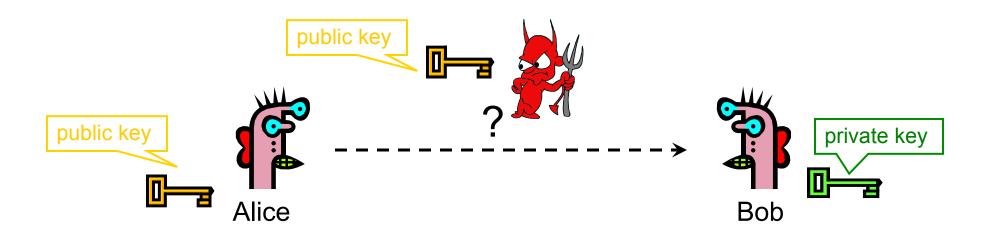


Public Key Cryptography

EJ Jung



<u>Given</u>: Everybody knows Bob's public key - How is this achieved in practice? Only Bob knows the corresponding private key

<u>Goals</u>: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

University of an equirements for Public-Key Crypto

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key PK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Decrypt(SK,Encrypt(PK,M))=M

Requirements for Public-Key Cryptography

- 1. Computationally easy for a party B to generate a pair (public key KU_b, private key KR_b)
- 2. Easy for sender to generate ciphertext:

$$C = E_{\scriptscriptstyle KUb}(M)$$

3. Easy for the receiver to decrypt ciphertect using private key:

$$M = D_{KRb}(C) = D_{KRb}[E_{KUb}(M)]$$

Requirements for Public-Key Cryptography

- 4. Computationally infeasible to determine private key (KR_b) knowing public key (KU_b)
- 5. Computationally infeasible to recover message M, knowing KU_b and ciphertext C
- 6. Either of the two keys can be used for encryption, with the other used for decryption:

$$M = D_{KRb}[E_{KUb}(M)] = D_{KUb}[E_{KRb}(M)]$$

RSA and Diffie-Hellman

RSA - Ron Rives, Adi Shamir and Len Adleman at MIT, in 1977.

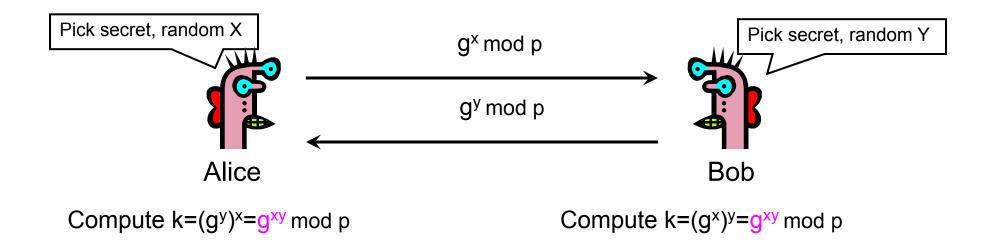
- RSA is a block cipher
- The most widely implemented

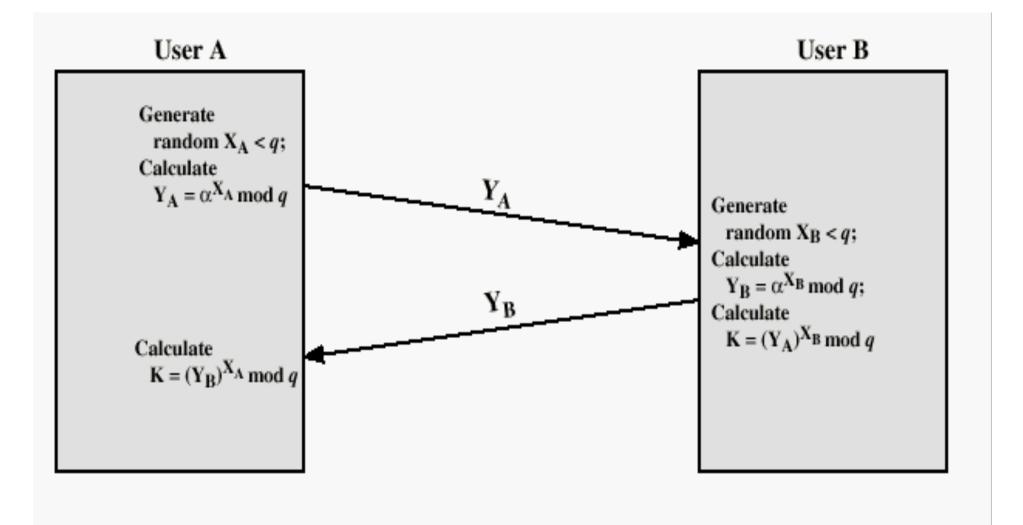
> Diffie-Hellman

- Echange a secret key securely
- Compute discrete logarithms

Alice and Bob never met and share no secrets
 <u>Public</u> info: p and g

- p is a large prime number, g is a generator of Z_p^*
 - $Z_p^* = \{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a = g^i \mod p$
 - <u>Modular arithmetic</u>: numbers "wrap around" after they reach p





UNIVERSITY of SAME AS IN THE SECOND AND A SECURE?

