or B (or both) are true.
- $\neg A$ - NOT. Sentence is true if A is false.
- $A \Rightarrow B$ - Implies. Sentence is true if A is false or B is true.
- $A \Leftrightarrow B$ - Equivalence. Sentence is true if A and B have the same truth value.

Propositional Logic - implication

- Implication is a particularly useful logical construct.
- The sentence $A \Rightarrow B$ is true if:
 - A is true and B is true.
 - A is false.
- Example: If it is raining right now, then it is cloudy right now.
- $A \Rightarrow B$ is equivalent to $\neg A \lor B$.
- Implication will allow us to perform inference.

Still more definitions

- Logical equivalence: Two sentences are logically equivalent if they are true for the same set of models.
- $P \land Q$ is logically equivalent to $\neg(\neg P \lor \neg Q)$
- Validity (tautology): A sentence is valid if it is true for all models.
- $A \lor \neg A$ - Contradiction: A sentence that is false in all models.
- $A \land \neg A$

Still more definitions

- Satisfiability: A sentence is satisfiable if it is true for some model.
- $Room0, 0Clean \lor Room0, 1Clean$ is true in some worlds.
- Often our problem will be to find a model that makes a sentence true (or false).
- A model that satisfies all the sentences we're interested in will be the goal or solution to our search.

Logical reasoning

- Logical reasoning proceeds by using existing sentences in an agent's KB to deduce new sentences.
- Deduction is guaranteed to produce true sentences, assuming a sound mechanism is used.
- Rules of inference.
 - Modus Ponens: $A, A \Rightarrow B$, conclude B
 - And-Elimination: $A \land B$, conclude A.
 - Or-introduction: A, conclude $A \lor B$.
Logical Reasoning

- Rules of inference.
 - Contraposition: \(A \Rightarrow B \) can be rewritten as \(\neg B \Rightarrow \neg A \)
 - Double negative: \(\neg \neg (\neg A) = A \)
 - Distribution:
 - \(A \lor (B \land C) = (A \lor B) \land (A \lor C) \)
 - \(A \land (B \lor C) = (A \land B) \lor (A \land C) \)
 - DeMorgan's theorem:
 - \(A \lor B \), rewrite as \(\neg (\neg A \land \neg B) \)
 - or \(A \land B \) rewrite as \(\neg (\neg A \lor \neg B) \)

Inference as Search

- We can then use good old breadth-first search (or any other search) to perform inference and determine whether a sentence is entailed by a knowledge base.

Example

- Begin with:
 - There is no pit in (1,1): \(R_1 : \neg P_{1,1} \)
 - A square has a breeze iff there is a pit in the neighboring square
 - \(R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)
 - \(R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \) (and so on for all other squares)
- Assume the agent visits 1,1 and senses no breeze, but does sense a breeze in 2,1. Add:
 - \(R_4 : \neg B_{1,1} \)
 - \(R_5 : B_{2,1} \)

Example

- We can use biconditional elimination to rewrite \(R_2 \) as:
 - \(R_6 : (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \)
 - And-elimination on \(R_6 \) produces
 - \(R_7 : ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \)
 - Contraposition on \(R_7 \) gives us:
 - \(R_8 : \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}) \)
 - Modus Ponens with \(R_8 \) and \(R_4 \) produces
 - \(R_9 : \neg (P_{1,2} \lor P_{2,1}) \)
 - DeMorgan's then gives us \(R_{10} : \neg P_{1,2} \land \neg P_{2,1} \)
- Our agent can conclude that there is no pit in 0,0, 1,2, or 2,1. It is not sure about 2,2

Resolution

- The preceding rules are sound, but not necessarily complete.
- Also, search can be inefficient: there might be many operators that can be applied in a particular state.
- Luckily, there is a complete rule for inference (when coupled with a complete search algorithm) that uses a single operator.
- This is called resolution.
 - \(A \lor B \) and \(\neg A \lor C \) allows us to conclude \(B \lor C \).
 - \(A \) is either true or not true. If \(A \) is true, then \(C \) must be true.
 - If \(A \) is false, then \(B \) must be true.
 - This can be generalized to clauses of any length.
Conjunctive Normal Form

- Resolution works with disjunctions.
- This means that our knowledge base needs to be in this form.
- Conjunctive Normal Form is a conjunction of clauses that are disjunctions.
- \((A \lor B \lor C) \land (D \lor E \lor F) \land (G \lor H \lor I) \land \ldots\)
- Every propositional logic sentence can be converted to CNF.

