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ABSTRACT
Embodied agents hold great promise as educational assistants,
exercise coaches, and team members in collaborative work.
These roles require agents to closely monitor the behavioral,
emotional, and mental states of their users and provide appro-
priate, effective responses. Educational agents, for example,
will have to monitor student attention and seek to improve
it when student engagement decreases. In this paper, we
draw on techniques from brain-computer interfaces (BCI) and
knowledge from educational psychology to design adaptive
agents that monitor student attention in real time using mea-
surements from electroencephalography (EEG) and recapture
diminishing attention levels using verbal and nonverbal cues.
An experimental evaluation of our approach showed that an
adaptive robotic agent employing behavioral techniques to
regain attention during drops in engagement improved student
recall abilities 43% over the baseline regardless of student gen-
der and significantly improved female motivation and rapport.
Our findings offer guidelines for developing effective adaptive
agents, particularly for educational settings.

Author Keywords
Educational agents; adaptive agents; human-robot interaction;
immediacy; passive brain-computer interfaces (BCI);
electroencephalography (EEG)

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Interfaces
– input devices and strategies, evaluation/methodology,
user-centered design; H.1.2 Models and Principles:
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INTRODUCTION
Physically and virtually embodied agents offer great potential
due to their capacity to afford interaction using the full range
of human communicative behavior. To know when to best
utilize these behaviors, these agents must be able to perceive
subtle shifts in users’ emotional and mental states. For in-
stance, one factor behind the success of the best classroom
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Figure 1. In our study, participants interacted with an embodied agent that
monitored their attention using EEG signals in realtime and adapted its behav-
ior to improve the discourse.

teachers and one-on-one tutors is that they improve student
learning by closely following student engagement and employ-
ing strategies that seek to increase attention, motivation, and
involvement in the instruction. These behaviors involve a num-
ber of verbal acts such as directing questions, using humor,
and addressing students with their first names and nonverbal
cues such as expressions, gestures, eye-contact, smiling, pos-
ture, and proxemity [19, 20, 39]. Researchers have shown that
students with teachers who effectively employ these strategies
show more interest in the subject matter and display better
cognitive performance [10].

As a whole, these behaviors can be grouped under the blanket
term immediacy cues—actions taken by speakers to decrease
the psychological distance between themselves and their listen-
ers [30]. The following excerpt from the educational literature
[46] provides a vivid example of the role that these behaviors
play:

Professor: How do you know when your teacher really
means what she says?

Third Grader: Well, her eyes get big and round and she looks

right at us. She doesn’t move and her voice

is a little louder, but she talks kinda slowly.
Sometimes she stands over us and looks down
at us.

Professor: What happens then?
Third Grader: The class does what she wants!



As in the dialogue above, human teachers change aspects
of their verbal and nonverbal language to communicate to
their students that they should be attending the teacher. This
observation leads us to the question of how can a computer-
based system monitor student engagement in a similar manner
as real classroom teachers? Even if we could successfully
monitor student attention, how could we then exploit that
information to design agents that adapt to students and engage
them in learning without disrupting the learning process? This
study aims to engage these types of questions that surround
the area of designing and building adaptive agents by creating
a novel system in the educational domain that interacts with
users and adapts in real-time to unconscious changes in their
attentional states (Figure 1).

Educational software, from simple games such as Reading
Rabbit and MathBlasters to complex and expensive language
suites like Rosetta Stone, has become increasingly popular.
Computer-based eduction (CBE) holds significant promise for
instructional scenarios and has even shown improvement over
traditional classroom education both in terms of academic
achievement [1] and student motivation [44]. Further, CBE
can reduce the amount of time needed for instruction as well
as increase student attitudes towards learning [25]. However,
there is much room for improvement as these tools “are not
yet as effective as the best human tutors” [1] and “should
supplement traditional instruction, not replace it” [27].

Although certain metacognitive strategies such as self-
explanation can work well with CBE [1], most CBE tools lack
the social and emotional aspects inherent in the traditional
classroom setting. One proposed solution to this challenge is
the use of virtual characters or agents, which can increase stu-
dent motivation and create a more natural interaction through
the use of social behaviors such as gaze, body language, and
facial expressions [22]. However, modern computer systems
are limited in comparison with actual teachers who can use
a vast array of knowledge including their past experiences
and their observations of students to inform their decisions of
when and what behavior to employ.

