Buffer overflow exploits

EJ Jung

usice A Bit of History: Morris Worm

» Worm was released in 1988 by Robert Morris
e Graduate student at Cornell, son of NSA chief scientist

e Convicted under Computer Fraud and Abuse Act,
sentenced to 3 years of probation and 400 hours of

community service
e Now a computer science professor at MIT

» Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

» Due to a coding error, it created new copies as
fast as it could and overloaded infected machines

» $10-100M worth of damage

usiCMorris Worm and Buffer Overflow

» One of the worm’ s propagation techniques was a
buffer overflow attack against a vulnerable
version of fingerd on VAX systems

e By sending special string to finger daemon, worm
caused it to execute code creating a new worm copy

e Unable to determine remote OS version, worm also
attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

» For more history:
o http://www.snowplow.org/tom/worm/worm.html

Wi Buffer Overflow These Days

» Most common cause of Internet attacks

e Over 50% of advisories published by CERT (computer
security incident report team) are caused by various
buffer overflows

» Morris worm (1988): overflow in fingerd
e 6,000 machines infected

» CodeRed (2001): overflow in MS-IIS server
e 300,000 machines infected in 14 hours

» SQL Slammer (2003): overflow in MS-SQL server
e 75,000 machines infected in 10 minutes (!!)

usics Attacks on Memory Buffers

» Buffer is a data storage area inside computer
memory (stack or heap)

o Intended to hold pre-defined amount of data
— If more data is stuffed into it, it spills into adjacent memory

o If executable code is supplied as “data”, victim’s
machine may be fooled into executing it — we’ Il see how
— Code will self-propagate or give attacker control over machine

» First generation exploits: stack smashing
» Second gen: heaps, function pointers, off-by-one

» Third generation: format strings and heap
management structures

icc Stack Buffers

» Suppose Web server contains this function

void func(char *str) ({ Allocate local buffer
char buf[126]; (126 bytes reserved on stack)

strcpy (buf, str) ; % Copy argument into local buffer

}

» When this function is invoked, a new frame with
local variables is pushed onto the stack

< Stack grows this way

buf sfp

\ - 7 \\ J \\ J \\ J
Y A4) 4 A4
Local variables Pointer to Execute Arguments
previous code at
frame this address
—— after func()

finishes

U What If Buffer is Overstuffed?

» Memory pointed to by str is copied onto stack...

void func(char *str) {

char buf[126]; 4 strcpy does NOT check whether the string
* -
strcpy (buf,str) ; at *str contains fewer than 126 characters

}

» If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

buf over

This will be
interpreted
as return address!

JsiCExecuting Attack Code

» Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

v Top of
C/(zde e stack
ZN

Attacker puts actual assembly
instructions into his input string, e.qg.,
binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

» When function exits, code in the buffer will be
executed, giving attacker a shell
e Root shell if the victim program is setuid root

setuid

» available on Unix based operating systems
> setuid is a bit indicating temporary privilege
associated with the executable
e similarly setgid
» password change, shell change, ...

» insecure executable with setuid is target for
buffer overflow

usics Buffer Overflow Issues

» Executable attack code is stored on stack, inside
the buffer containing attacker’ s string

e Stack memory is supposed to contain only data, but...

» Overflow portion of the buffer must contain
correct address of attack code in the RET position

e The value in the RET position must point to the
beginning of attack assembly code in the buffer
— Otherwise application will crash with segmentation violation

e Attacker must correctly guess in which stack position
his buffer will be when the function is called

usice Problem: No Range Checking

» strcpy does not check input size

o strcpy(buf, str) simply copies memory contents into
buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

» Many C library functions are unsafe
e strcpy(char *dest, const char *src)
o strcat(char *dest, const char *src)
e gets(char *s)
e scanf(const char *format, ...)
e printf(const char *format, ...)

usics Does Range Checking Help?