Conjunctive Normal Form Recipe

1. Eliminate equivalence
 - \(A \equiv B\) becomes \(A \Rightarrow B \land B \Rightarrow A\)
2. Eliminate implication
 - \(A \Rightarrow B\) becomes \(\neg A \lor B\)
3. Move \(\neg\) inwards using double negation and DeMorgan’s
 - \(\neg(\neg A)\) becomes \(A\)
 - \(\neg(A \land B)\) becomes \((\neg A \lor \neg B)\)
4. Distribute nested clauses
 - \((A \lor (B \land C))\) becomes \((A \lor B) \land (A \lor C)\)

Example

- We then use DeMorgan’s rule to move negation inwards:
 - \((\neg B_1 \lor P_2 \lor P_3) \land (\neg P_1 \land \neg P_2) \lor B_1)\)
- Finally, we distribute OR over AND:
 - \((\neg B_1 \lor P_2 \lor P_3) \land (\neg P_1 \lor B_1) \land (\neg P_2 \lor B_1)\)
- Now we have clauses that can be plugged into a resolution theorem prover. (can break ANDs into separate sentences)
- They’re less readable by a human, but more computationally useful.

Proof By Refutation

- Once your KB is in CNF, you can do resolution by refutation.
- In math, this is called proof by contradiction
- Basic idea: we want to show that sentence \(A\) is true.
- Insert \(\neg A\) into the KB and try to derive a contradiction.

Example

- Prove that there is not a pit in (1,2), \(\neg P_{1,2}\)
- Relevant Facts:
 - \(R_1: \neg B_{1,1}\)
 - \(R_2: \neg P_{2,1}\)
 - \(R_3: \neg P_{1,2}\)
- Insert \(R_n: P_{1,2}\) into the KB
Example

- Resolve R_1 with R_{2a} to get: $R_6: B_{1,1}$
- We already have a contradiction, since $R_4: \neg B_{1,1}$
- Therefore, the sentence we inserted into the KB must be false.
- Most proofs take more than one step to get to a contradiction ...

Horn clauses

- Standard resolution theorem proving (and propositional inference in general) is exponentially hard.
- However, if we’re willing to restrict ourselves a bit, the problem becomes (computationally) easy.
- A Horn clause is a disjunction with at most one positive literal.
 - $\neg A \vee \neg B \vee \neg C \vee D$
 - $\neg A \vee \neg B$
- These can be rewritten as implications with one consequent.
 - $A \land B \land C \Rightarrow D$
 - $A \land B \Rightarrow \text{False}$
- Horn clauses are the basis of logic programming (sometimes called rule-based programming)

How to use a KB: Forward Chaining

- Forward chaining involves starting with a KB and continually applying Modus Ponens to derive all possible facts.
- This is sometimes called data-driven reasoning.
- Start with domain knowledge and see what that knowledge tells you.
- This is very useful for discovering new facts or rules.
- Less helpful for proving a specific sentence true or false.
- Search is not directed towards a goal.

How to Use A KB: Backward Chaining

- Backward chaining starts with the goal and "works backward" to the start.
- Example: If we want to show that A is entailed, find a sentence whose consequent is A.
- Then try to prove that sentence’s antecedents.
- This is sometimes called query-driven reasoning.
- More effective at proving a particular query, since search is focused on a goal.
- Less likely to discover new and unknown information.
- Means-ends analysis is a similar sort of reasoning.
- Prolog uses backward chaining.

Strengths of Propositional Logic

- Declarative - knowledge can be separated from inference.
- Can handle partial information.
- Can compose more complex sentences out of simpler ones.
- Sound and complete inference mechanisms (efficient for Horn clauses)

Weaknesses of Propositional logic

- Exponential increase in number of literals.
- No way to describe relations between objects.
- No way to quantify over objects.
- First-order logic is a mechanism for dealing with these problems.
- As always, there will be tradeoffs.
- There’s no free lunch!
Applications

- Propositional logic can work nicely in bounded domains
 - All objects of interest can be enumerated.
- Fast algorithms exist for solving SAT problems via model checking.
 - Search all models to find one that satisfies a sentence.
 - Can be used for some scheduling and planning problems
- Constraint satisfaction problems can be expressed in propositional logic.
 - Often, we'll use a predicate-ish notation as syntactic sugar.