
SQL Injection

Slides thanks to Prof. Shmatikov at UT Austin

Dynamic Web Application

Browser
Web

server

GET / HTTP/1.0

HTTP/1.1 200 OK

index.php

Database
server

slide 2

PHP: Hypertext Preprocessor

 Server scripting language with C-like syntax
 Can intermingle static HTML and code

 <input value=<?php echo $myvalue; ?>>
 Can embed variables in double-quote strings

 $user = “world”; echo “Hello $user!”;
or $user = “world”; echo “Hello” . $user . “!”;

 Form data in global arrays $_GET, $_POST, …

slide 3

SQL

 Widely used database query language
 Fetch a set of records

 SELECT * FROM Person WHERE Username=‘Vitaly’

 Add data to the table
 INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

 Modify data
 UPDATE Keys SET Key=FA33452D WHERE PersonID=5

 Query syntax (mostly) independent of vendor

slide 4

Sample PHP Code

 Sample PHP
 $selecteduser = $_GET['user'];
 $sql = "SELECT Username, Key FROM Key " .
 "WHERE Username='$selecteduser'";
 $rs = $db->executeQuery($sql);

 What if ‘user’ is a malicious string that changes
the meaning of the query?

slide 5

SQL Injection: Basic Idea

Victim server

Victim SQL DB

Attacker post malicious form

unintended
query

receive valuable data

1

2

3

slide 6

  This is an input validation vulnerability
Unsanitized user input in SQL query to back- end

database changes the meaning of query
  Specific case of more general command injection

Typical Login Prompt

slide 7

Enter
Username

&
Password

User Input Becomes Part of Query

slide 8

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

Enter
Username

&
Password

Normal Login

slide 9

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘smith’

Malicious User Input

slide 10

Enter
Username

&
Password

SQL Injection Attack

slide 11

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

Exploits of a Mom

slide 12

http://xkcd.com/327/

Authentication with Back-End
DB

 set UserFound=execute(
 “SELECT * FROM UserTable WHERE
 username=‘ ” & form(“user”) & “ ′ AND
 password= ‘ ” & form(“pwd”) & “ ′ ”);

•  User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail

slide 13

Only true if the result of SQL
query is not empty, i.e., user/
pwd is in the database

Using SQL Injection to Steal Data

 User gives username ′ OR 1=1 --
 Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=‘’ OR 1=1 -- …);

•  Now all records match the query

 This returns the entire database!

slide 14

Always true! Everything after -- is ignored!

Another SQL Injection
Example

 To authenticate logins, server runs this SQL
command against the user database:

SELECT * WHERE user=‘name’ AND pwd=‘passwd’
 User enters ’ OR WHERE pwd LIKE ‘% as both

name and passwd
 Server executes
SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’

AND pwd=‘’ OR WHERE pwd LIKE ‘%’
 Logs in with the credentials of the first person in

the database (typically, administrator!)
slide 15

[From Kevin Mitnick’s “The Art of Intrusion”]

Wildcard matches any password

It Gets Better

 User gives username
 ′ exec cmdshell ‘net user badguy badpwd’ / ADD --

 Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username= ‘’ exec … -- …);
 Creates an account for badguy on DB server

slide 16

Pull Data From Other
Databases

 User gives username
 ’ AND 1=0

UNION SELECT cardholder, number,
exp_month, exp_year FROM creditcards

 Results of two queries are combined
 Empty table from the first query is displayed

together with the entire contents of the credit
card database

slide 17

More SQL Injection Attacks

 Create new users
 ’; INSERT INTO USERS (‘uname’,‘passwd’,‘salt’)
 VALUES (‘hacker’,‘38a74f’, 3234);

 Reset password
 ’; UPDATE USERS SET email=hcker@root.org
WHERE email=victim@yahoo.com

slide 18

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘????????’)
WHERE user_id=‘userid’

slide 19

Creates a password with 8
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’),
 user_level=‘103’, user_aim=(‘????????’)
WHERE user_id=‘userid’

slide 20

… with superuser privileges

User’s password is
set to ‘badPwd’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

Second-Order SQL Injection

 Second-order SQL injection: data stored in
database is later used to conduct SQL injection

 For example, user manages to set uname to
admin’ --
•  This vulnerability could exist if string escaping is

applied inconsistently (e.g., strings not escaped)
•  UPDATE USERS SET passwd=‘cracked’

WHERE uname=‘admin’ --’ why does this work?

