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ABSTRACT 
Collective intelligence (CI), a group’s capacity to perform a 
wide variety of tasks, is a key factor in successful 
collaboration. Group composition, particularly diversity and 
member social perceptiveness, are consistent predictors of 
CI, but we have limited knowledge about the mechanisms 
underlying their effects. To address this gap, we examine 
how physiological synchrony, as an indicator of 
coordination and rapport, relates to CI in computer-
mediated teams, and if synchrony might serve as a 
mechanism explaining the effect of group composition on 
CI. We present results from a laboratory experiment where 
60 dyads completed the Test of Collective Intelligence 
(TCI) together online and rated their group satisfaction, 
while wearing physiological sensors. We find that 
synchrony in facial expressions (indicative of shared 
experience) was associated with CI and synchrony in 
electrodermal activity (indicative of shared arousal) with 
group satisfaction. Furthermore, various forms of 
synchrony mediated the effect of member diversity and 
social perceptiveness on CI and group satisfaction.  Our 
results have important implications for online 
collaborations and distributed teams. 
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INTRODUCTION 
Recent research has demonstrated that groups exhibit 
“collective intelligence” (CI) [95] defined as a group’s 
capacity to perform a wide variety of tasks, and that CI is 
consistently predictive of future performance [27, 28, 44, 
94]. Further, CI has been shown to be heavily influenced by 
team composition and team structure [94], particularly by 
team diversity (in terms of sex composition and cognitive 
diversity; [1]) and inclusion of members with higher 
average social perceptiveness [28, 65, 95]. These results 
have been replicated with groups working online [28] and 
in groups in multiple cultures [27].  In addition to 
predicting team performance, CI is also associated with 
teams’ ability to engage in tacit coordination, or 
coordination without communication [1].  

Despite advances in our understanding of CI and its 
relationship with team performance, we lack understanding 
of its so-called deep structure, that is how CI develops, and 
how details of physiological responses and behavior are 
related to CI and collaboration outcomes. The previous 
results on CI lead us to ask whether a basic mechanism via 
which group diversity or composition affects CI may reside 
in the sensing, and possibly synchronization, of subtle 
nonverbal physiological signals. Along with CI, we will 
also explore whether members’ satisfaction with the team, 
as a measure of how team members “feel” about the 
interaction, is associated with similar physiological 
mechanisms.  

Our study uses new sensing instrumentation to explore the 
connections between diversity, physiological synchrony, CI 
and group satisfaction. Specifically we investigate how 
synchrony in physiological responses such as in 
electrodermal activity, heart rate, and in facial expressions 
is a mechanism via which diversity affects collective 
intelligence and group satisfaction in computer-mediated 
interaction.  
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Our results contribute to the field of CSCW by extending 
our understanding of the mechanisms underlying collective 
intelligence and group satisfaction. These findings enhance 
our ability to evaluate the quality of interaction in ongoing 
computer-mediated teams, advance our ability to model and 
detect collective intelligence in computer-mediated teams, 
and inform interventions that could build collective 
intelligence during early stages of collaboration. 

BACKGROUND 

Physiological Sensing and Computer Supported 
Collaborative Work 
The previous research in CSCW on sensing group 
interaction falls primarily in two categories, intelligent 
meeting systems and group feedback systems. Intelligent 
meeting rooms use sensors to analyze ongoing group 
behavior for capture, annotation and review or intelligent 
intervention [97]. For example, computer vision or spatial 
microphones are used for speaker identification and 
automatic camera control rather than assessing 
interpersonal dynamics (e.g. [66]). More recently sensing is 
being used to support smart rooms that are aware of 
participant activity and location for augmented reality 
interface placement and behavior (e.g. the GravitySpace 
system tracks users and poses in a smart room to support 
AR projections that do not intersect with users bodies [16]). 

Research on group feedback systems has also used sensors 
to measure behavior of individuals during group 
interactions in order to improve interaction quality and 
collaborative outcomes through real-time or posthoc 
visualization or feedback displays [10, 23, 43, 53, 82]. 
Much of this work has focused on equalizing participation 
in face-to-face meetings. The earliest of these systems 
SecondMessenger, was a visualization system for reviewing 
speaker participation patterns in a face-to-face discussion 
[23]. The goal in group feedback systems research is to 
capture patterns of interaction dynamics and reflect them to 
participants in real time or after the fact to alter the 
dynamics in some way. 

Other work beyond these two categories has used 
physiological sensors to detect engagement or stress levels 
during collaboration. These sensors have been used to 
evaluate the quality of collaborative experiences. For 
example, Mandryk & Inkpen [57] pioneered the use of 
physiological indicators for indicating engagement levels 
during collaborative gameplay interactions. In the remote 
collaboration setting, recent work by Tan et al [84] used 
physiological sensors to give remote collaborators 
awareness of their partner’s workload. Their results 
suggested that collaboration supported by physiological 
feedback provides unobtrusive awareness of confusion or 
difficulty during a remote assembly task. These results 
suggest the potential for physiological sensing to provide a 
more fine-grained understanding of participant experience 
during collaborative interaction in addition to facilitating 
awareness among partners. Ultimately this sensing may be 

able to drive feedback systems and displays that improve 
collaboration quality. 

Our study is distinct from the previous CSCW research on 
sensing in collaboration in that we are using physiological 
sensing to examine the underlying dynamics of 
collaboration, specifically synchrony, and how it is 
connected to collaborative outcomes. The previous work 
did not associate synchrony, or physiological sensing at the 
group level, with collective intelligence or group 
satisfaction as collaboration outcomes. Thus our results will 
inform whether and how sensing can provide early 
indicators of a group's future potential for collaboration.  

Collective Intelligence and Group Satisfaction 
Psychologists have repeatedly shown that a single statistical 
factor called “general intelligence” or “g” emerges from the 
correlations among individuals’ performance on a wide 
variety of cognitive tasks, and that it predicts an 
individual’s future performance. This general factor is in 
addition to more task-specific intelligences [39] with the 
majority of empirical analyses of individual ability 
supporting the notion of a general intelligence factor [21]  
Similarly, researchers recently explored whether such a 
general intelligence factor exists for groups, by adopting the 
same approach that psychologists have used in examining 
general intelligence in individuals [95]. They gave a sample 
of groups a wide range of different types of tasks, and 
found that teams that did well on one type of tasks tended to 
also do well on all of the other tasks. A factor analysis of 
the groups' scores revealed a single, dominant, general 
factor explaining a large proportion of the variance in all of 
the groups' scores.  In individuals, this factor is called 
“general intelligence” or “IQ;” for groups, they call this 
first factor “collective intelligence.” Collective intelligence 
(CI) was then shown to predict team’s future performance 
on a more complex task [95]. Recent work has replicated 
these findings with groups working for just one hour on an 
online battery of tasks [28], in student teams [92], and in 
groups in multiple cultures [28, 31]. In many of these 
settings, collective intelligence has been shown to predict 
future performance, consistent with the prior research done 
in face-to-face groups. 