This study seeks to answer the following question: How can
we design computer-based educational tools that monitor stu-
dent attention1 and employ attention-inducing strategies to
improve learning in the way human teachers do? We propose
a novel approach that combines techniques and knowledge
from behavioral neuroscience and educational psychology.
The approach translates previous work into the physical world
by utilizing a social robot that monitors real-time student at-
tention using neural signals captured from an off-the-shelf,
wireless EEG headset and models real-life educator behavior
to deliver instruction. We investigate how an agent, by em-
ploying adaptive behavioral techniques to induce involvement
with the instruction when significant drops in engagement are
detected, might affect student achievement, motivation, and
perceptions of the instructor.

1The terms “engagement” and “attention” are used interchangeably
in this paper.

Behavioral cues Cue a!ordances

Body
Proximity
Proximity
Proximity
Proximity
Gestures
Gaze
Gaze
Posture
Posture
Facial Expressions
Facial Expressions
Touching

Voice
Vocal Tone
Vocal Expressions

Bodily cues
Sits behind desk when teaching. (Reversed)
Moves around the classroom when teaching. 
Sits on a desk or in a chair when teaching. (Reversed)
Stands behind podium or desk when talking to the class. (Reversed)
Gestures when talking to the class. 
Looks at the class when talking. 
Looks at board or notes when talking to the class. (Reversed)
Has a very tense body position when talking to the class. (Reversed)
Has a very relaxed body position when talking to the class. 
Smiles at individual students in the class. 
Smiles at the class as a whole, not just individual students.
Touches students in the class. 

Vocal cues
Uses monotone/dull voice when talking to the class. (Reversed)
Uses a variety of vocal expressions when talking to the class.

Table 1. Verbal and nonverbal cues identified in educational settings to
evaluate the effectiveness of teacher immediacy

RELATED WORK

Immediacy, Education, and Embodied Agents
Educational agents require both a means of monitoring stu-
dent engagement as well as a suite of corrective actions to
take when they realize that a student is no longer paying at-
tention. Research in educational psychology has extensively
investigated the various ways in which human teachers uti-
lize vocal and nonverbal cues to achieve desired shifts in stu-
dents’ emotional and mental states. This literature argues
that teachers display varying degrees of immediacy—the de-
gree of perceived physical or psychological closeness between
people—and that immediacy is strongly associated with the
effectiveness of their teaching [23, 38].

Verbal immediacy comprises spoken content, stylistic deter-
minations, and paralinguistic manipulations such as tone and
volume, which may affect the listener positively as well as
negatively [5, 21]. In general, increased immediacy can be
achieved using communication content that demonstrates open-
ness, friendliness, and empathy and an inclusive and mutual
style [19].

Nonverbal immediacy includes the speaker’s bodily cues and
shape the listener’s impressions of the speaker. In educational
settings, teachers who are more expressive and use more ges-
tures create greater immediacy and attain higher ratings by
students [11]. Increasing immediacy through both verbal and
nonverbal channels facilitates communication and allows peo-
ple to share thoughts and feelings more easily. Furthermore,
immediacy is a cyclic process whereby an increase in immedi-
acy increases liking and brings people closer together, which,
in turn, creates even greater immediacy [5]. Table 1 (adapted
from [39]) lists several pivotal verbal and nonverbal behav-
iors that education researchers have identified in teachers who
display high immediacy.

In cognitive tasks, both verbal and nonverbal immediacy have
been shown to effect four major learning outcomes: student
apprehension [10], motivation [11], understanding and recall
of course material [23], and attitudes towards subject matter
and instructors [38]. These effects have been shown to be
cross-cultural [29, 28] and cross-gender [8] and can be divided



into affective (student beliefs and disposition) and cognitive
(recall and self-reported learning) aspects. There are two ma-
jor theories as to how immediacy can be used by an instructor
to positively impact student cognitive and affective learning.
First, arousal-attention theory argues that the use of immedi-
acy increases student arousal thus increasing student attention
and engagement leading to a greater recall ability [40]. Sec-
ond, motivational theory suggests that immediacy can increase
student ambition by sparking curiosity and driving them to
increased inquiry and involvement [11, 21, 40].

Education research offers strong evidence that immediacy
plays a critical role in teacher-student interaction, which moti-
vates research into how best to incorporate immediacy, pres-
ence, and proxemics in the design of educational agents. How-
ever, due to the complex nature of immediacy and the still
emerging picture of how to best utilize it within the context of
computer-based education, most traditional CBE systems still
do not employ any form of immediacy cues. Moreover, early
research into CBE has suggested that CBE systems “work bet-
ter if they present themselves to students as non-human tools to
assist learning rather than as emulations of human tutors” [3].
However, research in HCI provides evidence that humanlike
representations improve educational outcomes such as student
motivation and point to a rich design space for creating hu-
manlike behavior such as verbal feedback that might further
enhance these outcomes [33]. We argue that modern agents
modeling actual human educators can surpass traditional CBE
tools by utilizing arousal-attention and motivational theory.

