
SQL Injection

Slides thanks to Prof. Shmatikov at UT Austin

Dynamic Web Application

Browser
Web

server

GET / HTTP/1.0

HTTP/1.1 200 OK

index.php

Database
server

slide 2

PHP: Hypertext Preprocessor

 Server scripting language with C-like syntax
 Can intermingle static HTML and code

 <input value=<?php echo $myvalue; ?>>
 Can embed variables in double-quote strings

 $user = “world”; echo “Hello $user!”;
or $user = “world”; echo “Hello” . $user . “!”;

 Form data in global arrays $_GET, $_POST, …

slide 3

SQL

 Widely used database query language
 Fetch a set of records

 SELECT * FROM Person WHERE Username=‘Vitaly’

 Add data to the table
 INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

 Modify data
 UPDATE Keys SET Key=FA33452D WHERE PersonID=5

 Query syntax (mostly) independent of vendor

slide 4

Sample PHP Code

 Sample PHP
 $selecteduser = $_GET['user'];
 $sql = "SELECT Username, Key FROM Key " .
 "WHERE Username='$selecteduser'";
 $rs = $db->executeQuery($sql);

 What if ‘user’ is a malicious string that changes
the meaning of the query?

slide 5

SQL Injection: Basic Idea

Victim server

Victim SQL DB

Attacker post malicious form

unintended
query

receive valuable data

1

2

3

slide 6

  This is an input validation vulnerability
Unsanitized user input in SQL query to back- end

database changes the meaning of query
  Specific case of more general command injection

Typical Login Prompt

slide 7

Enter
Username

&
Password

User Input Becomes Part of Query

slide 8

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

Enter
Username

&
Password

Normal Login

slide 9

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘smith’

Malicious User Input

slide 10

Enter
Username

&
Password

SQL Injection Attack

slide 11

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

Exploits of a Mom

slide 12

http://xkcd.com/327/

Authentication with Back-End
DB

 set UserFound=execute(
 “SELECT * FROM UserTable WHERE
 username=‘ ” & form(“user”) & “ ′ AND
 password= ‘ ” & form(“pwd”) & “ ′ ”);

•  User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail

slide 13

Only true if the result of SQL
query is not empty, i.e., user/
pwd is in the database

Using SQL Injection to Steal Data

 User gives username ′ OR 1=1 --
 Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=‘’ OR 1=1 -- …);

•  Now all records match the query

 This returns the entire database!

slide 14

Always true! Everything after -- is ignored!

Another SQL Injection
Example

 To authenticate logins, server runs this SQL
command against the user database:

SELECT * WHERE user=‘name’ AND pwd=‘passwd’
 User enters ’ OR WHERE pwd LIKE ‘% as both

name and passwd
 Server executes
SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’

AND pwd=‘’ OR WHERE pwd LIKE ‘%’
 Logs in with the credentials of the first person in

the database (typically, administrator!)
slide 15

[From Kevin Mitnick’s “The Art of Intrusion”]

Wildcard matches any password

It Gets Better

 User gives username
 ′ exec cmdshell ‘net user badguy badpwd’ / ADD --

 Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username= ‘’ exec … -- …);
 Creates an account for badguy on DB server

slide 16

Pull Data From Other
Databases

 User gives username
 ’ AND 1=0

UNION SELECT cardholder, number,
exp_month, exp_year FROM creditcards

 Results of two queries are combined
 Empty table from the first query is displayed

together with the entire contents of the credit
card database

slide 17

More SQL Injection Attacks

 Create new users
 ’; INSERT INTO USERS (‘uname’,‘passwd’,‘salt’)
 VALUES (‘hacker’,‘38a74f’, 3234);

 Reset password
 ’; UPDATE USERS SET email=hcker@root.org
WHERE email=victim@yahoo.com

slide 18

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘????????’)
WHERE user_id=‘userid’

slide 19

Creates a password with 8
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’),
 user_level=‘103’, user_aim=(‘????????’)
WHERE user_id=‘userid’

slide 20

… with superuser privileges

User’s password is
set to ‘badPwd’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

Second-Order SQL Injection

 Second-order SQL injection: data stored in
database is later used to conduct SQL injection

 For example, user manages to set uname to
admin’ --
•  This vulnerability could exist if string escaping is

applied inconsistently (e.g., strings not escaped)
•  UPDATE USERS SET passwd=‘cracked’

WHERE uname=‘admin’ --’ why does this work?

