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Abstract
Video accessibility is crucial for blind and visually impaired
individuals for education, employment, and entertainment
purposes. However, professional video descriptions are
costly and time-consuming. Volunteer-created video de-
scriptions could be a promising alternative, however, they
can vary in quality and can be intimidating for novice de-
scribers. We developed a Human-in-the-Loop Machine
Learning (HILML) approach to video description by au-
tomating video text generation and scene segmentation
while allowing humans to edit the output. Our HILML sys-
tem was significantly faster and easier to use for first-time
video describers compared to a human-only control condi-
tion with no machine learning assistance. The quality of the
video descriptions and understanding of the topic created
by the HILML system compared to the human-only condi-
tion were rated as being significantly higher by blind and
visually impaired users.
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Introduction
The World Health Organization (WHO) estimates that roughly
285 million people worldwide are visually impaired, and 39
million people are blind [3]. Despite international guidelines
and standards [19, 6], there is still a paucity of videos on
the Internet that are made accessible through video de-
scription for blind or visually impaired (BVI) users. Video
description can be defined as “narration added to the sound-
track to describe important visual details that cannot be un-
derstood from the main soundtrack alone” [2]. A significant
bottleneck in video accessibility for BVI users is the time
and cost to produce video descriptions professionally. In
this paper, we turn to the use of Human-in-the-Loop Ma-
chine Learning (HILML) to facilitate easier video description
for novice describers and to improve the quantity and qual-
ity of video accessibility for BVI users. We built a video de-
scription interface with automated scene segmentation, text
generation of images, and text generation of text on screen
using machine learning. The human is then able to edit the
generated output, allowing human-machine collaboration to
produce high quality video descriptions while keeping a low
barrier to entry for volunteer describers. We evaluated this
interface on novice describers and compared it to a control
condition with no machine learning assistance (Experiment
1). We then asked BVI users to rate the quality and clarity
of the video descriptions produced by the two conditions
(Experiment 2).

In this paper, we use the terms
blind or visually impaired (BVI)
users to refer to individuals
who rely on audio descriptions,
tactile graphics, or use mag-
nification to typically access
images.

Related Work
Video Description Tools
LiveDescribe was designed for real-time descriptions of
live television broadcasts with two automated features to
work with silent periods. Feedback from describers was
positive but also reflected the high cognitive workload of
live description [4]. Villamizar et al. developed a proto-
type for an adaptive video enrichment system personal-

ized to BVI users based on decision trees [22], however,
as stated by the authors, the prototype needs to be evalu-
ated with user studies to investigate the adaptive system
further [22]. Gagnon et al. [9, 8] built a prototype software
for professional describers that used computer vision to ex-
tract visual content from videos. They displayed detected
features on an interactive timeline which allowed profes-
sional describers to have an overview of the frequency and
duration of features in the video, as well as the silent ar-
eas. Kobayashi et al. created audio description synthesis
by using external metadata of videos on an online platform
[14, 15]. Kobayashi et al. [15] developed a describer script
editor with a visual interface to edit the video description
sentences. They tested it on one novice and one profes-
sional describer. Ratings by blind and visually impaired
users showed significantly lower scores for the novice de-
scriber [15]. The novice describer estimated that it would
take three times longer without the script editor to produce
video descriptions, but no control condition was carried out.

Machine Learning in Video Understanding
Classical video description approaches combined sub-
ject, object, and verb (SVO) detection from visual entities
with template based language models to generate sen-
tences [16]. However, the release of large datasets re-
vealed that these methods cannot cope with the diversity
in unconstrained open domain videos and were replaced
with deep learning. In particular, Convolutional Neural Net-
works (CNNs) [1] are the state of the art for modeling visual
data recognition [1, 24, 26] and Long Short-Term Memory
(LSTMs) [12] are now dominating the area of sequence
modeling such as NLP [5, 10, 25]. CNN, Recurrent Neural
Network (RNN), or LSTM are used in the encoding stage
to learn visual features that are then used in the second
stage for text generation (decoding stage). For decoding,
different flavours of RNNs are used, such as deep RNN,



Bi-directional RNN, LSTM, Gated Recurrent Units (GRU),
Attention or Transformer [27]. The resulting description
can be a single sentence or multiple sentences. Roem-
mele et. al used a RNN architecture to generate stories in a
sequence-to-sequence manner [21]. Martin et. al proposed
an event representation for neural-network-based story
generation [17]. Fan et al. created a hierarchical model that
automatically generates stories conditioning on the writing
prompts [7]. Huang et. al introduced the visual storytelling
task, in which the trained model takes a sequence of photos
as input and generates a short story that narrates this photo
sequence [13].