EEG and Attention
Current computer-based tools focus on the student’s compre-
hension of the instructional material [3] and do not consider
attention and engagement, mainly due to the difficulty in in-
ferring these cognitive states. Teachers in classroom and one-
on-one tutoring situations monitor these states in real-time
by reading students’ behavioral cues such as direction of at-
tention, posture, facial expressions, and responsiveness to
instructional activity, and researchers have devised various
self-reporting scales to measure student motivation after the
fact [11, 41]. Current computational methods, however, cannot
reliably capture these cues in CBE settings due to vast vari-
ability in user characteristics and environmental conditions.
However, recent experiments in neuroergonomics have used
electroencephalography (EEG) signals to identify subtle shifts
in alertness, attention, and workload in laboratory, simulation,
and real-world contexts on a second-by-second timeframe [6].
Commercially-available, low-cost wireless EEG headsets have
made this approach even more feasible for brain-computer
interfaces (BCIs)[34].

BCIs are a rapidly growing technology that draws on brain sig-
nals as user input. There are several forms of BCI technology
currently available, which can be classified as either invasive
devices that require special surgery such as electrocorticogra-
phy or non-invasive methods such as EEG. Although invasive
interfaces allow for better signal fidelity, non-invasive inter-
faces can be used by the general public, offer no risk to the user,
and do not require specialized knowledge or training in their
use. EEG is a particularly well-studied non-invasive method
which measures event related potentials (ERPs)—positive and
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Figure 2. EEG bands and their respective frequencies.

negative charges created by inhibitory and excitatory potentials
in the cerebral cortex that are created following the change
in membrane conductance as neurotransmitters are released.
EEG data is collected via electrodes sensitive to these changes
arrayed across the scalp and is generally sequenced into sig-
nals classified by frequency (see Figure 2) that have been
shown to be affected by cognitive loads in predictable ways
[16]. EEG frequencies have been extensively studied and can
provide insight into user mood and emotions such as anxiety,
surprise, pleasure, and frustration [12, 32, 15]. Additionally,
EEG measures are sensitive to cognitive states including task
engagement/attention, working modality, and perception of
user/machine errors [12, 13, 48].

EEG has the advantage of high temporal resolution, which
offers the ability to correlate EEG data with stimuli in the
external world, but has the disadvantage of low spatial res-
olution, which makes it difficult to determine where in the
brain the signals originated from. Further, because EEG data
represents a vast generalization of actual brain activity, it can
be difficult to perceive small changes in user states. Finally,
due to the non-invasive nature of EEG, electrode signals are
highly susceptible to noise as well as influence by extraneous
signals such as electromyography (EMG)—electrical signals
that originate from muscles in the scalp and face as opposed to
electrical signals in the brain. However, these barriers can be
overcome by filtering the EEG signal and EEG has been used
make accurate classifications of various cognitive tasks [26,
45]. Specifically, research has offered the following formula
for calculating a signal E based on ↵, �, and ✓ waves that is
highly correlated with participant task engagement [37]:

E =
�

(↵+ ✓)
.

Although promising research is currently ongoing into how to
best utilize EEG as input into controlling interfaces and robots,
BCI design is impeded by the variability of user EEG waves.
Traditional BCI systems utilize machine learning algorithms,
which must be presented with large amounts of data in order
to learn individual EEG patterns to create statistical models
of user behavior [35]. These active systems where a user
deliberately tries to control their brain activity and the system
attempts to interpret and respond to the user’s brain signals
grew out of the goal of having systems for disabled users
who could not interact with computers through standard input
methods. Although research in this area has succeeded in
various ways such as allowing disabled users to control a



mouse cursor, these systems often require extensive tuning
and training on both the part of the system and the user and
are rarely generalizable across multiple users [36, 4].

Current research has shown a paradigm shift towards passive
systems, which implicitly monitor user conscious and uncon-
scious brain activity [47]. This implicit information is then
used in conjunction with other active input by the user (e.g.,
vocal commands or gestures) to provide further context to
the user’s intended commands and state. Although research
into passive BCI systems is still in its infancy, systems have
already been built that can aid in the detection of user and
machine errors and detect and adapt to user cognitive load
[48, 18, 15]. Our research will build on these promising first
steps into non-invasive, passive BCI systems as a means of
improving user experience and user-system performance by
creating a system that reacts to rather than is controlled by
user EEG data. This process does not need to be trained by
the user as it is based on the user’s unconscious engagement
levels. In effect, we have attempted to create an agent that
passively monitors student engagement levels and reacts to
them in real time in the manner that a human instructor would.