A consistently puzzling observation in the work on CI is its 
lack of relationship with various measures gauging the 
quality of member interpersonal relationships [95, 28, 92]. 
Variables such as group satisfaction or cohesion are 
generally treated as reliable indicators of the level of 
rapport in a team, even in online collaborations [60].  Since 
physiological synchrony has been shown to be an indicator 
of interpersonal rapport and relationship quality [71], it may 
be the case that some forms of synchrony will relate more 
to group satisfaction than CI. 

Despite the empirical evidence of collective intelligence 
and its utility for predicting performance, research on 
collective intelligence is still in its infancy, leaving many 
questions unresolved. Prior to the recent studies in human 



teams, work on collective intelligence originated in other 
species, where it manifests as large scale coordination with 
a physiological basis, such as the following of pheromone 
scent trails by ants [32] or the reaction to visual signals in 
fish shoals [9] raising plausible research questions as to 
whether similar effects exist in human interactions. As such 
here we examine the physiological signals shown to govern 
various aspects of human social interaction in prior studies 
to investigate their role in human collective intelligence. 
We focus on the synchrony of facial myography or what we 
will refer to facial expressions, electrodermal activity and 
heart rate as previous experiments have shown synchrony in 
these signals relate to the quality of social interactions and 
level of cooperation both online and face to face (e.g., [36, 
62, 69, 71]). 

Physiological Synchrony 
Across different social environments people often engage in 
group activities that lead the members to act in synchrony 
with each other [89]. As a social phenomenon, synchrony 
promotes affiliation and closeness among members across 
different teams and groups of individuals (e.g., from close 
relationships and newly formed teams to armies and group 
dancers; [38, 89]). Studies consistently find that behavioral 
synchrony promotes affiliation, establishes rapport and 
cooperation and supports the pursuit of joint goals [12, 67 
87]. Scholars reason that behavioral synchrony functions as 
social glue, which is powerful to promote coordinated 
action and joint outcomes. More recently, researchers have 
begun to test whether physiological synchrony (manifested 
in the synchronization of less consciously controllable 
physiological processes) reveals similar effects.  

Recent studies build on advances in sensing technology that 
provide better capabilities to examine physiological 
synchrony and how it influences group performance and 
collaboration. Mitkidis et al. [69] found that trust has a 
positive effect on heart rate synchrony, and that the degree 
of heart rate synchrony was predictive of participants’ 
expectations of their partners in a behavioral economics 
game. Mønster et al. [71] showed that synchronous 
activation of the zygomaticus major (the smile muscle) was 
related to team cohesion and members’ decisions to adopt a 
new routine, whereas synchrony in electrodermal activity 
was related to negative affect and group tension. 
Interestingly, they found no relationship between 
physiological synchrony and task performance, but did find 
a strong relationship between physiological synchrony and 
the emotional aspects of cooperation (i.e., team cohesion 
and team tension). During adult-child interactions, 
synchrony in electrodermal activity is related with child’s 
engagement levels [36] and better emotional attunement 
[4]. Synchrony in facial expressions also promotes 
emotional contagion among dyads [62]. 

In this study, we focus on the physiological synchrony of 
heart rate, electrodermal activity and facial expressions, 
which have been shown in prior research to influence 

cooperation among teams [12, 18]. Electrodermal activity 
(EDA) or skin conductance is an indicator of emotional 
arousal and reactivity, both at conscious and unconscious 
levels [2, 73]. Heart rate is a measure of cardiac activity and 
also an indicator of arousal [2, 76] that has been used in 
different studies related to emotional episodes [37]. Both 
measures capture unconscious physiological processes and 
variations that link to certain emotional states such as 
positive affect, anxiety, and boredom as well as cognitive 
states such as level of engagement, arousal and attention 
[64, 36, 30, 74, 19, 75, 49, 20]. We interpret HR and EDA 
to be indicative of generalized arousal [24, 35, 56], however 
there is some empirical evidence that shows that EDA and 
HR can alter in opposite ways in certain conditions [49, 50], 
referred to as directional fractionation1. However we do not 
anticipate those conditions to be relevant to the current 
study and thus expect the signals of arousal via HR and 
EDA to be consistent. Further, facial myography can also 
complement the physiological picture of felt experience 
[90]. Previous research has shown that facial expressions 
can reliably detect conscious and unconscious experiences 
of affect [79] or mimicry [62]. 

Hypothesis 
Based on the existing findings, we now walk through our 
predictions for the current study.  

Physiological Synchrony and CI 
CI has been associated with teams’ ability to engage in tacit 
coordination, that is mutual adjustment without explicit 
communication [1, 91]. This relationship was observed in 
teams of strangers participating in a laboratory study 
together over the space of a few hours, versus among 
individuals with a long-standing relationship, suggesting 
that the level of coordination undergirding CI must exist at 
a fairly basic, sensory level. Additional evidence 
demonstrates that CI levels established in a team’s first 
interaction remain relatively stable over time, even 
following a period of months of regular interaction [93]. 
This reinforces the notion that rather than being based on 
relational elements that are developed over time, CI may be 
rooted in much more basic, instantaneous, and perhaps 
sensory-based mechanisms, which communicate and 
perceive all kinds of interpersonal information and 

                                                             
1 For example, in some studies, attentiveness caused EDA 
to increase [30, 74] and HR to decrease [19, 50]. These 
findings were not consistent though [17], and did not hold 
when the subject was moving or performing tasks requiring 
cognitive effort or when two or more cognitive constructs 
occurred simultaneously (eg: cognitive effort while paying 
attention) [50, 42] such as TCI). Additionally, this 
phenomenon is usually related to cognitive constructs like 
attention or anxiety, and measuring these algorithmically 
using physiological signals will require validation against 
participant reported values. Hence, we do not analyze the 
effects of directional fractionation on CI in this study. 



expectancies, similar to those that drive thin-slice 
judgments [3].  