Figure 1: Close-up of the
Describer User Interface and script
editor of the HILML system
displaying: 1) automated scene
segmentation, 2) text generation
for the description of images in the
video, and 3) text generation for
text that appears on the screen.
This automated text can then be
edited by the describer (the text
shown here is the automated
output with no human edits).

Human-in-the-Loop Machine Learning
Human-in-the-Loop Machine Learning (HILML) has been
defined as human and machine learning (ML) processes
interacting to solve one or more of the following: 1) Making
ML more accurate, 2) Getting ML to the desired accuracy
faster, 3) Making humans more accurate, and 4) Making
humans more efficient [18]. HILML is an important field to
both the HCI and ML communities and can create impor-
tant collaborations. In the field of image and video clas-
sification, Wang et al. [28] used HILML to create a semi-
automatic method to segment foreground moving objects
in surveillance videos. They combined human outlining of a
small number of moving objects with a CNN to reach sim-
ilar levels of accuracy as a human with less manual work
than human-only analysis [28]. Pirrung et al. [20] created
a HILML image organization web application where hu-
mans can organize their images and the machine learns
from these groupings. In return, the machine can reposi-
tion images or regroups them to reflect its assessment of
the human’s mental model, which may then be refined by
the user. In this paper, we leverage both human and ma-
chine intelligence to create a HILML system to aid sighted
humans create video descriptions for BVI users.

System
We built a system to assist novice human volunteers in pro-
ducing video descriptions using a HILML approach. Our
framework uses publicly available APIs, such as Microsoft
Azure Cognitive Services [23] and IBM Watson [29] for
computer vision and language. These APIs provide ca-
pabilities for scene detection, generation of phrase-level
captions on individual frames, face and emotion detection,
text detection, speech synthesis, and sentiment analysis.
We built a model based on this extracted knowledge to gen-
erate effective descriptions of video content. These descrip-
tions are minimal and mainly focus on major scene or con-
dition changes, primarily changes in foreground objects,
people in the scene, and text.

The following describes the workflow of the system:
Input Data: Videos for which descriptions have been re-
quested are forwarded to the model for processing.
Scene Segmentation and Key Frame Extraction: The
video is segmented into a sequence of scenes of varying
time spans. Key frames are sampled to maintain the appro-
priate granularity of the scene for generating the descrip-
tion.
Generating Video Description: Sequences of key frames
are processed by the model to generate descriptions that
best explain the scene in the video. The description covers
any text in the key frames, people with ID (to handle reap-
pearances), gender, emotion, hair color, age, objects, and
environment. People are recognizable if they are known
celebrities.
Validating or Revising the Description: Through the de-
scriber interface (Figures 1 and 2), sighted users can view
video scene segments, their associated descriptions, and
can make their own edits and notes in the script editor. Vol-



Figure 2: The Describer User Interface for the sighted volunteers in Experiment 1 across the Human-Only (Left Panel) and HILML (Right
Panel) conditions. The video is played on the left-hand side and the edit/input interface is on the right. In the Human-Only condition, describers
need to create their own scene segmentations and generate all of the descriptions from scratch. In the HILML condition, the scenes are
automatically segmented for users.

unteers improve this narration by revising, merging, or com-
pleting the machine-generated descriptions. Compared to
free-form descriptions that volunteers create from scratch,
the proposed process assists sighted volunteers to struc-
ture and complete the descriptions. Figure 1 shows the the
scene segmentation, text generation for description of im-
ages in the video, and text generation for text that appears
on the screen.
Playing Video with Description: The video is played to
the visually impaired or blind user with audio descriptions
synchronized to the original video. Audio is generated using
IBM Watson’s text-to-speech API.

Figure 3: Describers’ ratings of the
HILML and Human-Only
conditions. Describers showed
(Top:) noticeable preference for the
HILML system and (Bottom:) felt it
was quicker to use.

Figure 4: Describers’ ratings of the
helpfulness of the provided text
generated by the HILML system.
Most describers agreed or strongly
agreed that it was helpful.

Experiment 1: Describing Videos
Experiment 1 investigates the use of the HILML system for
video description generation for novice describers. Par-
ticipants described videos in two conditions: one with the
HILML system with machine learning assistance for text
generation and scene segmentation, and one with no ma-
chine learning assistance (Figure 2).