DESIGN
Our system leverages previous BCI research to create a novel
system that monitors student attention in real time. When it
detects significant drops in user engagement, it attempts to
regain student attention through the use of immediacy cues
informed by educational theory.

Detecting Drops in User Engagement
Agents who truly model human behavior must have a system
that actively monitors users’ attention levels to know the best
time to use the verbal and nonverbal cues at their disposal.
Our conjecture is that significant drops in user engagement
measured from EEG might serve as close approximations of
these times and that less engaging tasks should evoke more
significant drops. Figure 3 shows sample engagement values
from our preliminary experiments of a participant involved
in tasks with varying levels of engagement. In this research,
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Figure 3. Engagement levels from preliminary experiments using a propri-
etary index of engagement as a participant watches a video of a Ted Talk
(dotted line) and the same user watching a video of a calculus lecture over a
six-minute period. More significant drops are seen in the calculus lecture and
the onset of these drops are highlighted.

the low-cost2 Neurosky Mindset EEG device was used as a
means of testing the possibilities of off-the-shelf, low-fidelity
hardware that could feasibly be used in real-world scenarios.
The wireless headset gathers data using only four electrodes,
which can remain dry and can quickly and easily be put on
and taken off, as opposed to other EEG devices which often
have many more electrodes and require special conductive
liquids. The headset does not require any special training and
is comfortable and usable enough for students to use in an
actual classroom scenario.

The Mindset gathers EEG measurements from the FP1 re-
gion of the cortex which is known to manage learning, mental
states, and concentration [17, 14, 18]. The hardware uses A1-
T3 regions for grounding and filtering the signal via common
mode rejection and additionally utilizes notch filters, analog
and digital low- and high-pass filters, as well as proprietary
algorithms to remove EMG artifacts and other noise. This fil-
tering was verified through a pretest that assessed the presence
of common artifacts such as eye-blinks. The device samples at
a rate of 512Hz and is sensitive to frequencies in the range of
3-100Hz, which are broken into alpha, beta, theta, and gamma
waves using Fast Fourier Transforms.

Using this device as input, we constructed a two-tiered system
that analyzed EEG engagement levels and identified significant
drops in attention in real-time. First, EEG levels for alpha,
beta, and theta frequencies were read in from the headset.
These values were smoothed using an exponentially-weighted
moving average (EWMA):

S(t) =

⇢
Y (t) : t = 1
a ⇤ Y (t� 1) + (1� a) ⇤ S(t� 1) : t > 1

where S corresponds to the smoothed value produced using an
EWMA, t is time, Y is the raw signal from the headset, and a

is a regularization constant that is inversely proportional to the
relative weighting of less recent events (a value of .015 was
used in this study based on pre-test results).

Even with smoothing, the engagement signal shows high vari-
ability. To establish a consistent means of locating drops in
attention levels across participants, two thresholds were cre-
ated from user EEG data in real time and polled for possible
losses of engagement in 15 second intervals (chosen after pre-
testing to identify minimum timeframe that grants sufficient
data to accurately make predictions).

The first threshold compares the average slope of recent data
with the average slope seen so far:

DT (E) =

⇢
1 :

¯
dE(x)

dt

<

¯
dE(y)
dt

,

¯
dE(x)

dt

< 0
0 : otherwise

where x corresponds to a 15-second timeframe, y represents
full signal seen so far, E is the smoothed engagement sig-
nal, and DT represents the derivative threshold function that
outputs 1 if an immediacy cue should be displayed.

2At the time of this study the Neurosky Mindset was available for
consumer purchase at a cost of $199.
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The second threshold level is based on Least-Squares Regres-
sion (LSR), which minimizes a function F, where:

F =
nX

i=1

(y
i

� (ax
i

+ b))2 ,

@F

@a

= 0 and
@F

@b

= 0 .

Here, F corresponds to the minimized function, which gener-
ates slope a and intercept b around the data represented by x

and y from the start to time n. To generate the second thresh-
old, two LSR functions are generated, one based on the past
15-second interval and one based on all the data seen so far.
These values are then averaged and weighted:

T = .05 ⇤ ¯
F (y) + .95 ⇤ ¯

F (x)

where T is the generated threshold, F (y) is the function gener-
ated by LSR around all data seen so far, and F (x) is the LSR
function based on the data in the latest 15-second interval (see
Figure 4). This creates a constantly updating “average” level
for each individual user’s engagement.