 Solution: treat all parameters as dangerous

slide 21

SQL Injection in the Real World (1)

 Oklahoma Department of Corrections divulges
thousands of social security numbers (2008)
•  Sexual and Violent Offender Registry for Oklahoma
•  Data repository lists both offenders and employees

  “Anyone with a web browser and the knowledge from
 Chapter One of SQL For Dummies could have easily
 accessed – and possibly,
 changed – any data within
 the DOC's databases"

slide 22

http://www.ireport.com/docs/DOC-11831

SQL Injection in the Real World (2)

 Ohio State University has the largest enrolment of
 students in the United States; it also seems to be vying
 to get the largest number of entries, so far eight, in the
 Privacy Rights Clearinghouse breach database . One of
 the more recent attacks that took
 place on the 31st of March 2007
 involved a SQL injection attack
 originating from China against a
 server in the Office of Research.
 The hacker was able to access
 14,000 records of current and
 former staff members.

slide 23

CardSystems Attack (June
2005)

 CardSystems was a major credit card processing
company

 Put out of business by a SQL injection attack
•  Credit card numbers stored unencrypted
•  Data on 263,000 accounts stolen
•  43 million identities exposed

slide 24

April 2008 Attacks

slide 25

Main Steps in April 2008
Attack

 Use Google to find sites using a particular ASP
style vulnerable to SQL injection

 Use SQL injection to modify the pages to include
a link to a Chinese site nihaorr1.com
•  Do not visit that site – it serves JavaScript that exploits

vulnerabilities in IE, RealPlayer, QQ Instant Messenger

 Attack used automatic tool; can be configured to
inject whatever you like into vulnerable sites

 There is some evidence that hackers may get
paid for each victim’s visit to nihaorr1.com

slide 26

Part of the SQL Attack String
DECLARE @T varchar(255),@C varchar(255)
DECLARE Table_Cursor CURSOR
FOR select a.name,b.name from sysobjects a,syscolumns b where
a.id=b.id and a.xtype='u' and
(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)
OPEN Table_Cursor
FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN
 exec('update ['+@T+'] set ['+@C+']=rtrim(convert(varchar,['+@C+']))
+'‘ ''')
FETCH NEXT FROM Table_Cursor INTO @T,@C
END CLOSE Table_Cursor
DEALLOCATE Table_Cursor;
DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(
%20AS%20NVARCHAR(4000));EXEC(@S);--

slide 27

Preventing SQL Injection

 Input validation
•  Filter

–  Apostrophes, semicolons, percent symbols, hyphens,
underscores, …

–  Any character that has special meanings

•  Check the data type (e.g., make sure it’s an integer)

 Whitelisting
•  Blacklisting “bad” characters doesn’t work

–  Forget to filter out some characters
–  Could prevent valid input (e.g., last name O’Brien)

•  Allow only well-defined set of safe values
–  Set implicitly defined through regular expressions

slide 28

Escaping Quotes

 For valid string inputs use escape characters to
prevent the quote becoming part of the query
•  Example: escape(o’connor) = o’’connor
•  Convert ’ into \’
•  Only works for string inputs
•  Different databases have different rules for escaping

slide 29

Prepared Statements

 Metacharacters such as ’ in queries provide
distinction between data and control

 In most injection attacks data are interpreted as
control – this changes the semantics of a query
or a command

 Bind variables: ? placeholders guaranteed to be
data (not control)

 Prepared statements allow creation of static
queries with bind variables. This preserves the
structure of intended query.

slide 30

Prepared Statement: Example

 Query parsed without parameters
  Bind variables are typed (int, string, …)

PreparedStatement ps =
 db.prepareStatement("SELECT pizza, toppings, quantity, order_day "
 + "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery();

Bind variable:
data placeholder

slide 31

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Mitigating Impact of Attack

 Prevent leakage of database schema and other
information

 Limit privileges (defense in depth)
 Encrypt sensitive data stored in database
 Harden DB server and host OS
 Apply input validation

slide 32