 Solution: treat all parameters as dangerous

slide 21

SQL Injection in the Real World (1)

 Oklahoma Department of Corrections divulges
thousands of social security numbers (2008)
•  Sexual and Violent Offender Registry for Oklahoma
•  Data repository lists both offenders and employees

  “Anyone with a web browser and the knowledge from
 Chapter One of SQL For Dummies could have easily
 accessed – and possibly,
 changed – any data within
 the DOC's databases"

slide 22

http://www.ireport.com/docs/DOC-11831

SQL Injection in the Real World (2)

 Ohio State University has the largest enrolment of
 students in the United States; it also seems to be vying
 to get the largest number of entries, so far eight, in the
 Privacy Rights Clearinghouse breach database . One of
 the more recent attacks that took
 place on the 31st of March 2007
 involved a SQL injection attack
 originating from China against a
 server in the Office of Research.
 The hacker was able to access
 14,000 records of current and
 former staff members.

slide 23

CardSystems Attack (June
2005)

 CardSystems was a major credit card processing
company

 Put out of business by a SQL injection attack
•  Credit card numbers stored unencrypted
•  Data on 263,000 accounts stolen
•  43 million identities exposed

slide 24

April 2008 Attacks

slide 25

Main Steps in April 2008
Attack

 Use Google to find sites using a particular ASP
style vulnerable to SQL injection

 Use SQL injection to modify the pages to include
a link to a Chinese site nihaorr1.com
•  Do not visit that site – it serves JavaScript that exploits

vulnerabilities in IE, RealPlayer, QQ Instant Messenger

 Attack used automatic tool; can be configured to
inject whatever you like into vulnerable sites

 There is some evidence that hackers may get
paid for each victim’s visit to nihaorr1.com

slide 26

Part of the SQL Attack String
DECLARE @T varchar(255),@C varchar(255)
DECLARE Table_Cursor CURSOR
FOR select a.name,b.name from sysobjects a,syscolumns b where
a.id=b.id and a.xtype='u' and
(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)
OPEN Table_Cursor
FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN
 exec('update ['+@T+'] set ['+@C+']=rtrim(convert(varchar,['+@C+']))
+'‘ ''')
FETCH NEXT FROM Table_Cursor INTO @T,@C
END CLOSE Table_Cursor
DEALLOCATE Table_Cursor;
DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(
%20AS%20NVARCHAR(4000));EXEC(@S);--

slide 27

Preventing SQL Injection

 Input validation
•  Filter

–  Apostrophes, semicolons, percent symbols, hyphens,
underscores, …

–  Any character that has special meanings

•  Check the data type (e.g., make sure it’s an integer)

 Whitelisting
•  Blacklisting “bad” characters doesn’t work

–  Forget to filter out some characters
–  Could prevent valid input (e.g., last name O’Brien)

•  Allow only well-defined set of safe values
–  Set implicitly defined through regular expressions

slide 28

Escaping Quotes

 For valid string inputs use escape characters to
prevent the quote becoming part of the query
•  Example: escape(o’connor) = o’’connor
•  Convert ’ into \’
•  Only works for string inputs
•  Different databases have different rules for escaping

slide 29

Prepared Statements

 Metacharacters such as ’ in queries provide
distinction between data and control

 In most injection attacks data are interpreted as
control – this changes the semantics of a query
or a command

 Bind variables: ? placeholders guaranteed to be
data (not control)

 Prepared statements allow creation of static
queries with bind variables. This preserves the
structure of intended query.

slide 30

Prepared Statement: Example

 Query parsed without parameters
  Bind variables are typed (int, string, …)

PreparedStatement ps =
 db.prepareStatement("SELECT pizza, toppings, quantity, order_day "
 + "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery();

Bind variable:
data placeholder

slide 31

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Mitigating Impact of Attack

 Prevent leakage of database schema and other
information

 Limit privileges (defense in depth)
 Encrypt sensitive data stored in database
 Harden DB server and host OS
 Apply input validation

slide 32