Our system then suggests displaying an immediacy cue by
polling both the derivative threshold and the LSR threshold as
long as no cue had been performed in the 15 second window
immediately prior to the data window used in the calculations.
This last step was put into place due to the fact that it can take
time for engagement levels to rise following the instructor’s
use of immediacy cues. This check was enacted in response
to pre-test results to avoid situations in which participants felt
that the instructor gave too many cues immediately following
each other.

Agent Behavior
The design of the agent’s behaviors was informed by research
into educator immediacy. Immediacy cues are comprised of
both verbal and nonverbal behaviors that can signal accessibil-
ity or unapproachability and indicate the level of psychological
distance between participants. The behaviors used by the agent
in this study included modulating spoken volume and using
gaze, head nodding, and gestures.

Vocal cues including tempo, pitch, tone, and volume are used
by speakers to emphasize words or phrases, add emotion, and

increase listener arousal [7, 43]. In our study, we increased
volume when an immediacy cue was triggered due to a loss
of participant attention to re-engage the student and increase
instructor clarity [10]. Increased eye contact has been reported
to indicate a higher level of dominance as well as affiliation
and immediacy [8]. Head nodding by an instructor has also
been shown to positively affect student reactions towards edu-
cators [23]. To more accurately model real-world educational
scenarios, head nodding and gaze immediacy was used across
all conditions to provide for a baseline interaction between the
participant and the robot.

Research on gestures suggests that people use four major cate-
gories of gestures in human-human interaction: (1) iconic, (2)
metaphoric, (3) deictic, (4) and beat gestures [9]. Iconic ges-
tures are closely related to the content of speech and represent
concrete events and objects, for example raising one’s hands
to indicate “higher.” Metaphoric gestures allow the speaker
to represent ethereal concepts, such as moving one’s hands in
a circle to show the idea of a cycle. Deictic gestures direct
attention towards things directly around the speaker or to the
speaker themselves, such as pointing at one’s self to highlight
a self-experience. Beat gestures allow the speaker to empha-
size certain words and phrases and may also be linked with
internal processes in speech formulation [2].

Instructor use of gestures has been shown to have a positive
effect on immediacy [23] and the use of humanlike gestures by
robots has been shown to facilitate interaction between humans
and robots [24]. In our study, the robotic instructor utilized
metaphoric, deictic, and beat gestures, to indicate that it was
conveying an abstract idea, to point toward the participant
and toward itself, and to add rhythmic emphasis to its speech,
respectively (see Figure 5). The robot’s behaviors did not
include iconic gestures due to the lack of a priori knowledge
of when gestures, which are triggered by a loss in participant
attention, would be used during the task.

HYPOTHESES
Two hypotheses were developed for our system based on find-
ings in BCI literature and its potential for use with adaptive
educational agents:

Hypothesis 1. Instructor immediacy cues triggered by drops
in EEG-monitored engagement levels will increase student
attention, thereby increasing learning performance.

Figure 5. Examples of nonverbal immediacy gestures used by the instructor:
(a) deictic gestures referring to the participant, (b) metaphoric gestures using
both hands to form a gesture space containing an idea, and (c) beat gestures
created by moving its arm rhythmically up and down.
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Figure 6. The spatial configuration of our experiment. In the adaptive
condition, the robot used immediacy cues to regain participant attention.

Hypothesis 2. The instructor’s use of immediacy cues trig-
gered by drops in engagement will positively affect partici-
pants’ motivation and evaluations of the instructor in measures
of rapport.

EVALUATION
To investigate the effects of EEG-triggered adaptive immedi-
acy cues in educational outcomes, we designed and conducted
a laboratory experiment in which participants interaction with
and received instruction from a humanlike robot. Below we
describe the design of our experiment, our procedure and mea-
surements, and our population.

Experimental Design
To test our hypotheses, we conducted a 3⇥1 between-participants
study in which we manipulated the immediacy cues displayed
by a Wakamaru humanlike robot, as it told participants two
narrative stories. The independent variable was the introduc-
tion of the immediacy cues and included three levels: (1)
low immediacy, (2) immediacy cues at random intervals, and
(3) “adaptive” cues triggered by drops in their EEG-measured
engagement levels. The dependent variables included partici-
pants’ recall of the details of the stories, their perceptions of
the robot, and self-reported learning.

Experimental Procedure
In the study, each participant was presented with a memory
task that assessed the participant’s recall of the details of a
story narrated by the robotic teacher. After signing a consent
form and being given a brief description of the experiment,
participants were brought into a controlled room. Here the
researcher aided the participant in putting on the wireless EEG
headset and ensured good connectivity. Once the headset
connection was established, the researcher left the room and
the participant started interacting with the robotic instructor.