» strncpy(char *dest, const char *src, size_t n)

o If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest
— Programmer has to supply the right value of n

» Potential overflow in htpasswd.c (Apache 1.3):

. strcpy (record, u er)
strcag%record 7 ;

strcat (record, cpw), ‘e

ﬁ

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

> Published “fix” (do you see the problem?):

strcat (record,”:”) ;

. strncpy(record user ,MAX STRING LEN-1) ;

strncat (record,cpw,MAX STRING LEN-1); ..

usitMisuse of strncpy in htpasswd “Fix”

> Published “fix” for Apache htpasswd overflow:

. strncpy (record,user ,MAX STRING LEN-1) ;

strcat (record, "'”)'
strncat (record,cpw,MAX STRING LEN-1); ...

MAX_STRING_LEN bytes allocated for record buffer

__ A
~—~ ——

contents of *user : contents of *cpw

i] [2gmim it o
characters into buffer characters into buffer

usf

 Off-By-One Overflow

nputer

» Home-brewed range-checking string copy

void notSoSafeCopy (char *input) { This will copy 513
char buffer?¥12]; int E; dmmdagﬁﬁ;_
for (i=0; ﬂ:;512; i++) buffer. Oops!

buffer[i] = input[i];
}
void main(int argc, char *argv[]) {
if (argc==2)
notSoSafeCopy (argv[1l]) ;
}

1-byte overflow: can’ t change RET, but can change pointer to previous stack
frame

On little-endian architecture, make it point into buffer

RET for previous function will be read from buffer!

usics Heap Overflow

» Overflowing buffers on heap can change pointers
that point to important data
e Sometimes can also transfer execution to attack code
e Can cause program to crash by forcing it to read from
an invalid address (segmentation violation)
> lllegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use
it to write into a normally inaccessible file

e For example, replace a filename pointer with a pointer
into buffer location containing name of a system file
— Instead of temporary file, write into AUTOEXEC.BAT

Function Pointer Overflow

» C uses function pointers for callbacks: if pointer to
F is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer

—P A
”’ N~/ h)

Heap attack code overflow

v

Legitimate function F

(elsewhere in memory)

usiCs Format Strings in C

puter s

» Proper use of printf format string:

. int foo=1234;
printf (“foo = %d in decimal, %X in hex’ ,foo,fo0); ..

— This will print
foo = 1234 in decimal, 4D2 in hex

» Sloppy use of printf format string:

. char buf[13]="Hello, world!”;
printf (buf) ;
// should ve used printf (“$s”, buf); ...

— If buffer contains format symbols starting with %, location
pointed to by printf’ s internal stack pointer will be interpreted
as an argument of printf. This can be exploited to move
printf’ s internal stack pointer.

HSHC

~ Writing Stack with Format Strings

» %n format symbol tells printf to write the number
of characters that have been printed

. printf (“Overflow this!$n”, &amyVar); ...

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)

» What if printf does not have an argument?

. char buf[l6]="“Overflow this!%n”;
printf (buf) ; ...

— Stack location pointed to by printf’ s internal stack pointer will
be interpreted as address into which the number of characters
will be written.

Using %n to Mung Return Address

This p

ortion contains

enough % symbols

to ad

vance printf’ s

Buffer with attacker-supplied

internal stack pointer input string
\‘ \ A
\ N
N attackString%n”, attack code | &RET RET
/\ A PN /
/7 N\ ~

Number of characters in
attackString must be equal
to stack address where
attack code starts

Overwrite stack with RET address;
printf(buffer) will write the number of
characters in attackString into RET

Return
execution to
this address

~

%Nx will print exactly N bytes (taking them from the stack).

If attackString contains enough “%Nx” so that its total length
is equal to the address of attack code, this address will be written into
RET and execution will be passed to attack code when function exits.

C has a concise way of printing multiple symbols:

> See “Exploting Format String Vulnerabilities” for details

usics More Buffer Overflow Targets

» Heap management structures used by malloc()

> URL validation and canonicalization

o If Web server stores URL in a buffer with overflow, then
attacker can gain control by supplying malformed URL

— Nimda worm propagated itself by utilizing buffer overflow in
Microsoft’ s Internet Information Server

» Some attacks don’ t even need overflow

e Naive security checks may miss URLs that give attacker
access to forbidden files

— For example, http://victim.com/user/../../autoexec.bat may
pass naive check, but give access to system file

— Defeat checking for “/” in URL by using hex representation

C> Preventing Buffer Overflow

» Use safe programming languages, e.qg., Java
e What about legacy C code?

