

Spam filtering

An unsolicited email

- equivalent to Direct Mail in postal service
- UCE (unsolicited commercial email)
- UBE (unsolicited bulk email)
- 82% of US email in 2004 [MessageLabs 2004]

Etymology

- Monty Python's spam episode
- "ham" = not spam

➢ May 3rd, 1978

- Sent to Arpanet west coast users
- Invitation to see new models of DEC-20
- Violated ARPA's user policy
- Vendors were chastised & ceased (for then)
- March 31st, 1993 first UUCP spam
 - Unix-to-Unix Copy
- > April, 1994 Green Card Lottery spam
 - Message posted to EVERY UUCP group

Internet Service Provider (ISP)

- much higher bandwidth usage
- Email service providers
 - need to support larger disk space
 - need to deploy anti-spam measures

Businesses

- time spent on spam
- damage by spams and viruses and worms

> Us?

Potentially malicious

- viruses, worms
- phishing emails
- Fill up the disk space
- > Does it bother you more than DMs?
 - if so, why?

Source: Microsoft Security Intelligence Report '09 (http://www.microsoft.com/downloads/ details.aspx?FamilyID=037f3771-330e-4457-a52c-5b085dc0a4cd&displaylang=en)

Spamhaus

- >90%
- http://www.spamhaus.org/effective_filtering.html
- Postini (Google owned)
 - >90%-95%
 - http://googleenterprise.blogspot.com/search/label/spam%20and%20security%20trends

Consensus: >90% of all email is spam

> Is (was) exponentially increasing

Number of spam messages

- Very back of the envelope...
- > 100,000,000,000 messages/month
- Recipient
 - \$0.025
 - \$2.5 billion/month for recipients
- Sender
 - \$0.00001 for sender to generate
 - \$1 million/month for sender
- Profit?
 - 1:200,000 = 500,000 sales. \$2 is break-even point

CAN-SPAM Act of 2003

- UBE must be labeled
- Must have opt-out option
- Some people went to jail...
- Some ISPs have been shut down

Number of spam messages

Network-level

- DNS blackholes/blacklisting
- Edge filtering

Content-level

- Rule-based
- checksum
- Machine learning
 - Probabilistic
 - SVM

Cost-based approach

Blacklist = list of known spammers

- IP addresses/domains/senders
- Top five spamming ISPs account for > 80% of spam traffic!
- > Whitelist = list of known good senders
 - IP addresses/domains/senders
- > Further reading:
 - Zhang et al. Highly Predictive Blacklisting
 - (http://www.cyber-ta.org/releases/HPB/HighlyPredictiveBlacklists-SRI-TR-Format.pdf)

Source: Microsoft Security Intelligence Report '09 (http://www.microsoft.com/downloads/ details.aspx?FamilyID=037f3771-330e-4457-a52c-5b085dc0a4cd&displaylang=en)

Filtering at "edges" of network.

- Ingress: filtering traffic entering your network
- Egress: filtering traffic exiting your network

Rule-based

- regular expressions on headers, contents, ...
- blacklist
- Hash/checksum database
- > Bayesian probability/networks
 - probabilistic approach
- Support Vector Machine
 - High dimension hyper-plane!

> Given new email message do I deliver or trash?

Spam I've seen

- Rules are expressed as regular expressions (or SNORT traces)
 - If contains "refinancing" & "mortgage", trash
 - If contains non-English alphabets, trash
 - If attachment type = executable, trash

Limitations

- Difficult to write rules general enough to catch spam but not legit email
- often miss obvious tricks
 - misspelling on purpose

Goal: resilient to spelling changes Does it look like spam I've already seen?

Traditional hashing

- Same: Fixed length output
- Different: Unique input = (nearly) unique output
- 1 bit change in input = COMPLETELY different hash

Fuzzy hashing

- Same: Fixed length output
- Different: "mostly the same" = SAME value

Output = fixed length. Look at distance between outputs. Shorter distance = more similar. Input = message

➤ Conditional probability $P(A | B) = \frac{P(A \cap B)}{P(B)}$

> Bayes' Theorem $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Given a word "stock" in an email, what is the probability of this email being spam?

> Does more words mean higher probability?

- related words such as stock, jackpot, blue chip, ...
- not-related words such as stock, diet, ...
- n words require O(2ⁿ) probabilities to compute
- > Naïve Bayesian filter
 - assumes the independence between words
 - O(n) probabilities to compute

 $P(spam/stock, jackpol) = \frac{P(stock, jackpol | spam)P(spam)}{P(stock, jackpol)}$

Given records, plot them in n-dimension spaces and find a "plane" that divides the plots the best.

> How do we choose which tokens to examine?

Words alone are not sufficient

- phrases, punctuation, ...
- sender's email address, IP address, domain name, ...
- URLs, images, tags, ...

More sophisticated conditions

- attachment?
- contains images?

SpamAssassin

- open-source
- combination of rule-based and Bayesian
- commonly run at SMTP server
- can be applied for an individual user

Vipul's Razor

- Collaborative, distributed, checksum (statistical & randomized signature-based) anti-spam solution
- Commercial version: Cloudmark, Inc

If you can't win the game, change the rules...
Would you pay \$0.0025 to send an email?

- > If you sent 50 emails/day:
 - ~\$46/year

> Spammers:

- 100,000,000 * \$.0025 = \$250,000,000 dollars
- Assuming adoption rate of 1:200,000
- Break even = \$1,250