The human-robot interaction scenario consisted of five main
phases: (1) introduction, (2) calibration, (3) learning, (4) dis-
tractor, and (5) evaluation, during which the robot spoke using
a pre-recorded female voice modulated to a gender-neutral
tone. First, the robot introduced itself and asked if the par-
ticipant had any prior knowledge of the story behind the 12
signs of the Chinese Zodiac. The robot then told a pre-scripted
three-minute long story about the determination of animals in

the Chinese Zodiac, which was used to get baseline EEG read-
ings that were used to build the derivative and LSR thresholds.
During this calibration phase, the robot used gaze matching
and head movements to make the conversation appear more
natural, but did not employ other immediacy cues regardless
of experimental condition. In the learning phase, the robot nar-
rated a longer ten-minute story based on the popular Japanese
folk tale “My Lord Bag of Rice.” Both stories were chosen
for their unfamiliarity to our participant population in order to
ensure that participants had no prior task knowledge.

During the second story, instructor-participant immediacy was
manipulated according to experimental condition. In the adap-
tive condition, the agent displayed adaptive immediacy cues
by increasing its volume and employing arm gestures when
a drop in engagement was identified by monitoring the par-
ticipants’ real-time EEG engagement data. In the random
immediacy cue condition, the robot raised the volume of its
voice and produced arm gestures at random intervals, the num-
ber of which was determined by the number of cues made by
the instructor in the last experimental trial in the adaptive con-
dition. In the low immediacy category, the educator told the
second story in the same way it told the first story, ignoring any
lapses in participant attention, although still using gaze and
natural head movements that were controlled autonomously to
ensure consistency between participants. While displaying an
immediacy cue, the robot suspended its head movement and
looked toward the participant.

After the learning phase, the instructor asked the participant
four questions about the Chinese Zodiac story as a distrac-
tor task which ensured that there was a break between the
learning and evaluation phases for the second story. In the
last phase, the robot presented the participant with fourteen
questions about the longer story to evaluate the participants’
recall ability. During this question-answer period, the time
between questions was controlled by the researcher behind the
scenes to account for varying answer times.

Following these questions, the experimenter re-entered the
room and had the participant remove the headset and fill out a
post-experiment questionnaire to obtain a subjective evaluation
of participant experience. Finally, participants were debriefed
by the researcher and were compensated $5 for their time. The
entire procedure took on average 25 minutes.

Figure 7. A participant in our study interacts with the embodied agent.
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Figure 8. EEG data for three different participants in the three conditions studied. Our analysis indicates that our algorithm correctly identified real-time drops in
user engagement and that instructor immediacy behavior halted downward trends in attention levels.

Participants
A total of 30 participants (15 males and 15 females) took
part in this experiment. Each of the three conditions had an
equal number of participants (five males and five females).
All participants were native English speakers and recruited
from the University of Wisconsin–Madison campus. The
average age was 22.3 (SD = 6.88) with a range of 18-57.
Prior familiarity with robots was low (M = 3.23, SD =
1.55) as was their familiarity with the story in the task (M =
1.37, SD = 1.07) in a scale of one to seven. Figure 7 shows a
participant interacting with the agent.

Measurement
Objective measurements included fourteen questions that mea-
sured the participants’ ability to recall the details of the “My
Lord Bag of Rice” story and the participants’ EEG data. Addi-
tionally, subjective measures were taken by means of a seven-
point rating scale used to measure participants’ responses on a
post-experiment questionnaire. This questionnaire included
checks on the success of our immediacy manipulations based
on Richmond’s Nonverbal Immediacy Scale [41] and ques-
tions regarding the participants’ perception of the instructor
and whether they would like to work with the robot again in
the future. We utilized a modified version of Christophel’s
Trait Motivation Scale [11] to determine effects of the robot’s
behavior on student motivation.

We utilized three different checks to verify our manipulations.
First, we confirmed that our algorithm successfully identified
drops in attention by examining the EEG data of participants in
the low immediacy condition. Second, we analyzed the EEG
data of participants in the random and adaptive immediacy
conditions to ensure that the agent’s behaviors had a positive
effect on student engagement. Finally, we constructed a five-
item scale from participant responses to the post-experiment
questionnaire to assess whether or not our manipulations of the
robot’s immediacy behavior were successful. The items asked
participants how much the robot emphasized parts of story,
tried to get their attention, varied the volume of its speech,
used gestures, and tried to get their attention when they grew
bored (Cronbach’s ↵ = .756).

RESULTS
We utilized analysis of variance (ANOVA) to analyze our
data from manipulation checks and objective and subjective
measurements.

