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A Bit of History: Morris Worm 

 Worm was released in 1988 by Robert Morris 
•  Graduate student at Cornell, son of NSA chief scientist 
•  Convicted under Computer Fraud and Abuse Act, 

sentenced to 3 years of probation and 400 hours of 
community service 

•  Now a computer science professor at MIT 

 Worm was intended to propagate slowly and 
harmlessly measure the size of the Internet 

 Due to a coding error, it created new copies as 
fast as it could and overloaded infected machines 

 $10-100M worth of damage 



Morris Worm and Buffer Overflow 

 One of the worm’s propagation techniques was a 
buffer overflow attack against a vulnerable 
version of fingerd on VAX systems 
•  By sending special string to finger daemon, worm 

caused it to execute code creating a new worm copy 
•  Unable to determine remote OS version, worm also 

attacked fingerd on Suns running BSD, causing them 
to crash (instead of spawning a new copy) 

 For more history: 
•  http://www.snowplow.org/tom/worm/worm.html 



Buffer Overflow These Days 

 Most common cause of Internet attacks 
•  Over 50% of advisories published by CERT (computer 

security incident report team) are caused by various 
buffer overflows 

 Morris worm (1988): overflow in fingerd 
•  6,000 machines infected 

 CodeRed (2001): overflow in MS-IIS server 
•  300,000 machines infected in 14 hours 

 SQL Slammer (2003): overflow in MS-SQL server 
•  75,000 machines infected in 10 minutes (!!) 



 Buffer is a data storage area inside computer 
memory (stack or heap) 
•  Intended to hold pre-defined amount of data 

–  If more data is stuffed into it, it spills into adjacent memory 

•  If executable code is supplied as “data”, victim’s 
machine may be fooled into executing it – we’ll see how 

–  Code will self-propagate or give attacker control over machine  

 First generation exploits: stack smashing 
 Second gen: heaps, function pointers, off-by-one 
 Third generation: format strings and heap 

management structures 

Attacks on Memory Buffers 



Stack Buffers 

 Suppose Web server contains this function 
  void func(char *str) { 

           char buf[126]; 
           strcpy(buf,str); 
      } 

 When this function is invoked, a new frame with 
local variables is pushed onto the stack 
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What If Buffer is Overstuffed? 

 Memory pointed to by str is copied onto stack… 
  void func(char *str) { 

           char buf[126]; 
           strcpy(buf,str); 
      } 

 If a string longer than 126 bytes is copied into 
buffer, it will overwrite adjacent stack locations 

strcpy does NOT check whether the string  
at *str contains fewer than 126 characters 

buf str 

This will be 
interpreted 

as return address! 

overflow Top of 
stack 

Frame of the 
calling function 



Executing Attack Code 

 Suppose buffer contains attacker-created string 
•  For example, *str contains a string received from the 

network as input to some network service daemon 

 

 When function exits, code in the buffer will be  
    executed, giving attacker a shell 

•  Root shell if the victim program is setuid root 
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setuid 

 available on Unix based operating systems  
 setuid is a bit indicating temporary privilege 

associated with the executable 
•  similarly setgid 

 password change, shell change, …  
 insecure executable with setuid is target for 

buffer overflow 



 Executable attack code is stored on stack, inside 
the buffer containing attacker’s string  
•  Stack memory is supposed to contain only data, but… 

 Overflow portion of the buffer must contain 
correct address of attack code in the RET position 
•  The value in the RET position must point to the 

beginning of attack assembly code in the buffer 
–  Otherwise application will crash with segmentation violation 

•  Attacker must correctly guess in which stack position 
his buffer will be when the function is called 

Buffer Overflow Issues 



Problem: No Range Checking 

 strcpy does not check input size 
•  strcpy(buf, str) simply copies memory contents into 

buf starting from *str until “\0” is encountered, 
ignoring the size of area allocated to buf 

 Many C library functions are unsafe 
•  strcpy(char *dest, const char *src) 
•  strcat(char *dest, const char *src) 
•  gets(char *s) 
•  scanf(const char *format, …) 
•  printf(const char *format, …)  



 strncpy(char *dest, const char *src, size_t n) 
•  If strncpy is used instead of strcpy, no more than n 

characters will be copied from *src to *dest 
–  Programmer has to supply the right value of n 

 Potential overflow in htpasswd.c (Apache 1.3): 
  … strcpy(record,user);  

      strcat(record,”:”); 
         strcat(record,cpw); … 

 Published “fix” (do you see the problem?): 
   … strncpy(record,user,MAX_STRING_LEN-1); 

         strcat(record,”:”); 
         strncat(record,cpw,MAX_STRING_LEN-1); … 

Does Range Checking Help? 