» Mark stack as non-executable

» Randomize stack location or encrypt return
address on stack by XORing with random string

e Attacker won’ t know what address to use in his string
» Static analysis of source code to find overflows

» Run-time checking of array and buffer bounds
o StackGuard, libsafe, many other tools

» Black-box testing with long strings

usicc Non-Executable Stack

» NX bit on every Page Table Entry
e AMD Athlon 64, Intel P4 “Prescott”, but not 32-bit x86

e Code patches marking stack segment as non-
executable exist for Linux, Solaris, OpenBSD

» Some applications need executable stack
o For example, LISP interpreters

» Does not defend against return-to-libc exploits

e Overwrite return address with the address of an
existing library function (can still be harmful)

> ...nor against heap and function pointer overflows

1sICRun-Time Checking: StackGuard

> Embed “canaries” in stack frames and verify their
integrity prior to function return

e Any overflow of local variables will damage the canary

N
| ret [CEisesne Top of
55fgfs.5f~:3.:.-.5.5.~.-:5f-.-:::555.:.5.-.-.355;; op o
buf Sfp | addr | g rinction P
R S RS SN StaCk
~— ~— _J \ - J\ Y
Local variables Pointer to Return

previous execution to
frame this address

» Choose random canary string on program start
e Attacker can’t guess what the value of canary will be

> Terminator canary: “\0”, newline, linefeed, EOF
e String functions like strcpy won’ t copy beyond “\0”

icc StackGuard Implementation

» StackGuard requires code recompilation

» Checking canary integrity prior to every function
return causes a performance penalty
e For example, 8% for Apache Web server

» PointGuard also places canaries next to function
pointers and setjimp buffers
o Worse performance penalty

» StackGuard can be defeated!
e Phrack article by Bulba and Kil3r

usics Defeating StackGuard (Sketch)

» Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - sfp | RET

i ——
Suppose program contains strcpy(dst,buf) Retun executionto

this address

\
BadPointer, attack code | &RET - sfp RE'/I'\
A /

/ \
Overwrite destination of strcpy with RET position / strcpy will copy

BadPointer here

usice Run-Time Checking: Libsafe

» Dynamically loaded library
» Intercepts calls to strcpy(dest,src)

e Checks if there is sufficient space in current
stack frame

|frame-pointer — dest| > strlen(src)
o If yes, does strcpy; else terminates application

L 4 to
sfp |ret-addr | dest | src buf sfp | ret-addr OIP

1 stack

>~ T - ~ ~ ~

libsafe main

usice PointGuard

» Attack: overflow a function pointer so that it points
to attack code

» Idea: encrypt all pointers while in memory
e Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
— Pointers cannot be overflown while in registers

> Attacker cannot predict the target program’s key

e Even if pointer is overwritten, after XORing with key it
will dereference to a “random” memory address

Normal Pointer Dereference

CPU

1. Fetch pointer \Vv \Access data referenced by pointer

[Cowan

7 " Y
Pointer
Memory 0x1234 Data
0x1234

2. Access attack code referenced
by corrupted pointer
1. Fetch pointer value

Corruptied pointer Attack

M em O I‘y \—gﬁéﬁ\ Data code

0x1234 0x1340

UsICPointGuard Dereference [Cowan]

1. Fetch pointer A' x1234 2. Access data referenced by pointer
value Decrypt

7
d A
Encrypted pointer
Memory 0x7239 Data
0x1234

Decrypts to CPU
random vaiue 2. Access random address;
0x9786 segmentation fault and crash

1. Fetch pointer
value Decrypt
Corrupted pointer Attack T
—TO0x2239 Data
Memory 07239 code

0x1234 0x1340 0x9786

usice PointGuard Issues

» Must be very fast
e Pointer dereferences are very common

» Compiler issues
e Must encrypt and decrypt only pointers

o If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

> Attacker should not be able to modify the key
o Store key in its own non-writable memory page

» PG’ d code doesn’ t mix well with normal code

o What if PG’ d code needs to pass a pointer to OS
kernel?

