

CAPTCHA

EJ Jung

- stands for Completely Automated Public Turing test to tell Computers and Humans Apart
- Reverse Turing test
 - Turing test: how to tell an intelligent computer apart
 - from Wikipedia
 - it proceeds as follows: a human judge engages in a natural language conversation with one human and one machine, each of which try to appear human; if the judge cannot reliably tell which is which, then the machine is said to pass the test.
 - remember Blade Runner?
- Human Interactive Proof

- Imagine that two players are playing Jeopardy over the Internet by typing in answers.
- > In one window, a real human person answers.
- > In the other, <u>Watson</u> answers.
- > Would you be able to tell which is which?

Botnets can do even more

- Crawlers may ignore robot.txt
- Bots leave malicious contents as comments, postings, emails and collect informations
- > Web spam is legal (spam is not)
 - btw, <u>http://www.ncsl.org/programs/lis/CIP/hacklaw.htm</u>
 - http://www.usfca.edu/its/about/policies/aup/

Search engine

- more links, higher ranking
- e.g. Google's page rank

> Advertisement

• mimic "word of mouth"

Phishing

• disguise as suggestions and recommendations

- Prevent dictionary attacks in any password system (Pinkas & Sander)
 - after failures, ask for CAPTCHA and the password
- Deter massive attacks
 - botnets may not pass CAPTCHA
 - humans are much slower
 - ask for CAPTCHA for any suspicious activity

- Unpublished manuscript by Moni Naor first mentions automated Turing test in 1997, but not proposed or formalized.
- Alta Vista patent in 1998 first practical example of using slightly distorted images of text to deter bots.
 - broken later by OCR

In 2000, formalized by

Luis von Ahn, Manuel Blum & Nicholas J. Hopper of Carnegie Mellon; John Langford of IBM

"A CAPTCHA is a cryptographic protocol whose underlying hardness assumption is based on an AI problem."

www.captcha.net

> Advancing AI and security together

• battle of breaking and improving

- Fext (ASCII/Unicode)
- > Image
- Speech
- Animation
- ≻ 3-D
- Combinations of all above

- Change text to look-alike: SPAM is \$P4M. Fools simplest text matching.
- > Accented or non-English chars: Spám
- Chars to words: <u>uce@ftc.gov</u> --> uce at ftc dot gov
- URL/HTML entities: COPY becomes ¢0Ρ¥ or %430P%59
- Better than nothing, but easy to crack
- > This is not technically CAPTCHA

Gimpy, ez-gimpy

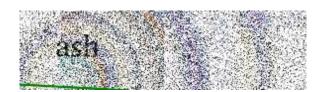
- Pick a word or words from a small dictionary
- Distort them and add noise and background

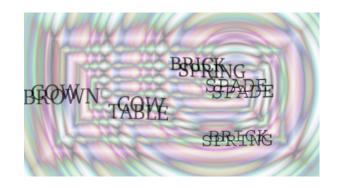
Gimpy-r

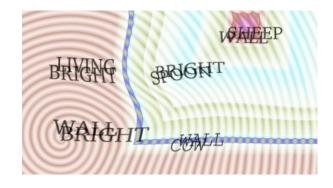
- Pick random letters
- Distort them, add noise and background

Simard's HIP

- Pick random letters and numbers
- Distort them and add arcs

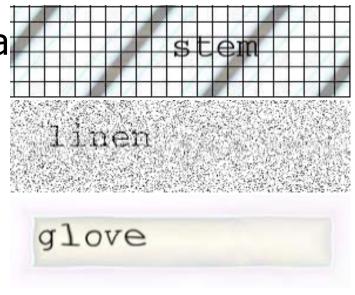




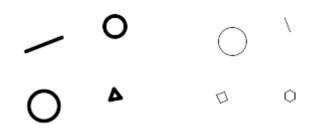


First generation

- Pick a word from dictionary
- Random placement, font, distortion, background pattern
- Overlapping words serve as noise.
- Frequently cracked and improved.
 - <u>http://www.cs.sfu.ca/~mori/</u> research/gimpy/
- In current version, 5 pairs of overlapped words. User identifies 3 words.



- Pick a word or words from a small dictionary
- Distort them and add noise and background
- > 99% success in breaking
 - Distortion Estimation Techniques in Solving Visual CAPTCHAs, CVRP 2004


- Pick random letters
- Distort them, add noise and backgroun
- > 78% success in breaking Gimpy-r
 - Distortion Estimation Techniques in Solving Visual CAPTCHAs, CVRP 2004

Visual pattern recognition puzzle

- > Example: thick vs. thin
- User is presented with a new block and needs to pick left or right

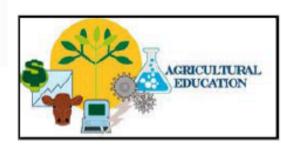


Image recognition with keywords

Procedure

- display four images with the same keyword
- provide a random set of keywords to choose from
- user needs to pick the common keyword

Choose a word that relates to all the images.