Manipulation Checks – To verify that our system was working
correctly, we processed the EEG data for participants in the
low immediacy condition using our algorithm to identify times
when the instructor would have used immediacy cues had those
participants been in the adaptive condition. We then analyzed
engagement levels in the 30 second timeframes before and
after each possible cue using a two-way repeated measures
ANOVA using participant ID as a random effect and condition,
time frame, and the interaction of the two as fixed effects.
Our analysis found that average engagement levels 30 seconds
prior to when our algorithm would have directed the robot to
re-engage the participant were significantly higher than the
average engagement levels 30 seconds after this time, F (1,
658.5) = 7.54, p = .006, suggesting that our algorithm was
correctly identifying losses of engagement.

Further EEG analysis yielded no significant differences in
the 30-second windows before and after the robot employed
behavioral strategies to regain attention in the random, F (1,
658.5) = 0.116, p = .734, and adaptive, F (1, 658.5) = 241
p = .121, conditions, showing that agent immediacy cues
successfully halted downward engagement levels. Figure 8
provides a visual summary of the EEG data collected across
conditions and the points of attention loss identified by our
algorithm.

Our manipulation on checks on whether the participants per-
ceived the robot to show immediacy cues showed that the
manipulation was successful and that participants were able
to notice when the robot used immediacy between conditions,
F (2, 27) = 6.41, p = .005, ⌘2

p

= .322.

Objective Results – Our first hypothesis predicted that partic-
ipants who received targeted immediacy cues triggered by a
drop in EEG-monitored engagement levels would have better
recall of the story than other participants. Our analysis con-
firmed this hypothesis; the number of correct answers out of
fourteen questions were on average 6.30 (SD = 3.40), 7.44 (SD



# 
of

 C
or

re
ct

 A
ns

we
rs

Low Random Adaptive

Low Random Adaptive

p = .022*
p = .426 p = .118

2

4

0

6

8

10

12

14

Ra
pp

or
t

Females Males Females Males Females Males

p = .093†p = .047*

1

2

3

4

5

6

7

Low Random Adaptive

M
ot

iv
at

io
n

Females Males Females Males Females Males

p = .021*p = .015*

1

2

3

4

5

6

7

Figure 9. An analysis of our objective data supports our hypothesis that recall is positively effected by using an adaptive immediate agent.

= 1.94), and 9.00 (SD = 1.76) in the low immediacy, random
immediacy, and adaptive immediacy conditions, respectively.
These results showed that participants with an adaptive in-
structor outperformed the random condition by 23% and the
low immediacy baseline by 43% with a significant difference
between the low and adaptive immediacy levels, F (1, 27)
= 5.87, p = .022, ⌘2

p

= .177, regardless of gender. No sig-
nificant difference was found between the low and random
conditions, F (1, 27) = .652, p = .426, ⌘2

p

= .024, or between
random and adaptive conditions, F (1, 27) = 2.60, p = .118, ⌘2

p

= .088. A pairwise comparison, which contrasted the adaptive
condition with the random and low immediacy conditions, re-
vealed significantly improved recall accuracy in students with
an adaptive instructor, F (1, 27) = 5.43, p = .028, ⌘2

p

= .164.
Much of the variance in our model came from gender as well
as users’ prior familiarity with robots. When we controlled for
these factors, our analysis showed even a greater difference
between information recall scores in the adaptive immediacy
condition and the combined scores in the low and random
immediacy conditions, F (1, 21) = 7.89, p = .003, ⌘2

p

= .291.

Subjective Results – Our second hypothesis predicted that par-
ticipants would more positively rate an adaptive agent than a
random or non-adaptive one. This prediction was supported
by the results from our female participants. Females felt sig-
nificantly more rapport with the adaptive instructor than the
random immediacy instructor, F (1, 24) = 4.40, p = .047, ⌘2

p

=
.155, and reported that the adaptive agent motivated them sig-
nificantly more F (1, 24) = 6.83, p = .015, ⌘2

p

= .222. Females
also recognized that the adaptive instructor aided them and
rated their own learning significantly higher in the adaptive
case, F (1, 24) = 7.98, p = .0094, ⌘2

p

= .244.

Despite these promising results for females, we found no
significant differences in males for rapport, motivation, or
perceived learning across condition. This result could partially
be explained by the fact that females reported marginally more
general motivation about education and schoolwork than males
did, F (1, 24) = 3.33, p = .081, ⌘2

p

= .115. We found no
significant effects on the perceived humanlikeness of the agent
or the perceived competency of the instructor in either gender.
Figure 9 highlights the major results of our study.