However, exactly which forms of physiological synchrony 
will support CI is unclear, particularly given the lack of 
relationship demonstrated in prior research between CI and 
group satisfaction, cohesion, and psychological safety [27, 
28, 31, 95]. Many of the existing studies of physiological 
synchrony support its association with indicators of group 
member relationships and rapport. For instance, research 
shows that team members’ synchrony in EDA is related to 
tension and negative affect [71], and that synchrony in HR 
is related to cooperation [69] Some scholars have also 
found that spontaneous synchrony in facial expressions are 
related to cohesion [71] and resulted in increased levels of 
emotional interaction and liking among dyads (e.g., [62]).  

Our study will extend these findings in online 
collaborations and examine whether the association 
between group satisfaction and physiological synchrony 
holds for computed-mediated environments. Furthermore, 
given the differentiation between CI and group satisfaction 
previously noted, we may find that different patterns of 
physiological synchrony correspond with CI, deepening our 
understanding of these two different building blocks of 
collaboration. Therefore, we propose: 

Hypothesis 1.  Physiological synchrony is positively related 
with (a) collective intelligence and  (b) group satisfaction.  

The Effect of Social Perceptiveness 
We also hypothesize that the effect of group members’ 
social perceptiveness on CI [95, 28] will be explained in 
part by physiological synchrony. Social perceptiveness is a 
measure of an individual’s ability to infer what others are 
thinking or feeling based on subtle, nonverbal cues. It is 
correlated with other aspects of emotional intelligence [59] 
and consistently related to higher CI [28, 65], and more 
effective group functioning [26] both in online and face-to-
face collaborations [28, 94]. We argue that the underlying 
reason for the strong relationship of team-level social 
perceptiveness with CI and potentially with affect-laden 
group satisfaction is physiological synchrony. People who 
are high in social perceptiveness are better at 
communicating as well as coordinating physical movements 
with others, even in the absence of visual access to their 
interaction partner [45]. This occurs because highly socially 
perceptive team members are more likely to pick up on the 
subtle nonverbal cues, and we expect that will also enable 
them to physiologically synchronize with others in a 
manner that facilitates rapport and coordination. This leads 
to our second hypothesis: 

Hypothesis 2. Group average social perceptiveness will 
affect (a) collective intelligence and (b) group satisfaction 
via effects on physiological synchrony. 

The Role of Group Composition 
As described previously, collective intelligence has 
consistently been related to features of group composition 

and structure [94]. Specifically, linear and curvilinear 
relationships have been reported between CI and both 
gender and cognitive diversity [1, 28, 95] and with 
members’ level of social perceptiveness [28, 65, 95]. In 
addition, some preliminary findings suggest that age 
diversity serves to disrupt CI [96]. Based on these findings 
and the existing literature on team diversity and social 
intelligence, we anticipate we will observe relationships 
between these various forms of diversity and CI, but 
furthermore that physiological synchrony may serve as a 
mechanism. 

Typically diversity refers to any attribute that may lead one 
person to perceive another one as different from self [86]. 
In practice this may mean any aspect of differentiation with 
research typically focusing on these aspects that relate to 
background and social categorization (e.g., gender, 
education, age, ethnicity and so on). Diversity in work 
teams has been found to relate to both functional outcomes 
such as increased information sharing and creativity [63] as 
well as dysfunctional outcomes such as increased conflict 
[22, 41]. In our study, we investigate the accessible social 
categories that people may use to make conclusions, i.e., 
gender, age, and ethnicity. Ethnicity and age are important 
variables in team composition research because they are 
visible characteristics that may be used for social 
categorization [83] which are typically found to disrupt 
group relationships and productivity due to stereotyping 
and associated conflicts [46]. 

In addition to exploring whether the previously observed 
relationships between CI and diversity are replicated in 
dyads working online, we are also interested in exploring 
the role of physiological synchrony as a mechanism. There 
is some empirical evidence about the relationship of gender 
and age with physiological synchrony [54]. In married 
couples, when male spouses experience negative affect, 
they are also more likely to demonstrate increased 
electrodermal activity but the relationship between affect 
and arousal is absent in wives. In the same study, the 
researchers found that older couples reported higher 
positive affect and lower arousal than middle-aged couples 
[54]. Regarding ethnic composition, Blascovich and 
colleagues [14] showed that White participants interacting 
with Black confederates exhibited increased cardiovascular 
response and performed poorly on a cooperative task 
compared to participants interacting with White 
confederates. However, in another experimental setting, 
Blascovich and colleagues  [14] found no effects in heart 
rate activity of the interaction of White participants with 
Black confederates. In our experiment, rather than focus on 
the main effect of ethnicity, sex or age, we focus on the 
effects of group composition on physiological synchrony. 
Specifically, we focus on whether dissimilarity in 
observable variables such as age, ethnicity, and gender 
disrupts physiological synchrony, and the degree to which 
that disruption helps to explain their role in collective 
intelligence and group satisfaction. 



Hypothesis 3. Group composition (sex diversity, age 
diversity (or distance), and ethnic diversity) will affect (a) 
collective intelligence and (b) group satisfaction via effects 
on physiological synchrony.  

STUDY DESIGN  
We investigated our hypotheses in the context of a 
laboratory study. In the experiment, teams of two 
completed the Test of Collective Intelligence (TCI). We 
start with examining our questions in dyads, as construct 
and measures of CI have been demonstrated to apply to 
dyads as well as larger groups [95], and focusing on dyads 
enables us to look at synchrony without the additional 
statistical and phenomenological complexity of subgroups 
that may form in larger groups (e.g., [51]). We collected 
individual measures of social perceptiveness and 
demographics before the TCI and group satisfaction after its 
completion. Throughout the TCI, we recorded physiological 
measures of electrodermal activity and heart rate. All 
sessions were also video recorded to obtain facial 
expression data. 

METHOD 

Participants 
We recruited 116 (60 male, 56 female) participants from the 
participation pool of a large Northeastern university in the 
United States with the age range of 18 to 61 years old (M = 
26.4, SD = 8.45). All participants were compensated 15 US 
dollars. We ran the study using both same- and mixed-
gender teams (18 male-only dyads, 20 female only dyads 
and 20 mixed gender).  We failed to capture physiological 
signals and video for six dyads due to technical equipment 
issues. 