TIP: You can type the first letter of a word and then use the down arrow to find it.

Submit

© 2004 Carnegie Mellon University, all rights reserved.

OCR-base attacks

- <u>http://sam.zoy.org/pwntcha/</u>
- Pretend We're Not a Turing Computer but a Human Antagonist

Heuristics

• vary position, warp, noise, background, colors, overlap, randomness, font, angles, language,

Accessibility problem for vision-impaired users

- audio as well as visual
- <u>http://www.w3.org/TR/turingtest/</u>

- Text-based CAPTCHA Strengths and Weaknesses [Bursztein,Martin,Mitchell CCS2011]
- Classify the given image to one of the words in synthetic corpus

k b 1 1 2 9		k b j r z 9	<u>kbjrz9</u>	Reitz9					
Original		Pre-processing	Segmentation	Post-segmentation					
Figure 5: Example of the Blizzard pipeline									
Original	and serve	Pre-processing	dissents Segmenta						

Figure 10: Example of the Slashdot pipeline

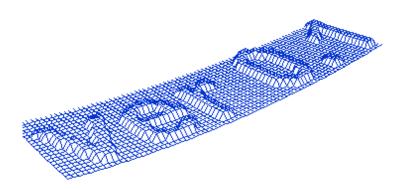
Scheme	Recall	Precision	Anti-segmental	
Authorize	84%	66%	background con	12.1.2
Baidu	98%	5%	collapsing	nZXX3
Blizzard	75%	70%	background con	/total gues
Captcha.net	96%	73%	background compusion	
CNN	50%	16%	line	
Digg	86%	20%	line	Sattlemomi
eBay	95%	43%	collapsing	/tp+fn
Google	0%	0%	collapsing	
Megaupload	n/a	93%	collapsing	
NIH	87%	72%	background confusion	and the second second second second
Recaptcha	0%	0%	collapsing	nucx5p
Reddit	71%	42%	background confusion	
Skyrock	30%	2%	background confusion	
Slashdot	52%	35%	lines	
Wikipedia	57%	25%	n/a	_

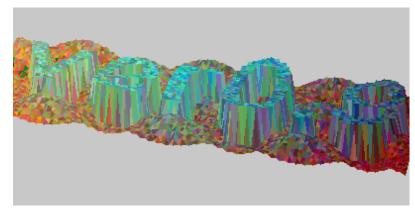
Table 2: Real wor	d captchas summary
-------------------	--------------------

Spell in synthesized or recorded voices

> Voice recognition vs. user's miss rate

- Use with visual CAPTCHA for increased accessibility
 - may help attackers guess correctly




- > Can use Flash, MPEG, animated GIF
- Often combined with speech
- > Weaknesses of Image CAPTCHA apply
- Usually easier to crack due to extra data for pattern matching to analyze
- > Much higher processor and traffic load
- > Not practical in most cases

tEABAG_3D

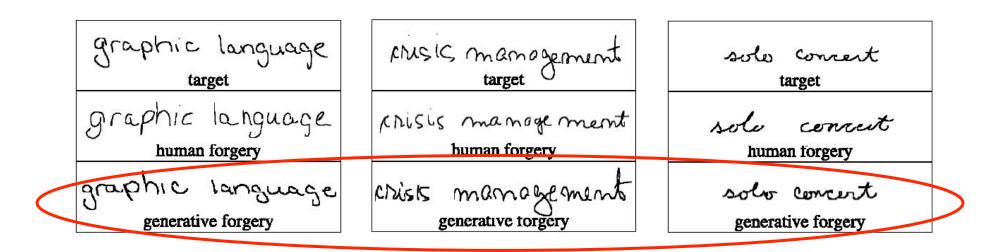
- http://www.ocr-research.org.ua/index.php?action=teabag
- > Renders the password in 3D image
- More difficult to crack then 2D images
- More resources on server
 - high load graphic processing
- Can be combined with other methods

Man-in-the-middle

- copy CAPTCHA from the target
- post on the attacker's website
- forward the answer to the target

CAPTCHA factory

- <u>http://taint.org/2008/03/05/122732a.html</u>
- Reuse the session id
 - <u>http://www.puremango.co.uk/cm_breaking_captcha_115.php</u>