Copies username (“user”) into buffer (“record”), 
then appends “:” and hashed password (“cpw”) 



 Published “fix” for Apache htpasswd overflow: 
   … strncpy(record,user,MAX_STRING_LEN-1); 

         strcat(record,”:”); 
         strncat(record,cpw,MAX_STRING_LEN-1); … 

Misuse of strncpy in htpasswd “Fix” 

MAX_STRING_LEN bytes allocated for record buffer 

contents of *user 

Put up to MAX_STRING_LEN-1 
characters into buffer 

: 

Put “:” 

contents of *cpw 
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 Home-brewed range-checking string copy 
   void notSoSafeCopy(char *input) { 

          char buffer[512]; int i;  
 
             for (i=0; i<=512; i++) 
                 buffer[i] = input[i];  
        } 
        void main(int argc, char *argv[]) { 
             if (argc==2)  
                notSoSafeCopy(argv[1]); 
        } 

Off-By-One Overflow 

1-byte overflow: can’t change RET, but can change pointer to previous stack 
frame 

On little-endian architecture, make it point into buffer 
RET for previous function will be read from buffer! 

This will copy 513 
characters into 
buffer. Oops! 



 Overflowing buffers on heap can change pointers 
that point to important data 
•  Sometimes can also transfer execution to attack code 
•  Can cause program to crash by forcing it to read from 

an invalid address (segmentation violation) 

 Illegitimate privilege elevation: if program with 
overflow has sysadm/root rights, attacker can use 
it to write into a normally inaccessible file 
•  For example, replace a filename pointer with a pointer 

into buffer location containing name of a system file 
–  Instead of temporary file, write into AUTOEXEC.BAT 

Heap Overflow 



 C uses function pointers for callbacks: if pointer to 
F is stored in memory location P, then another 
function G can call F as (*P)(…) 

Function Pointer Overflow 
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 Proper use of printf format string: 
  … int foo=1234;  

      printf(“foo = %d in decimal, %X in hex”,foo,foo); … 

–  This will print  
  foo = 1234 in decimal, 4D2 in hex 

 Sloppy use of printf format string: 
  … char buf[13]=“Hello, world!”;  

      printf(buf); 
         // should’ve used printf(“%s”, buf); … 
 

–  If buffer contains format symbols starting with %, location 
pointed to by printf’s internal stack pointer will be interpreted 
as an argument of printf.  This can be exploited to move 
printf’s internal stack pointer. 

Format Strings in C 



 %n format symbol tells printf to write the number 
of characters that have been printed 

  … printf(“Overflow this!%n”,&myVar); … 

–  Argument of printf is interpeted as destination address 
–  This writes 14 into myVar (“Overflow this!” has 14 characters) 

 What if printf does not have an argument? 
  … char buf[16]=“Overflow this!%n”;  

      printf(buf); … 
–  Stack location pointed to by printf’s internal stack pointer will 

be interpreted as address into which the number of characters 
will be written. 

Writing Stack with Format Strings 



Using %n to Mung Return Address 

RET “… attackString%n”, attack code &RET 

Overwrite stack with RET address; 
printf(buffer) will write the number of  

characters in attackString into RET 

Return 
execution to 
this address 
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input string 
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to stack address where 
attack code starts 

  See “Exploting Format String Vulnerabilities” for details 

C has a concise way of printing multiple symbols:  
%Nx will print exactly N bytes (taking them from the stack).  

If attackString contains enough “%Nx” so that its total length  
is equal to the address of attack code, this address will be written into 
RET and execution will be passed to attack code when function exits. 