Procedure 
Each session lasted approximately 30 minutes. Members of 
each dyad were seated in different rooms. None of the 
participant pairs knew each other before the experiment. 
After completing a pretest survey, they were instructed to 
wear the E42 wristbands on their non-dominant hand and 
relax for two minutes to obtain a baseline in EDA and heart 
rate. After that, participants initiated the video conference 
call with their partner. Participants then logged onto the 
Platform for Online Group Studies (POGS), a web browser-
based platform that supports synchronous multiplayer 
interaction, to complete the Test of Collective Intelligence 
(TCI) with the other research participant [27, 28, 95]. The 
TCI contained six tasks ranging from 2 to 6 minutes each, 
and instructions were displayed before each task for 15 
seconds to 1.5 minutes. At the end of the test, they were 
instructed to sign off the videoconference and proceed to 
the post-test survey, which was completed independently. 
Participants were then compensated and debriefed.  

                                                             
2 https://www.empatica.com/e4-wristband 

Measures 
Participants provided demographic information and 
completed the test for social perceptiveness individually 
prior to working on the TCI with their group. Physiological 
synchrony was measured during the group work on the TCI. 
After the group work period was over, group satisfaction 
was measured at the individual level. 

Group composition. We examined group composition in 
terms of three surface-level attributes: sex, age, and 
ethnicity. For sex, we calculated the number of females in 
each dyad (male only = 0, mixed = 1, female only = 2). Age 
diversity was operationalized as the distance between two 
members’ ages in years. Age distance ranged from 0 to 40 
years  (M = 9.24 years, SD = 10.04). Ethnic diversity was 
dummy-coded; if participants reported identifying with 
different ethnic groups, they were considered dissimilar, 
coded as 1, otherwise, 0. Thirty-four dyads (56.7%) were 
ethnically dissimilar. 

Social perceptiveness. To measure social perceptiveness, 
we used the Reading the Mind in the Eyes test (RME) 
developed by Baron-Cohen and colleagues [6]. The test 
consists of 36 images of the eye region of individual faces. 
Participants were asked to choose among possible mental 
states to describe what the person pictured was feeling or 
thinking. The options were complex mental states (e.g., 
guilt) rather than simple emotions (e.g., anger). Individual 
participants’ scores were averaged for each dyad. 

Collective intelligence.  Collective intelligence was 
measured using the Test of Collective Intelligence (TCI), 
which was completed by dyads working together. The TCI 
is an online version of the collective intelligence battery of 
tests used by Woolley et al. [95], which contains a wide 
range of group tasks [27, 28]. The TCI was adapted into an 
online tool to allow researchers to administer the test in a 
standardized way, even when participants are not co-
located. There were a total of six tasks in the version of the 
TCI used in this study which measured the dyads’ ability to 
collaborate in a variety of ways by having them generate 
creative ideas, solve word and number puzzles, collectively 
remember detailed information, and execute detail-oriented 
tasks quickly and accurately. To obtain collective 
intelligence scores for all dyads, we first scored each of the 
six tasks and then standardized the raw task scores. We then 
computed an unweighted mean of the six standardized 
scores, a method adapted from prior research on collective 
intelligence [95]. 

Group satisfaction.  To measure group satisfaction, we 
used six items that reflect the quality of group collaboration 
and relationship, adapted from the Team Diagnostic Survey 
(TDS, [88]) (e.g., “I am very satisfied working with this 
team”). Participants reported their ratings on a five point 
Likert-type scale (α = .72, M= 4.12, SD = .42). Since group 
satisfaction is conceptualized as a group-level construct, we 
aggregated individual dyad members’ mean group 
satisfaction score to the dyadic level by computing the 



mean of two ratings (ICC(1) = .64, ICC(2) = .75).  The 
median r*wg(J) [55] was .97. The values ranged from .78 to 
1, demonstrating acceptable level of within-group 
agreement. 

Physiological synchrony. We assessed physiological 
synchrony by recording facial expressions, electrodermal 
activity (EDA), and heart rate (HR) of each individual in 
the dyad throughout their interaction during the TCI. 
Synchrony in facial expressions can capture shared 
experience or mimicry [79] over time. Synchrony in HR 
and EDA captures shared arousal during periods of stress, 
excitement, or high levels of engagement  [2, 73, 76]. We 
processed the individual responses into physiological 
response signals, sequences of response scores over time in 
the study, and then calculated distances between the series 
of scores (or signals) of each individual in a dyad using 
Dynamic Time Warping. In the rest of this section we 
describe how we translated sensor data into physiological 
response signals and calculated interpersonal distances. 

Physiological response signals. In order to develop 
physiological response signals comparable across 
individuals, we first translated each person’s physiological 
responses into scores over time for each measure. We then 
reduced noise in the scores and normalized the signals. We 

did this to account for individual differences that can 
change the scale of response for signals like EDA and HR 
that are usually influenced by factors such as age and 
cardiovascular fitness. For all our physiological signals, we 
restricted analyses to the task portions of the experiment, 
trimming out data where participants were not collaborating 
i.e., while reading instructions. Below, we describe how we 
transform raw signals from each sensor to physiological 
response signals, and illustrate the process in figure 1. 

Facial Expressions 

We derived facial expression signals from web conference 
videos of participants’ faces recoded by Evaer3. For each CI 
task, we manually extracted the respective video and used 
OpenFace [5] to detect Facial Action Units (AUs) [25] in 
each frame. We coded for two types of expressions in the 
video, positive (AU12 with or without AU6), and negative 
(AU15 and AU1 and/or AU4). 

We coded smiles of different types as positive expressions. 
A smile involves pulling the lip corners up (AU12) with or 
without raising the cheeks (AU6). Early research [25] 
argued that smiles in which AU12 and AU6 co-occur 

                                                             
3 http://www.evaer.com/ 

Figure 1. Data transformation from raw data to physiological response signals for each measure. 



indicate felt positive emotion, while smiles containing only 
AU12 are polite, social, or “masking” smiles, and do not 
indicate felt emotion. However, recent findings [81, 47] 
show that smiles containing only AU12 can also indicate 
felt emotions, while smiles containing both AU12 and AU6 
can also be feigned. Hence, whenever the system detects 
the lip corners being pulled upwards (AU12), it labels the 
expression as a positive one, irrespective of whether the 
cheeks are raised or not. 