Free software

- http://www.google.com/recaptcha
- <u>http://captcha.net</u>

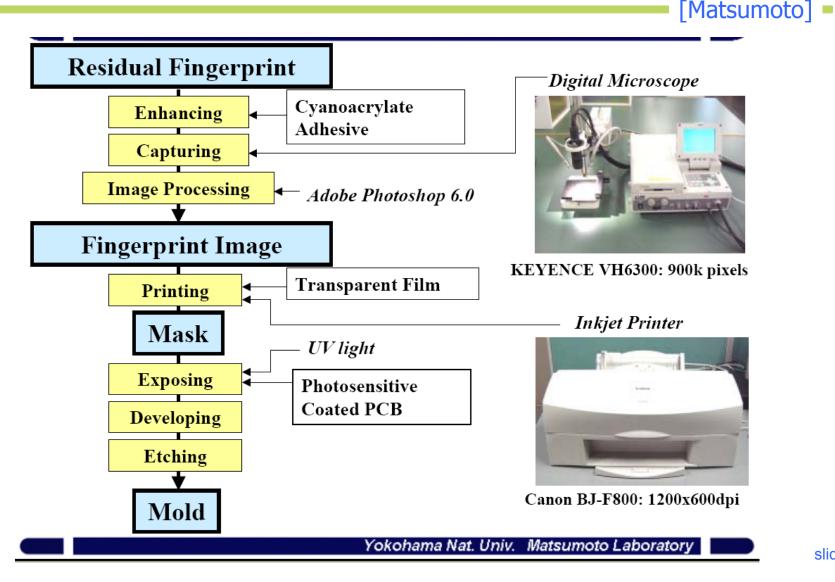
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained on handwriting samples

[Matsumoto] •

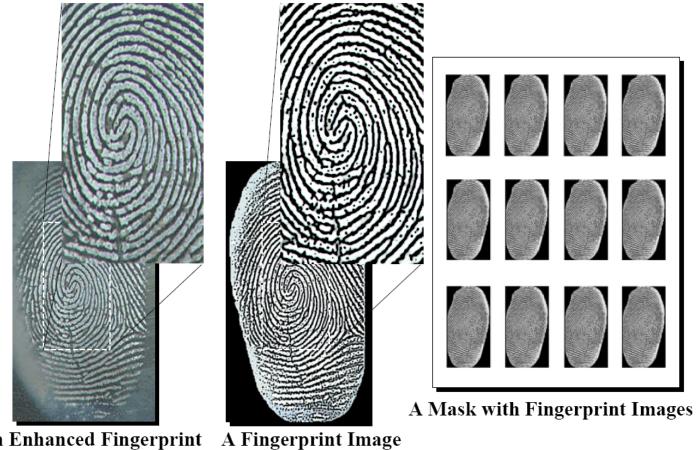
Making an Artificial Finger from a Residual Fingerprint

Materials


A photosensitive coated Printed Circuit Board (PCB)

"10K" by Sanhayato Co., Ltd .

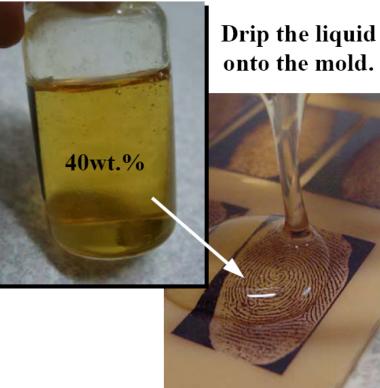
Solid gelatin sheet "GELATINE LEAF " by MARUHA CORP



slide 29

[Matsumoto] •

An Enhanced Fingerprint A Fingerprint Image


Yokohama Nat. Univ. Matsumoto Laboratory

slide 30

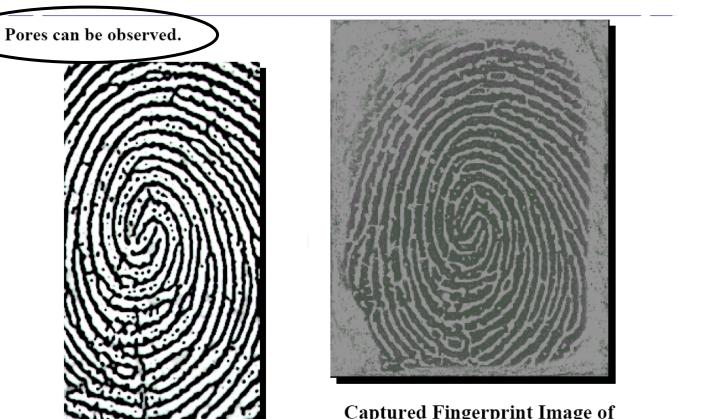
[Matsumoto] -

Gelatin Liquid

Put this mold into a refrigerator to cool, and then peel carefully.

Yokohama Nat. Univ. Matsumoto Laboratory

[Matsumoto] -



Mold: 70JPY/piece (Ten molds can be obtained in the PCB.)

Gummy Finger: 50JPY/piece

Yokohama Nat. Univ. Matsumoto Laboratory

Enhanced Fingerprint

Captured Fingerprint Image of the Gummy Finger with the device H (a capacitive sensor)

Yokohama Nat. Univ. Matsumoto Laboratory

[Matsumoto] •

 Alternative to gelatin
Play-Doh fingers fool 90% of fingerprint scanners

• Clarkson University study

Suggested perspiration measurement to test "liveness" of the finger

[Schuckers] —