DISCUSSION
Our first hypothesis predicted that the use of adaptive agents
would significantly improve recall performance in a narrative
task. Our results support this hypothesis; participants with
an adaptive instructor had objectively better recall of story
information. Our second hypothesis predicted that participants
would react more favorably to an adaptive agent and evaluate
it more positively in subjective measures. Our results partially
supported this hypothesis; females felt more rapport with and
motivation from an educator that adaptively displayed human-
like immediacy behaviors, while males rated all instructors
equally. These results highlight the capability of utilizing EEG
signals to monitor real-time user states and the benefits of
designing agents that can adapt to these states.

Participants who interacted with an adaptive educational robot
that displayed high immediacy had similar responses to those
who interact with adaptive human educators that demonstrate
high immediacy. Our results are consistent with the predic-
tions of the arousal-attention and motivational theories; stu-
dents who are taught by an instructed with high immediacy
show improved recall performance, regardless of whether the
instructor is human or an agent/robot. In addition, females
rated the instructor with high immediacy more favorably, con-
sistent with previous findings on gender-based differences in
social perception, which indicate that females in general are
better able to decode and more sensitive to nonverbal cues
[42]. These results lend credence to the idea that immedi-
acy can improve perceived learning, which can be a positive
factor in student enthusiasm for classroom as well as future
performance [23, 31].

Limitations & Future Work
Despite these positive results, our data showed that the in-
structor’s use of immediacy had no significant effect on male
motivation and rapport across conditions. The particular con-
text of this study might account for this discrepancy. First,
the design of the robot may have made it more difficult for
males than females to connect with a “cute” robot of a small
stature that used a child-like voice while instructing them. An-
other possibility is that a narrative task or the specific stories
used in this study might affected male and female participants
and their resultant experience differently. Finally, while the



immediacy cues we considered in this study were limited to
metaphoric, deictic, and beat gestures and volume modulation,
immediacy offers a rich design space, including cues such as
prosody, proximity, and facial expressions. The limited scope
of our exploration prevents us from generalizing our results
to situations in which the wider range of immediacy cues are
used.

Regardless of their own perceptions, both males and females
had an improved recall ability, which highlights the useful-
ness of using our immediacy cues. Moreover, the differences
in educational and experiential outcomes between students
who received instruction from the robotic instruction in the
adaptive versus the random conditions suggest that simply
displaying immediacy cues is not sufficient—immediacy cues
must be strategically utilized in response to the participants’
current attentional state. Although the results of this study
are limited to the narrative educational setting, we feel that
future work will build on our results and demonstrate the im-
portance of adaptive agents who respond to both conscious
and unconscious input from users.

While our system achieved its intended goal of improving
student learning by monitoring user attention in real-time and
introducing immediacy behaviors at points at which there
was a significant drop in attention, open questions remain
regarding our method for identifying these points. As with
any measurement of neural activity, our engagement index is
prone to be affected by other signals such as muscle artifacts
due to the limitations of the EEG technology. Although our
system employed filters to remove such artifacts, more inves-
tigation is necessary to validate that our engagement index
indeed represents underlying cognitive activity free from ex-
traneous signals. Future work should also assess the reliability
of this measure across contexts, as neural signals might be
affected by aspects of the social interaction and the task at
hand. Additionally, we believe that the accuracy of our algo-
rithm might be increased by exploring other means of creating
tighter thresholds.

Finally, open questions remain about the interaction between
agents, gender, and adaptive immediacy. Why did females
show a stronger reaction to an adaptive agent? Why did males
not give evaluate more positively an instructor from whom
they learned objectively more? How can our system be im-
proved to integrate EEG monitoring with other measures such
as participant gaze or body posture to improve the adaptability
of agents? Our future work will seek to answer these ques-
tions towards gaining a fuller understanding of how individual
differences affect responses to adaptive agents and further
improving our technology.

CONCLUSION
For agents to be successfully integrated into general human-
computer interaction, they must be able to accurately measure
and respond to conscious and unconscious user states. In this
study, we created a system in which a robotic agent informed
of real-time measurements of student attention obtained from
EEG data employed immediacy cues that human instructors
use to recapture student attention when student neural sig-
nals indicated a decline in engagement. We found significant

improvements in participant recall ability when taught by an
agent that adaptively employed immediacy cues compared
with agents that employed these cues at random times or that
showed low immediacy. Furthermore, female participants
reported more motivation, rapport, and learning with the adap-
tive instructor. These results demonstrate that user states can
be reliably evaluated using low-cost, off-the-shelf hardware
and argue that the design of truly intelligent agents must incor-
porate the ability to react to these states in a humanlike way.
We hope that this research serves as a springboard for further
investigation into the field of how adaptive behavior can aid
the design of effective agents to create more fluid interactions
with humans.
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