We coded activation of a different set of key facial action 
units as negative expressions. Negative expressions such as 
worry or displeasure are often conveyed by depression of 
the lip corners (AU15) and changes to the positioning of 
eyebrows forming something close to a frown (AU1 and/or 
AU4). Hence, when the system detects depression of the lip 
corners, and either raising of inner brows or lowering of 
brows or both (AU15 and AU1 and/or AU4), it labels the 
expression as a negative one. 

We converted the facial expressions identified to scores for 
each frame in the video. We assigned a value of “1” to 
frames containing a positive expression, “-1” to frames 
containing a negative expression, and “0” for frames 
containing neither (neutral). The signal obtained is noisy 
potentially due to jittery facial motion and the use of an 
automatic tool that can often inaccurately detect 
expressions. To reduce noise, we smoothed the signal over 
29 frames (average frame rate/ approximately 1 second) by 
applying a Simple Moving Average filter (SMA). SMA 
allows us to calculate a moving average by adding signal 
samples over a number of time periods (i.e. 29 samples), 
and then dividing this total by the number of time periods. 
Finally, individual scores during each task make up the 
individual’s physiological response signal for that task. 
Since we have six tasks, we get six physiological response 
signals for each person.   We then calculate the synchrony 
of these scores between the two interaction partners as 
described below. 

Electrodermal Activity (EDA) 

We measured EDA to assess each participant’s level of 
electrodermal arousal during the session. We recorded EDA 
using the E4 wristband with a sample rate of 4 samples per 
second (4Hz). The resulting signals have two components - 
tonic (skin conductance level) and phasic (skin conductance 
response). The tonic component changes gradually over 
time, approximates a person’s baseline and is not the result 
of stimuli. The phasic component contains quickly 
changing peaks that typically occur in response to short-
term events or environmental stimuli. We separate phasic 
EDA from tonic EDA using Continuous Decomposition 
Analysis [8], and use only phasic EDA (pEDA) henceforth, 
since we’re only interested in participant task responses and 
not their baselines. We get six task pEDA signals, for each 
participant. These signals are subjected to the steps 
described below. 

We normalized pEDA signals using z-score of each sample 
to enable inter-participant comparison. The signals obtained 
were very noisy and so we applied a Simple Moving 
Average filter (window size = 5 seconds = 5*4 samples, 
empirically determined) to smooth the signals, and name 
these physiological response signals. As in facial 
expressions, we end up with six physiological response 
signals (one for each of the six tasks). We then calculate the 
synchrony of these scores between the two interaction 
partners as described below. 

Heart Rate (HR) 

We measured HR to assess each participant’s level of 
cardiovascular arousal during the session. Since different 
people have different resting heart rates, to enable inter-
participant comparison, we normalized the HR data by 
dividing it by its mean (assuming mean to be an estimate of 
the baseline) and multiplying it by 100. No smoothing was 
required for HR signals, since HR is the number of 
heartbeats averaged or smoothed over a moving window of 
1 minute. We obtained six task HR signals that are 
physiological response signals representing a participant’s 
percentage change in HR over time, from his/her mean HR. 
We then calculate the synchrony of these scores between 
the two interaction partners as described below.  

Dynamic Time Warping (DTW) 

We used Dynamic Time Warping (DTW) [11] to calculate 
synchrony between facial expressions, heart rate, and EDA 
of partners in a dyad. DTW is an algorithm for measuring 
similarity between two temporal sequences that vary in time 
and speed. Physiological response signals of each 
participant are also temporal sequences that are computed 
using the method described above. DTW provides the 
distance between the partners’ physiological response 
signals for each task, which are then summed across tasks 
to give the total distance. We operationalize synchrony as 
similarity of a physiological measure between the partners’ 
response signals of that measure. This similarity is 
calculated by subtracting the total distance from the total 
distance of the most different (largest total distance) dyad. 

Figure 2 shows an example of two signals - Signal A and 
Signal B that are different in length, time, and speed. DTW 
warps the time axis of these signals to find corresponding 
points between the two signals that optimally match. Figure 
3 shows some of the matched corresponding points in 
signals A and B. A locality constraint in DTW is the 
maximum distance allowed between the matched 
corresponding points in the two sequences. The algorithm 
used to match the signals illustrated in figure D does not 
specify a locality constraint, which may or may not be 
always favorable. Since, our physiological response signals 
are several minutes long, and we only want to match 
physiological responses expressed by participants within a 
few seconds of their partners as synchrony, having a 
locality constraint is necessary for this analysis.  The 



locality constraint we chose for each measure is 
approximately 5 seconds, that is 145 samples for facial 
expressions (since average frame rate is 29Hz), 20 samples 
for electrodermal activity (frame rate is 4Hz), and 5 
samples for heart rate (frame rate is 5Hz). This locality 
constraint is arbitrarily chosen since it appears to cover 
roughly one cycle of the signals (see [61]). We use 
Euclidean distance to calculate distance between any two 
corresponding points in DTW. 

Unlike other methods like sample-wise Euclidean distance 
and cross-correlation, DTW is able to overcome time lag 
and flexibility issues in our data. For example, if a 
participant smiles 4 seconds after his/her partner (time lag 
issue), or if a person smiles 2 seconds longer than his/her 
partner (time flexibility issue), DTW matches both these 
events. Next, we present our findings. 

RESULTS 
Table 1 presents zero-order correlations among all 
variables: group compositional variables (number of 
females in the dyad, age diversity, ethnic diversity, and 
social perceptiveness), collective intelligence (CI), group 
satisfaction, and physiological synchrony variables (facial 
expressions, electrodermal activity (pEDA), heart rate). 

Physiological Synchrony and Collective Intelligence 
In order to test hypothesis 1, we examined the relationship 
between physiological synchrony and CI, and physiological 
synchrony and group satisfaction.  We found a significant, 
positive relationship between synchrony in facial 
expressions and CI (r = .30, p = .01). By contrast, CI was 
neither significantly correlated with synchrony in pEDA 
nor with synchrony in heart rate.  