- Discrete Logarithm (DL) problem: given g^x mod p, it's hard to extract x
 - There is no known <u>efficient</u> algorithm for doing this
 - This is not enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem: given g^x and g^y, it's hard to compute g^{xy} mod p
 - ... unless you know x or y, in which case it's easy
- Decisional Diffie-Hellman (DDH) problem:

given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between established key and a random value
 - Can use new key for symmetric cryptography

 Approx. 1000 times faster than modular exponentiation

- Diffie-Hellman protocol alone does not provide authentication
- > Why?
 - authentication means associating a certain identity
 - needs to know whose public key this is

Key Generation			
Select p, q	p and q both prime, $p \neq q$		
Calculate $n = p \times q$			
Calculate $\phi(n) = (p-1)(q - 1)$	1)		
Select integer e	$gcd(\phi(n), e) = 1; 1 \le e \le \phi(n)$		
Calculate d	$de \mod \phi(n) = 1$		
Public key	$KU = \{e, n\}$		
Private key	$KR = \{d, n\}$		

Calculate d	$de \mod \phi(n) = 1$
Public key	$KU = \{e, n\}$
Private key	$KR = \{d, n\}$

Encryption		
Plaintext:	M < n	
Ciphertext:	$C = M^e \pmod{n}$	

Decryption		
Ciphertext:	С	
Plaintext:	$M = C^d \pmod{n}$	

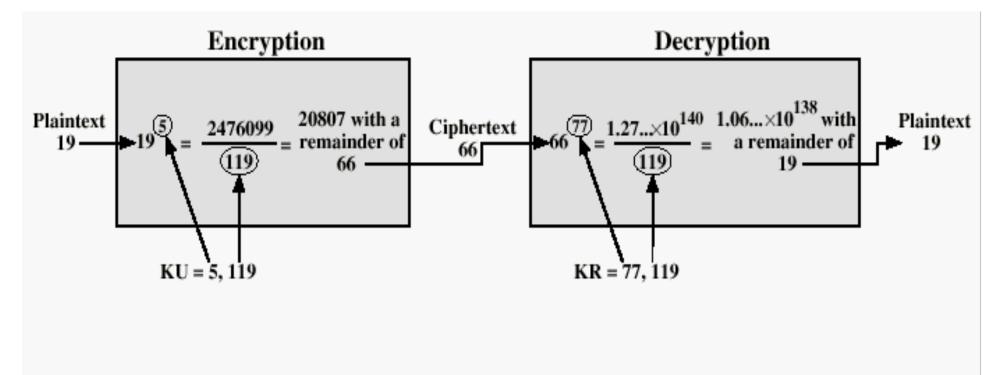


Figure 3.9 Example of RSA Algorithm

Henric Johnson

- RSA problem: given n=pq, e such that gcd(e,(p-1)(q-1))=1 and c, find m such that m^e=c mod n
 - i.e., recover m from ciphertext c and public key (n,e) by taking eth root of c
 - There is no known efficient algorithm for doing this
- Factoring problem: given positive integer n, find primes p₁, ..., p_k such that n=p₁^{e₁}p₂^{e₂}...p_k^{e_k}
- If factoring is easy, then RSA problem is easy, but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring n

Other Public-Key Cryptographic Algorithms

Digital Signature Standard (DSS)

- Makes use of the SHA-1
- Not for encryption or key echange
- Elliptic-Curve Cryptography (ECC)
 - Good for smaller bit size
 - Low confidence level, compared with RSA
 - Very complex

UNIVERSITY of SAN FANCE OF PUBLIC-Key Crypto

Encryption for confidentiality

- <u>Anyone</u> can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
- Only someone who knows private key can decrypt
- Key management is simpler (maybe)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

Confidentiality without shared secrets

- Very useful in open environments
- No "chicken-and-egg" key establishment problem
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- > Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
- Reduce protection of information to protection of authenticity of public keys
 - No need to keep public keys secret, but must be sure that Alice's public key is <u>really</u> her true public key

usic isadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower

- Modular exponentiation is an expensive computation
- Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto

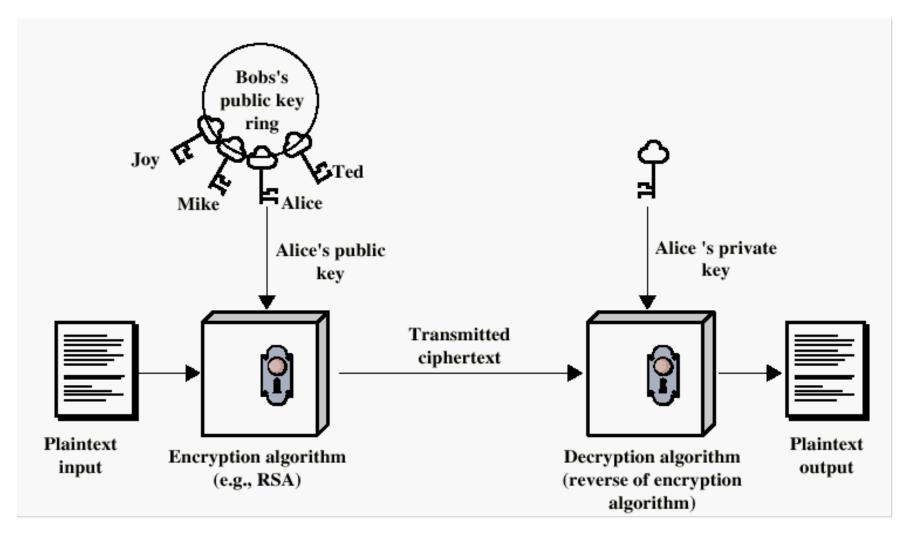
 We'll see this in IPSec and SSL
- Keys are longer
 - 1024 bits (RSA) rather than 128 bits (AES)

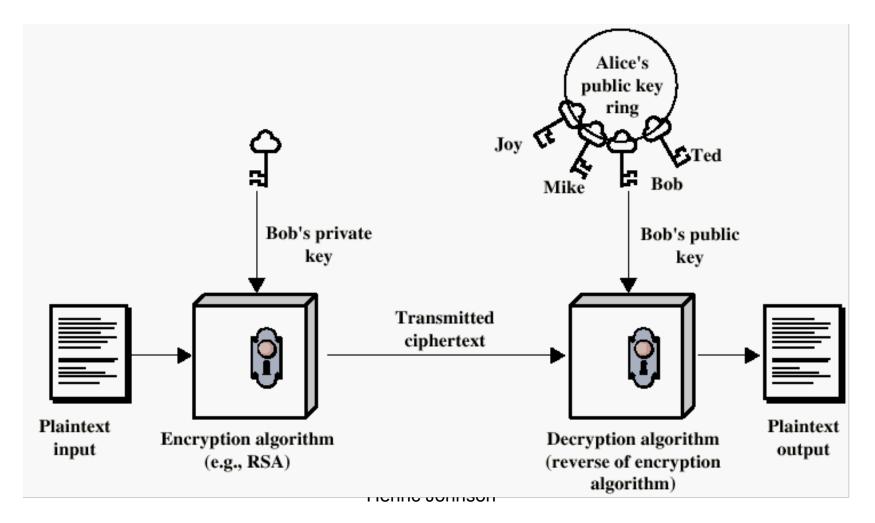
Relies on unproven number-theoretic assumptions

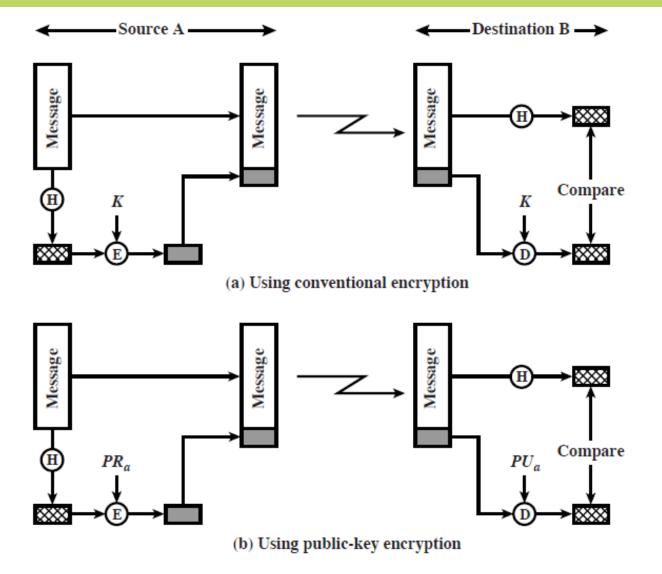
• What if factoring is easy?

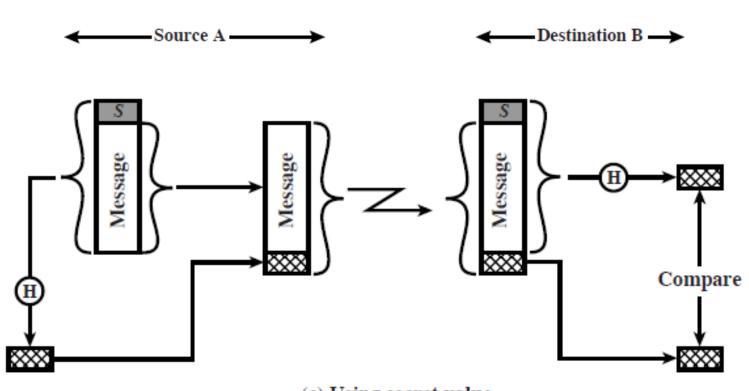
– Factoring is <u>believed</u> to be neither P, nor NP-complete

Encryption using Public-Key Susters System









(c) Using secret value

Figure 3.2 Message Authentication Using a One-Way Hash Function

Key Management

