On getting arbitrarily accurate approximations for the value of Euler’s number  e
In Stewart’s calculus, the number  e  is defined in a somewhat unusual way, as the unique base for the exponential function whose graph has a tangent-slope equal to  1  at the point where it crosses the y-axis (page 60).  It is stated that the approximate value of   e  equals  2.71828 (to five decimal places), but a demonstration of this fact is deferred until a future chapter.  Our aim here is to indicate how the number  e  can be determined to any degree of accuracy that may be desired, based on the ideas already introduced in Chapter One.
Our basic result is expressed in the following inequality, where  n  is any positive integer:



( 1 + 1/n )n  <  e  <  ( 1 + 1/n )n+1
To obtain this inequality, we will employ several observations about the graphs for the natural exponential function  y = exp(x)  and its inverse function, the natural logarithm function  y = ln(x) .  As Stewart explains (page 68), these two graphs are the reflections of one another in the diagonal line  y = x .
Observations:

(1)  The value  y = exp(x)  of the natural exponential function increases as  x  increases. 

(2)  The value  y = ln(x)  of the natural logarithm function increases as  x  increases. 

(3)  The slope of a tangent to the graph  y = exp(x)  at (x,y)  will increase as  x  increases.

(4)  The slope of a tangent to the graph  y = ln(x)  at (x,y)  will decrease as  x  increases.

Inequality 1:  Consider a secant-line through points  (1,0)  and  ( 1+1/n, ln( 1+1/n ))  on the graph  y = ln(x) .  Its slope will be less than the slope of the tangent-line to this curve at  (1,0) [because of observation (4)], and may be written in the form:


secant-slope  =  [ ln( 1+1/n ) – ln( 1 ) ] / [ (1+1/n) – 1 ]
This formula can be simplified, with the help of  logarithmic law 3 (page 68), as follows:



secant-slope  =  n ln( 1 + 1/n )  =  ln(  (1 + 1/n)n )  

Since the tangent-slope at  (1,0)  equals  1  and is larger than this secant-slope, we get




ln( (1 + 1/n)n )  <  ln( e )

and when we take exponentials, this gives us the left-hand part of our desired result, in view of the fact that  exp( x )  is an increasing function.  

Inequality 2:  Consider a secant-line through points  (1,0)  and  (1-1/(n+1), ln( 1-1/(n+1) )  on the graph  y = ln(x) .  Its slope will be larger than the slope of the tangent-line to this curve at  (1,0) [because of observation (4)], and may be written in the form:



secant-slope  =  [ ln( 1-1/(n+1) ) – ln( 1 ) ] / [ (1-1/(n+1)) – 1 ]

This formula can be simplified, again with the help of  logarithmic law 3, as follows:



secant-slope  =  (n+1) ln( 1 + 1/n )  =  ln(  (1 + 1/n)n+1 )  

Since the tangent-slope at  (1,0)  equals  1  and is smaller than this secant-slope, we get





 ln( e )  <  ln( (1 + 1/n)n+1 )  

and when we take exponentials, this gives us the right-hand part of our desired result, in view once again of the fact that  exp( x )  is an increasing function.  

_______
As the first instance of our inequality result (i.e., when we take  n = 1 ), we find that:




     ( 1 + 1/1 )1   <   e   <   ( 1 + 1/1 )2
or, in other words, the value of  e  lies somewhere between  2  and  4 .  By taking much larger values for  n , we can pin down the value of  e  to a much narrower interval.  For the difference between the left-hand term  (1 + 1/n)n  and the number  e  will be smaller than  4(1/n) :


0   <   e  -  ( 1 + 1/n )n   <  ( 1 + 1/n )n [ (1 + 1/n) – 1]  <  4(1/n)

So if we take  n = 800000 , we can get an approximation that is correct to five decimal places:



0   <   e  -  ( 1 + 1/800000 )800000    <   4 / 800000  =  0.000005
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