Interestingly, we found a different pattern with respect to 
group satisfaction. Group satisfaction was positively 
associated with high levels of pEDA synchrony (r = .33, p = 
.04). In other words, when both members of a dyad 
exhibited similar levels of electrodermal activity, they later 
reported a higher level of satisfaction with the interaction 
with their partner. However, group satisfaction had no 
significant relationship with synchrony in facial expressions 
and heart rate. Finally, pEDA and heart rate were 
negatively related to one another (r = -.32, p = .02). Dyads 
that had higher synchrony in their heart rate also had lower 
synchrony in electrodermal activity. Only synchrony in 
electrodermal activity was significantly associated with 
group satisfaction.   

There was no relationship between CI and group 
satisfaction, consistent with prior studies [95, 27, 28, 96]. 
Interestingly, synchrony in facial expressions (correlated 
with CI) was not significantly correlated with synchrony in 
pEDA (correlated with group satisfaction), reinforcing the 
speculation that there might be two separate paths along 
which collaborative relationships in groups develop.  

Social Perceptiveness 
In Hypothesis 2, we predicted that a group’s average social 
perceptiveness, measured by the RME test would positively 
affect (a) CI and (b) group satisfaction, via effects on 
physiological synchrony. To test this hypothesis, we ran a 
series of mediation models using PROCESS macro via 
SPSS [34]. We tested mediation by first using social 
perceptiveness to predict CI and then looked at the change 
in effect of social perceptiveness when each form of 
synchrony (facial expression vs. pEDA or heart rate) was 
also included in the model. We ran a similar series of 
models to test whether both forms of physiological 
synchrony mediated the relationship between social 
perceptiveness and group satisfaction (facial expression vs. 
pEDA). For all tests, we used kappa squared as an index of 
indirect effect size [78]. Since kappa squared is a ratio, the 
direction of each relationship is characterized by the 
coefficient of the indirect effect. 
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The results showed that the average social perceptiveness 
had a positive indirect effect on CI via synchrony in facial 
expressions (kappa squared = .06; 95% bias-corrected 
10000 bootstrap confidence intervals ranged from .0038 to 
.1976). Average social perceptiveness had a significant, 
positive direct effect on CI, as well (p = .04). This suggests 
that the effect of average social perceptiveness on CI, which 
had been repeatedly shown in previous research [27, 95], is 
in part explained by a physiological mechanism, 
specifically synchrony in facial expressions. Average social 
perceptiveness had a small but positive indirect effect on 
group satisfaction via synchrony in pEDA (kappa squared = 
.03; 95% bias-corrected 10000 bootstrap confidence 
intervals ranged from .0006 to .1130). On the other hand, 
average social perceptiveness did not have a direct effect on 
group satisfaction after controlling for pEDA. 

Group Composition 
Finally, in Hypothesis 3, we predicted that (a) CI and (b) 
group satisfaction would be influenced by group 
composition in terms of sex, age, and ethnicity, and that the 
effects would be mediated by physiological synchrony. 
Results revealed that the number of females in the dyad had 
no indirect effect on CI via synchrony in facial expressions. 
The number of females in the dyad did not have a direct 
effect on CI controlling for facial expressions synchrony. 
On group satisfaction, the number of females did not have a 
direct effect on group satisfaction, but had a positive 
indirect effect on group satisfaction via synchrony in pEDA 
(kappa squared = .03; 95% bias-corrected 10000 bootstrap 
confidence intervals ranged from .0006 to .1294). 

Age diversity, measured by distance, had a negative indirect 
effect on CI through reduced synchrony in facial 
expressions (kappa squared = .07; 95% bias-corrected 

10000 bootstrap confidence intervals ranged from .0065 to 
.1726). That is, dyads whose members greatly differ in age 
were less likely to synchronize in facial expressions, thus 
having lower CI. Age distance did not have a significant 
direct effect on CI, however. With respect to group 
satisfaction, age diversity had a positive indirect effect via 
synchrony in pEDA (kappa squared = .04; 95% bias-
corrected 10000 bootstrap confidence intervals ranged from 
.0027 to .1457). The direct effect of age diversity on group 
satisfaction controlling for synchrony in pEDA was not 
significant. 

Ethnic diversity had a positive indirect effect on CI through 
increased synchrony in facial expressions (kappa squared = 
.03; 95% bias-corrected 10000 bootstrap confidence 
intervals ranged from .0003 to .0940). Ethnic diversity had 
a positive direct effect on CI as well, controlling for 
synchrony in facial expressions. Thus, having ethnically 
dissimilar members in the dyad seems to increase CI with 
and without synchrony in facial expressions. For group 
satisfaction, ethnic diversity had a negative direct effect, 
controlling for synchrony in pEDA (p = .01). However, it 
had a positive indirect effect on group satisfaction via 
synchrony in pEDA (kappa squared = .03; 95% bias-
corrected 10000 bootstrap confidence intervals ranged from 
.0008 to .1358). It suggests that ethnically dissimilar dyads 
are less likely to report satisfaction with their partner; 
however, ethnically dissimilar dyads who synchronized in 
electrodermal activity reported higher levels of group 
satisfaction. 

DISCUSSION 
In this study, we examined whether collective intelligence 
of human groups is associated with the deep structures of 
collaboration manifested by synchronization of 

 Mean S.D. 1. 2.	   3.	   4.	   5.	   6.	   7.	   8.	   9.	   10.	  

1. Age distance 9.240 10.044 1 
	   	   	   	   	   	   	   	   	  

2. Number of females 1.010 0.813 .214 1 
	   	   	   	   	   	   	   	  

3. Ethnicity similarity 1.42 0.498 -.019 -.271* 1 
	   	   	   	   	   	   	  

4. Education distance 1.51 1.135 .342** .083 .131 1 
	   	   	   	   	   	  

5. RME 26.350 2.943 -.198 -.240 -.085 .050 1 
	   	   	   	   	  

6. CI -0.016 0.630 -.223 .101 -.295* -.041 .390** 1 
	   	   	   	  

7. Group satisfaction 4.120 0.425 .115 -.050 .266* -.006 .020 -.140 1 
	   	   	  

8. DTW_EDA 3674.8 411.553 .114 .211 -.085 .071 .077 -.064 .325* 1 
	   	  

9. DTW_HR 15571.0 5935.2 .207 .047 -.225 .072 -.053 -.140 -.002 -.340* 1 
	  

10. DTW_FACE 7772.1 3931.1 -.255 .168 -.068 .152 .222 .304* -.093 -.057 -.200 1 

** p <.01, * p <.05, N = 60 (in subjective measures), N = 52 ( in facial expressions) , N = 53 (in EDA and HR) 
Number of females is coded as 0 (male only), 1 (mixed sex), 2 (female only), ethnicity similarity coded as 1 (dissimilar), 2 
(similar). CI = Collect intelligence (z-score), RME= Read the Mind through the Eyes, DTW = Dynamic Time Warping 
(measure of similarity or synchrony in dyads), EDA= electrodermal activity, HR= heart rate, FACE = facial expressions. 