Experimental Design
In Experiment 1, twenty two participants (11 male, 11 fe-
male), aged 18 to 34 (mean age of 24.0, SD of 4.45) took
part in a within-subject design and will be referred to as the
describers. All describers first took a short tutorial to famil-
iarize themselves with the video description software. De-
scribers were then given two videos to describe, one with
and one without the HILML system. In the HILML condi-
tion, automated text and scene division was provided which
could then be edited by the describers if they wished. In the
control condition, which we refer to as the ‘Human-Only’
condition, describers typed out all of their video descriptions
from scratch in the user interface. Figure 2 show examples
of both conditions in the user interface. Both videos were
‘How-To’ cooking videos of around 2 minutes length each.
‘How-to’ videos are requested by visually impaired users
on YouDescribe. The ‘How-To’ video style requires a high
degree of quality description which includes: 1) text that
is on the screen to be described if it is present for greater



than 1 or 2 seconds, and 2) the scene to be described ev-
ery time it changes. The describers were divided into two
groups: Group 1 described Video 11 with the HILML system
and Video 22 without the HILML system. Group 2 described
Video 1 without the HILML system and Video 2 with the
HILML system. The order of the conditions and group allo-
cations was alternated between participants. Both videos
had music playing throughout with text on screen appear-
ing with instructions and ingredients. At the conclusion of
each video description, describers were asked to fill out a
questionnaire on their describing experience including an
unweighted NASA-TLX survey [11] (a subjective workload
assessment tool) and were given a short interview.

Describer Quotes on HILML
system from Experiment 1:

“It was super helpful. It was a
lot easier to describe what I
was looking at just because it
already had pre-written text. It
helps get it started.”

“I think that one was pretty
much set and it again gave us
all the details we needed and if
we need to fix it we could so I
think it made the process a lot
easier and quicker.”

“I feel like it gave me some type
of guideline as to what I should
put, and not too many details.”

“More helpful part was that it
was already dividing up into the
different scenes because the
fact that it was automatically
dividing up meant that all I have
to do is just create the script.”

“It was helpful for starting it. But
it wasn’t too helpful in being
more descriptive. It would be a
very simple description like ‘a
bowl was present.’ ”

“[The accuracy] was kind of
neutral because I also needed
to interpret what it was saying.
Some of the text was helpful
but the other things I deleted
it completely and started from
scratch.”

Results and Discussion
Questionnaire data: Questionnaire data shows that de-
scribers preferred the HILML system and felt that it was
quicker than the Human-Only condition (Figure 3) even
though both systems were generally easy to use for most
participants. This is interesting as the accuracy of the pro-
vided text by the HILML system was reported as being
somewhat accurate, with the mode response being of ‘neu-
tral’ accuracy. This suggests that even though the accu-
racy of the HILML system was not perfect, it was still helpful
(Figure 4) than no machine learning assistance at all.

Time Taken to Complete Video Descriptions: We performed
a t-test on the mean time (in seconds) that describers spent
describing a video across the HILML and Human-Only con-
ditions. Results showed that users described videos with
the HILML condition (µ = 1285.41, σ = 659.51) significantly
faster than the Human-Only condition (µ = 1825.45, σ =
658.51) (t(21) = 2.83, p = 0.005, d = 0.60). These find-
ings correspond with the questionnaire data by describers

1https://www.youtube.com/watch?v=cNj3aOTYdQQ
2https://www.youtube.com/watch?v=nqXz8hhAYGo

Human-Only HILML Wilcoxon Z p effect size
Mental demand 64.1 (20.7) 43.4 (23.9) -2.486572 0.011110 0.530139
Physical demand 19.8 (20.5) 14.8 (17.6) -0.813411 0.427694 0.173420
Temporal demand 40.5 (29.7) 28.0 (22.0) -1.463076 0.148385 0.311929
Performance 31.1 (22.3) 26.8 (27.8) -0.179176 0.866728 0.038200
Effort 60.7 (18.5) 45.7 (23.3) -2.199999 0.026089 0.469041
Frustration 43.4 (27.3) 23.6 (22.9) -2.548356 0.008972 0.543311

Table 1: Mean (st. dev.) NASA-TLX values (0=low, 100=high) and
results from Wilcoxon Signed-ranked test. Rows in bold indicate
significant results.

that the HILML system was quicker to use than the Human-
Only condition (Figure 3).

Describer Workload : Results of the NASA-TLX responses
(Table 1) showed that describers found the HILML system
to be significantly less mentally demanding, require less
effort, and be less frustrating.

