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Abstract 
Although there is a growing recognition of the 
differences, not diminished abilities, of facial affective 
expressivity between Typically Developing (TD) and 
Autism Spectrum Disorder (ASD) individuals, which 
might lead to the varied recognizability of conveyed 
emotion by both TD and ASD individuals, little is 
explored on the ecological validity of these findings; 
that is, whether spontaneous affective facial 
expressions can better be produced and recognized by 
both populations. We aimed to address these issues in 
the present study, using children’s cartoon clips to 
assess two aspects of spontaneous emotion production 
and recognition in a context closer to real-life children’s 
cartoon movie watching (at home or a classroom). 
Based on the facial landmark data and a 
teacher/parent’s manual emotion tags (happy), we 
performed a computational analysis to compare the 
happy emotion labels generated by the automated 
algorithm and the human TD rater. Two pilot studies of 
six ASD children revealed the potential as well as 
challenges of such an approach. 
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Introduction 
One of the core characteristics of ASD is the presence 
of early and persistent impairments in social-
communicative skills [1]. An overwhelming number of 
previous studies usually attribute such deficits to the 
population’s diminished skills in emotion recognition 
until a few recent studies started to probe into 
possibility of the lack of such skills in the TD 
population. That is, awkward moments in social 
interactions might be characterized by facial emotion 
recognition difficulties on both sides of the social 
equation [4, 11, 22, 23] since social interactions are 
intrinsically bi-directional [11]; that said, instead of 
attributing the social-communicative skill deficits in 
ASD individuals to their impairments in emotion 
recognition skills, isn’t it possible that TD people might 
also have difficulties or deficits at reading ASD 
expressions? Recent studies have indeed empirically 
demonstrated the difficulties of TD individuals in 
recognizing ASD expression [4, 7, 22]. Another related 
line of research has concluded that individuals with ASD 
demonstrate varied quality on affective expressivity 
across multiple modalities: specifically, for example, a 
greater variability in vocal prosody production [12, 16], 
the social inappropriateness of facial affective 
expressivity [3, 4, 7, 14, 22]. Some attributes the 
subtle differences of affective facial expressivity 
between the two populations to the reduced facial 
muscle movement [6, 15, 25], irregularities in limbic 
brain activities which are closely related to emotion 
[15], and being less motivated in engaging in social 
activities [4], in the ASD community.  

These converging empirical evidences revealed the 
differences of facial affective expressivity between ASD 
and TD individuals might prevent the former from 
producing recognizable emotions to both populations 
[4, 7, 12, 22, 24] and thus further complicate their 
social interactions. A pressing and under-explored 
research path to pursue is how existing mature facial 
emotional algorithms could successfully label the 
emotion of expression posed by ASD individuals so as 
to provide social cues for their partners including both 
ASD and TD individuals. A few recent works started to 
explore down this avenue [14, 20] including our 
present one. Specifically, in present study, we 
attempted to examine the potential of computational 
emotion recognition of ASD children’s facial expression 
collected during naturalistic tasks (cartoon-clip 
watching) by comparing the manual emotion tag from 
teachers/parents with the automatic one generated by 
our system.  

Related Work 
There is no lack of empirical studies examining the 
impairments of facial expressivity in individuals with 
ASD (among many, [13, 21]); however, few probe the 
degree of recognizability of these emotions by either 
ASD or TD raters [4]. These two indirect, yet related, 
lines of research will first be presented to motivate the 
present study.  

The Affective Expressivity of Children with ASD   
Previous research has argued that individuals with ASD 
demonstrate varied quality on affective expressivity 
across multiple modalities: specifically, for example, a 
greater variability in vocal prosody production [12], the 
social-inappropriateness of facial affective expressivity 
[3, 4, 7, 8, 9, 14, 22, 24]. For example, Faso et al [7] 
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capturing fine-grained skeleton and facial landmark  
data which in turn provided motion data for more 
accurate analysis [20]. Such computational analysis 
has the potential to characterize emotion expressivity 
in terms of temporal feature of facial landmark data, 
head motion and hand gestures, especially with more 
affordable and portable motion and facial data capture 
technologies [23]. However, the inherently atypical 
facial muscle movement in individuals with autism 
poses significant challenges for such technique to be 
effective in the domain. Metallinou et al [14] 
quantitatively compared the affective facial poses of 37 
individuals aged ranging from 9 to 14 with high 
functioning autism (HFASD, 21) and typically 
developing individuals (TD, 16). The task involved is to 
mimic the emotional facial expression from the 
common Mind Reading CD [2]. Motion capture 
technology and functional data analysis were deployed 
to allow the facial gesture data capture, analysis and 
visualization of temporal nature of facial landmark data. 
Experiential results revealed statistically significant 
differences between ASD and TD children in terms of 
the asynchrony of motion between different facial 
regions and more facial motion roughness [14]. [19] 
relied on human-intervened semi-automatic analysis 
and [20] revealed that for both TD and ASD children, 
happiness, sadness and anger were correctly labeled 
with high accuracy through Intel’s RealSenseTM lens. 
These recent works provided solid ground for our 
present study. 

 
The System, Pilot Study, and Study 
Procedure  
The evaluated system consists of a 19-inch LCD 
monitor, an Intel RealSenseTM camera, and a computer 

with a typical camera (see Figure 1). The Intel 
RealSenseTM SR 300 programmable camera was 
mounted on the LCD monitor where a two-minute 
cartoon was shown to capture the facial landmark data 
of the child; side by side with the RealSense TM is a 
typical high-definition camera to record their 
continuous facial expressions. 