Table 1. Correlation coefficient for synchrony strength in facial expressions, electrodermal activity and heart rate with 
collective intelligence, group satisfaction and RME. 



physiological responses. In addition, building upon the 
established teams and organizational literatures on group 
interpersonal processes, specifically group satisfaction, we 
further tested whether the interpersonal aspect of group 
processes is similarly governed by synchrony in 
physiological signals. Finally, we hypothesized that 
synchrony in physiological signals is one key mechanism 
for previously studied effects of group composition on 
collective intelligence and group satisfaction. All of this 
was tested in a computer-mediated communication 
environment, one in which physiological synchrony has not 
been extensively examined. 

To test these hypotheses, we conducted an experiment 
where 60 dyads interacted in virtual collaborative 
environments while being measured for physiological 
signals such as electrodermal activity (EDA), heart rate, and 
facial expressions. We found that collective intelligence 
was positively correlated with synchrony in facial 
expression, but not with EDA nor heart rate. On the other 
hand, group satisfaction, which captures the quality of 
group interaction and relationships, was positively 
correlated with synchrony in EDA, but not with facial 
expression synchrony. These findings suggest that the 
physiological structures of group collaboration are not 
monolithic, but perhaps comprised of different building 
blocks. Specifically, similarity in group members’ facial 
expressions is a symptom of a higher level of attentiveness 
to other members which may facilitate coordination and 
collective effort. In contrast, similarity in EDA indicates 
shared arousal, capturing how the group members feel 
during the interaction, and thus has effects on members’ 
level of satisfaction. This finding is also consistent with 
Mønster et al.’s, [71] work that showed physiological 
synchrony in EDA is related to emotional aspects of the 
group dynamics but not to task performance. 

Social Perceptiveness 
We observed that groups with high social perceptiveness on 
average were more collectively intelligent, consistent with 
previous research [95, 27] and interestingly, this effect was 
mediated by synchrony in facial expressions. That is, a 
group’s average social perceptiveness increases collective 
intelligence because members in such group synchronize 
their facial expressions more, facilitating coordination. It is 
important to note that the direct effect of social 
perceptiveness on collective intelligence, controlling for the 
mediator, was also significant. A question worth further 
exploring is what other mechanism explains the positive 
effect of social perceptiveness on collective intelligence. It 
is likely that other communication and coordination 
behaviors manifest in groups with higher levels of social 
perceptiveness [45, 95], which further enhance collective 
intelligence. 

Group Composition 
Physiological synchrony also appeared to be an underlying 
mechanism for the effect of group composition on 

collective intelligence and group satisfaction, but to varying 
degrees.  All of the effects on CI operated via their impact 
on facial expression synchrony, which can be viewed as a 
gauge of shared attention and concentration [29]. Ethnic 
diversity indirectly increased collective intelligence via 
increased synchrony in facial expressions. Ethnicity is a 
surface-level characteristic, and diversity in such 
characteristic has been shown to prime heightened levels of 
mutual attentiveness among group members [77], 
reinforcing our interpretation of facial expression 
synchrony as an index of shared attention. Age diversity, on 
the other hand, negatively affected collective intelligence 
because the more dissimilar members are in terms of age, 
the less synchronous in facial expressions, reinforcing the 
negative effect of age heterogeneity on group performance 
[85]. Taken together, these findings suggest that ethnic 
diversity perhaps contributed to a heightened level of 
attention among members, a favorable condition for 
collective intelligence; however, age diversity can evoke a 
sense of hierarchy between members, obstructing the 
development of collective intelligence [33, 96]. 

Group satisfaction was also indirectly affected by the group 
composition variables we examined. Similar to collective 
intelligence, sex and ethnic diversity had positive indirect 
effects on group satisfaction, but via synchrony in EDA, a 
signal of shared arousal in the group. However, age 
diversity, measured by distance, also had a positive indirect 
effect on group satisfaction via synchrony in EDA. That is, 
groups composed of members with a greater age gap 
demonstrated a high level of synchrony in EDA, which was 
positively associated with group satisfaction. It is possible 
that a greater age gap between members created a non-
competitive, caring environment for group members; 
however, without the greater attentiveness engendered via 
facial expression synchrony, this did not translate into the 
group’s collective intelligence. Finally, social 
perceptiveness indirectly increased group satisfaction via 
synchrony in EDA, albeit to a very small degree. 

Implications 
There are a number of important implications of this study 
and interesting opportunities for future work on CI and 
CSCW associated with the additional insight that the 
physiological mechanisms provide. 

Different Processes May Drive Cohesion vs Performance 
First, it appears that the dissociation between CI and group 
satisfaction repeatedly observed in prior studies [27, 96, 95] 
has a parallel in physiological signals. Here facial 
expression synchrony and EDA synchrony, were also 
dissociated from each other but related to CI and group 
satisfaction, respectively. This dissociation harkens back to 
debates of a few decades ago regarding the cohesion-
performance connection or lack thereof [58, 72] and 
suggests additional mechanisms to gain further insight into 
that relationship, namely group composition variables and 
their differential effects of group member physiological 



response and synchrony. This distinction is important if we 
want to develop more fine-grained, sensory-driven 
predictive models of group performance to drive intelligent 
environments or feedback systems. 

Diversity, Social Perceptiveness and Collective Intelligence 
While scholars have documented the benefits of diversity 
for cognition [68, 70] the implications for physiological 
measures and their independent impact on collective 
intelligence and group member relationships has only 
begun to be explored [2, 76]. Our study suggests that 
diverse groups may engage in fundamentally different 
interpersonal processes as a function of heightened social 
perceptiveness. Our study provides only an initial glimpse 
at answers to questions about diversity and group process, 
but suggests a host of other relationships to explore. Future 
work should examine the effects of interventions to regulate 
physiology as a means of improving working relationships 
in diverse groups. In addition, it may be possible to improve 
physiological synchrony and ultimately performance in 
diverse and homogeneous groups through social 
perceptiveness training interventions. It would also be 
interesting and fruitful to look at the relationship of facial 
synchrony and more detailed process behaviors in diverse 
groups to unpack exactly how and why it may support CI. 