Interview Data: All describers were asked the following
three interview questions: 1) ‘How helpful was the provided
text?’, 2) ‘Does using the provided text make describing the
videos easier?’, and 3) ‘Is there anything else you’d like to
add about the systems you used to describe the videos?’.
[Representative quotes are provided in the margin.] The
two main features provided by the HILML system for de-
scribers was automatic text generation for video descrip-
tions and scene segmentation. Sixteen out of 22 describers
commented on how these features helped provide guide-
lines for them as novices, particularly on the level of detail
required in descriptions. However, four out of 22 describers
felt that the descriptions were “vague” and “simple” (al-
though two of these describers still felt the HILML system
did provide them with a starting point or a guideline). Inter-
view data was consistent with questionnaire data on the text
generation’s neutral level of accuracy, yet the HILML was
still helped the majority of novice describers.



Experiment 2: Video Descriptions Rated By Blind
or Visually Impaired Users
Twelve BVI participants were asked to rate the videos cre-
ated by describers in Experiment 1 (akin to [15]). These
participants will be referred to as raters. Methods reported
by raters to access images were audio description (9 raters),
magnification (2 raters), and tactile graphics (1 rater).

Rater Quotes from Exper-
iment 2 on HILML system
and Human-Only Control
Condition:

“Good cooking advice, actually
describes what TO do and not
just what is going on. Would
say excellent.” [HILML System]

“This video is an example of
the minimum info that should
be included in all videos. It is
not too overly descriptive with
each step. It lays out what is
happening and then reads the
text for the ingredients.” [HILML
System]

“There weren’t any long pauses
in the video and it felt as if the
description was done more
carefully and with precision to
match the pace of the original
video.”[HILML System]

“Too specified, too confusing
to understand” [Human-Only
condition]

“The details were very vague
and no text shown on the
screen was even men-
tioned.” [Human-Only condition]

“I believe that aligning an au-
dio track with the description
is much more beneficial in or-
der to prevent any confusion.”
[Human-Only condition]

Experimental Design
All raters worked remotely and were each given half of the
44 videos described (as each of the 22 describers had pro-
duced 2 videos). Six raters were given videos produced
by the first 11 describers and six raters were given videos
described by the last 11 describers. Therefore, half of the
videos provided to each rater were described using the
HILML system and half were described by the Human-Only
condition. The videos were split evenly into Video 1 and
Video 2. The order of the videos provided to raters were
randomized. Raters were not even aware that some videos
had been described using the assistance of machine learn-
ing technology, they were simply told that the videos had
been described by 11 different describers. Raters could
play each video through and hear the video descriptions
being read out by text-to-speech synthesis. After watching
each video, raters were asked to rate the quality of descrip-
tion on a scale of 1 to 5 (‘Poor’ to ‘Excellent’), their under-
standing of the topic in the video, and any other comments.

Results and Discussion
Video Description Quality and Topic Understanding: Wilcoxon
Signed-ranks tests showed that mean video description
quality was rated significantly higher in videos created
by the HILML system (µ = 3.9393, σ = 0.5276) than
the Human-Only condition (µ = 3.4303, σ = 0.7328)
(Z = 2.5897, p = 0.0068, r = 0.7476) and that mean un-
derstanding of video’s topic was rated significantly higher

in videos created by the HILML system (µ = 4.1720,
σ = 0.6650) than the Human-Only condition (µ = 3.8417,
σ = 0.8026) (Z = 2.5001, p = 0.0117, r = 0.7217).

Comments by Raters: The comments provided by the raters
were extremely interesting [please see margin for represen-
tative quotes]. The level of detail provided in descriptions
was very important to raters, with the HILML system pro-
viding more concise and succinct descriptions. Novice de-
scribers often provided too much detail in the Human-Only
condition. Raters highlighted many cases in the Human-
Only condition where there was a lack of reading out text on
screen. The HILML system automatically generates text on
screen, guiding the novice describer in that respect. Correct
scene segmentation and alignment of audio and video was
also very important to BVI raters with the HILML system
creating a more cohesive “flow” for raters, as opposed to a
speed that was “rushed” in the Human-Only condition.

Conclusion
This work demonstrates that the HILML system 1) helps
novice describers generate video descriptions for BVI users
significantly faster and with increased ease, and 2) gener-
ates significantly higher quality video descriptions and un-
derstanding than human-only descriptions as rated by BVI
users. This provides a hugely needed low barrier to entry
method for online video descriptions in order to decrease
the massive digital divide between BVI and sighted users.
As part of future work, we are developing ‘on-demand de-
scriptions’ to allow BVI users to pause the video and ask
questions using natural language.
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