RealSense TM SDK could detect a total of 78 facial 
landmarks and calculate 16 facial action units (AUs) 
from a human face [20]. To detect the happy 
expression, six facial action units (AUs) are selected 
(see Table 1); Figure 4 illustrates an example of the 
selected facial landmarks used in our study. The linear 
distances between these landmarks were then 
computed every second to determine whether it is a 
happy or non-happy face [20]; that is, by comparing 
the distances with some discrimination thresholds.  

Drawn from earlier results that caregivers and parents 
are likely to develop secure attachment with the ASD 
individuals [5] and thus can easily spot the happy and 
anxious moments in an ASD child [10], we asked either 
a home-run teacher or parent to sit in front of another 
computer to ‘press’ the ‘enter’ key when s/he spotted a 
happy moment in the child (see Figure 2). We assume 
the observation made by teachers/parents is more 
accurate than that from our evaluated system in 
judging their children’s happy emotion, because they 
could observe not only children’s facial expression, but 
also their voice, gesture, and other contextual 
information (multi-modalities). 

Finally, we manually compared the labels (‘happy’) 
obtained from the evaluated system with the labels 
provided by teachers/parents. The maximum temporal 

Facial 
Action 
Units 
(AUs) 

Real-
Sense 

Facial 
Land-
mark 

Upper Eyelid  √  

Lower Eyelid  √  

Eyes Smaller  √ 

Corners of 
the Mouths 

√  

Lip Medium √  

Grin  √ 

Table 1: selected facial AUs for 
happy emotion in our study 

 

 

Figure 4 Selected facial 
landmarks obtained from 
RealSense 
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offset of the co-occurrence is set to three seconds; that 
is, an agreement between the system and human is 
reached if the system could detect a happy face within 
three seconds before/after the teachers/parents press 
the enter key. Any consecutive ‘happy’ labels from the 
system would be considered as a single happy moment. 

Pilot Study Results and Discussion 
The experiments were carried out twice (i.e. in a 
private autism center and our lab, see Figure 2 and 3 
respectively). The pre-test interview revealed that both 
teachers and parents can tell when the child is happy 
and the frequency of happiness is relatively satisfying. 
A total of six ASD children (Mean age=4.5, SD=1.2) 
taking part in the testing and the system had been 
tested ten times. Among them, only six testing 
moments from four ASD children are valid. Invalid data 
are caused by either teachers/parents’ failure in 
operating the equipment or due to children’s temporary 
disruptive behaviors. Using the collected valid data, a 
discrimination threshold δ is adjusted in the 
computation of AUs in our analysis. By decreasing the 
threshold value, our system becomes more sensitive in 
detecting a happy face; hence, increasing both its true 
positive and false positive rates, and vice versa. Here, 
the true positive rate refers to the probability of 
detecting a happy emotion correctly by the system, and 
the false positive rate refers to the probability of 
misjudging a non-happy emotion as a happy one. 
Those said, we can draw the Receiver Operating 
Characteristic (ROC) curve after adjusting δ. These ROC 
curves represent the accuracy of the evaluated system 
in recognizing children’s facial expression (happiness) 
relative to their teachers/parents’ observation. The 
horizontal axis of an ROC curve represents the false 
positive rate and the vertical axis represents the true 

positive rate (see Figure 5). The origin (0, 0) 
represents the situation when the system is extremely 
insensitive in recognizing happy face; hence, it would 
never classify a face as a happy one regardless the 
teachers/parents’ observation. In contrast, the point (1, 
1) represents the situation when the system is 
oversensitive or would always classify a face as a happy 
one. Finally, the point (0, 1) represents the ideal 
system which could always correctly classify 
happy/non-happy emotion exactly as what the 
teachers/parents have observed. Figure 5 shows two 
sets of ROC curves for eye-based AUs and mouth-based 
AUs. A diagonal black line represents a random 
classifier; the further a point is above it the better our 
classifier is. It appears in Figure 5 that both eye-based 
and mouth-based AUs could be used to predict 
children’s happiness, where eye-based AUs are more 
stable as a predictor. This is true, because when we fix 
the false positive rate at 0.3, the average true positive 
rates from all six samples are 0.69 and 0.60 for eye-
based and mouth-based AUs, respectively.  

Concluding Remarks and Challenging Issues 
In present study, we attempted to examine the 
potential of computational emotion recognition of ASD 
children’s facial expression collected during naturalistic 
tasks (cartoon-clip watching) by comparing the manual 
emotion tag from teachers/parents with the automatic 
one generated by our system. Experimental results 
favor the use of facial landmark data around the eye 
area. More experiments need to be conducted to 
further examine the validity of it. 

In the long run, such tools could provide assistance to 
help TD individuals to read the emotions of ASD. There 
existing two key challenges along this research avenue, 

Data Collection  
Before the testing, a pre-test 
interview with either teachers 
or parents was conducted on 
some basic statistics of the 
child such as the age of 
children, the schooling time, 
their self-reported ability on 
recognizing the happy 
emotion of the child, relative 
frequency of happiness 
spotted, etc. During the 
testing, we asked children to 
watch a two-minute cartoon 
in front of the display monitor 
with a RealSenseTM camera 
attached on the top of it. 
Meanwhile, a teacher or 
parent pressed ‘Enter’ key 
when the child’s happy 
emotion was spotted and 
automatically recorded (see 
Figure 2).  
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