This portion contains 
enough % symbols 
to advance printf’s 

internal stack pointer 



More Buffer Overflow Targets 

 Heap management structures used by malloc() 
 URL validation and canonicalization 

•  If Web server stores URL in a buffer with overflow, then 
attacker can gain control by supplying malformed URL 

–  Nimda worm propagated itself by utilizing buffer overflow in 
Microsoft’s Internet Information Server 

 Some attacks don’t even need overflow 
•  Naïve security checks may miss URLs that give attacker 

access to forbidden files 
–  For example, http://victim.com/user/../../autoexec.bat may 

pass naïve check, but give access to system file 
–  Defeat checking for “/” in URL by using hex representation 



Preventing Buffer Overflow 

 Use safe programming languages, e.g., Java 
•  What about legacy C code? 

 Mark stack as non-executable 
 Randomize stack location or encrypt return 

address on stack by XORing with random string 
•  Attacker won’t know what address to use in his string 

 Static analysis of source code to find overflows 
 Run-time checking of array and buffer bounds 

•  StackGuard, libsafe, many other tools 

 Black-box testing with long strings 



Non-Executable Stack 

 NX bit on every Page Table Entry 
•  AMD Athlon 64, Intel P4 “Prescott”, but not 32-bit x86 
•  Code patches marking stack segment as non-

executable exist for Linux, Solaris, OpenBSD 

 Some applications need executable stack 
•  For example, LISP interpreters 

 Does not defend against return-to-libc exploits 
•  Overwrite return address with the address of an 

existing library function (can still be harmful) 

 …nor against heap and function pointer overflows 



 Embed “canaries” in stack frames and verify their 
integrity prior to function return 
•  Any overflow of local variables will damage the canary 

 

 Choose random canary string on program start 
•  Attacker can’t guess what the value of canary will be 

 Terminator canary: “\0”, newline, linefeed, EOF 
•  String functions like strcpy won’t copy beyond “\0” 

Run-Time Checking: StackGuard 
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StackGuard Implementation 

 StackGuard requires code recompilation 
 Checking canary integrity prior to every function 

return causes a performance penalty 
•  For example, 8% for Apache Web server 

 PointGuard also places canaries next to function 
pointers and setjmp buffers 
•  Worse performance penalty 

 StackGuard can be defeated!  
•  Phrack article by Bulba and Kil3r 



Defeating StackGuard (Sketch) 

 Idea: overwrite pointer used by some strcpy and 
make it point to return address (RET) on stack 
•  strcpy will write into RET without touching canary! 

 

buf sfp RET 

Return execution to 
this address 

canary dst 

Suppose program contains strcpy(dst,buf) 

sfp RET canary BadPointer, attack code &RET 

Overwrite destination of strcpy with RET position strcpy will copy  
BadPointer here 



Run-Time Checking: Libsafe 

 Dynamically loaded library 
 Intercepts calls to strcpy(dest,src) 

•  Checks if there is sufficient space in current 
stack frame   
   |frame-pointer – dest| > strlen(src) 

•  If yes, does strcpy; else terminates application   

dest ret-addr sfp 
top 
of 

stack 
src buf ret-addr sfp 

libsafe main 



PointGuard 

 Attack: overflow a function pointer so that it points 
to attack code 

 Idea: encrypt all pointers while in memory 
•  Generate a random key when program is executed 
•  Each pointer is XORed with this key when loaded from 

memory to registers or stored back into memory 
–  Pointers cannot be overflown while in registers 

 Attacker cannot predict the target program’s key 
•  Even if pointer is overwritten, after XORing with key it 

will dereference to a “random” memory address 
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PointGuard Issues 

 Must be very fast 
•  Pointer dereferences are very common 

 Compiler issues 
•  Must encrypt and decrypt only pointers 
•  If compiler “spills” registers, unencrypted pointer values 

end up in memory and can be overwritten there 

 Attacker should not be able to modify the key 
•  Store key in its own non-writable memory page 

 PG’d code doesn’t mix well with normal code 
•  What if PG’d code needs to pass a pointer to OS 

kernel? 