Shared attention, facial synchrony and turn-taking 
The positive relationship between collective intelligence 
and synchrony in facial expressions in our study confirms 
the importance of visual, nonverbal cues about team 
members in facilitating collective intelligence, 
complementing previous work in CSCW. Theory and 
research in CSCW has long noted the value of nonverbal 
cues for supporting language understanding and 
coordinating turn-taking during remote collaboration (e.g. 
[7]). Our results suggest facial expression synchrony may 
be a critical aspect of collective intelligence, and that 
systems may be able to enhance team performance by 
making faces more visible and salient. Designers may 
consider, for example, screen layouts for video 
conferencing systems that could help group members attend 
to and synchronize other members’ facial expressions 
easily. However, future work is needed to examine what 
additional mechanisms or collaboration tools might 
facilitate facial expression synchrony. This can be done by 
for example, repeating the experiment without 
videoconferencing (audio only) to see how the effect of 
synchrony in facial expressions on CI changes. Similar 
results could indicate visual processes do not primarily 
drive that facial expression synchrony, but by more 
generalized sensing processes.  

Enhancing collective intelligence 
One potential application for our results is improving 
collective intelligence via technological or behavioral 
intervention. This application raises a host of additional 
research questions about the relationship between 

synchrony and collective intelligence and intervention 
design. 

Is synchrony controllable? 

Our work raises the question of whether synchrony is a 
controllable or unconscious process. Can individuals 
consciously increase facial or physiological synchrony? 
And by doing so increase collective intelligence or group 
satisfaction? Synchrony may depend on individual 
differences in perspective taking or empathic abilities [40]. 
We found potential evidence for this in group level 
variations in synchrony. 

Intervention design 

Next there is a question of how to design interventions for 
increasing synchrony. Should such interventions be direct 
or unobtrusive? 

Indirect environmental interventions 

Unobtrusive interventions could increase the level of 
physiological synchrony among members through shared 
activities or other manipulations outside of participants’ 
conscious awareness. Intelligent meeting rooms could 
attempt to unobtrusively intervene or modify the 
collaboration environment to enhance group performance in 
response to sensed levels of synchrony early in a group’s 
life cycle to improve the quality of interaction. For 
example, an intelligent system that sensed pEDA 
asynchrony across members could increase room 
temperature or ambient noise in one location until that 
member was ‘in synch’ in terms of their arousal level. It 
remains to be seen, however, whether synchrony evoked via 
this kind of unobtrusive background intervention would 
have a similar positive effect on group satisfaction. 

Visual feedback 

Alternatively, technological interventions could be more 
obtrusive or directive, and presented at the individual 
versus the group level. For example, video conferencing 
systems could integrate a facial synchronometer showing 
the level of similarity across participants’ facial expression 
or provide commands to individual group members for 
increasing synchrony (e.g. “smile more to match your 
partner”). This kind of on-screen instruction introduces 
other tradeoffs like mental and visual attention demand. 
However, previous work in CSCW has successfully applied 
in-situ visual feedback on group processes such as floor 
sharing behavior to increase equality of participation and 
ultimately team performance [23, 43, etc.]. Future work 
should explore the use of directive feedback versus real 
time or post-hoc visualization of individual and group 
responses to see whether it is possible to enhance 
synchrony. 

Training 



Training is another more direct way to potentially enhance 
teams synchrony. Social perceptiveness training has been 
used in other settings effectively to increase individual 
levels of attention to social cues [80]. If facial synchrony is 
controllable it may be possible to train team members to 
better attend to facial expressions and synchronize their 
own in response. Alternatively, participants can be primed 
with a pro-social task [52] before they begin collaborating.  

Limitations 
As with any study that represents an initial attempt at 
applying a new methodology to a novel context, our study 
has some limitations that readers must bear in mind. First, 
heart rate synchrony turned out to be a less sensitive 
measure of synchrony of arousal for the present study. A 
potential reason for this is that the tasks in TCI did not 
induce strong enough arousal, compared to other studies 
that show such an effect [66].  On the other hand, existing 
studies in married couples and infant-mother pairings show 
heart rate responses to rather subtle changes in activity [29] 
and thus it is hard to discern the reasons for a lack of 
relationship observed here. Alternatively, wearable 
wristbands (like E4) capture HR as averaged over a minute 
instead of instantaneous HR. ECG sensors are more 
accurate but also more intrusive for use in lab experiments 
as these require straps placed close to heart.  Future 
research could explore additional techniques for measuring 
heart rate, and/or tasks to induce larger changes during the 
interaction to see if greater effects associated with heart rate 
synchrony might be observed. 

A second potential limitation here is associated with our use 
of dyads versus larger groups. CI has been examined in 
dyads in the past [95] and shown to be predicted by the 
same variables associated with it in larger groups. However, 
it is unknown in this context whether the more complex 
form of synchrony that would need to develop in a larger 
group would (a) develop in larger groups collaborating 
online, and (b) show the same effects on CI and group 
satisfaction. Thus future research will need to explore 
replication of these effects in larger groups. 

CONCLUSION 
In conclusion, this study represents an initial foray into 
exploring the role of deep collaboration mechanisms, 
represented by physiological synchrony, in the development 
of CI and group satisfaction in computer-mediated teams. 
We find fairly strong evidence of the role of facial 
expression synchrony and EDA synchrony in explaining the 
effects of group diversity and social perceptiveness.  

We believe this study is only the beginning of a series of 
experiments that use sensors to capture the deep structures 
of collective intelligence. Future research can expand our 
findings by adopting other sensors such as facial 
electromyography (EMG), cortisol levels, eye-tracking, 
motion sensors (for body language), audio (for voice 
quality, jitter, turn-taking, etc), and EEG. Results will 

further our understanding of the mechanisms underlying 
group performance and cohesion. 

As collaboration becomes ever more dispersed and 
technology-mediated, we see that these fairly basic, 
primitive human responses to one another remain. The real 
challenge will be to develop new and innovative 
interventions that harness this newly acquired knowledge to 
enable teams to reach new heights in collective intelligence 
and satisfaction with their relationships. 
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