SQL Injection

Slides thanks to Prof. Shmatikov at UT Austin

usice Dynamic Web Application

depariment of computer science

GET / HTTP/1.0

Browser
Z5 < server
I | @ HTTP/1.1 200 OK

index.php

4

Microsoft

SQL Server

Database
server

slide 2

- PHP: Hypertext Preprocessor

» Server scripting language with C-like syntax
» Can intermingle static HTML and code
<input value=<?php echo $myvalue; ?>>

> Can embed varia
$user = “wor
or $user = “wor

D

CII

C

es in double-quote strings
» echo “Hello $user!”;
"> echo “Hello” . $user .

\\lll

» Form data in global arrays $_GET, $_POST, ...

slide 3

usics SQL

» Widely used database query language
> Fetch a set of records
SELECT * FROM Person WHERE Username="Vitaly’

» Add data to the table
INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

» Modify data
UPDATE Keys SET Key=FA33452D WHERE PersonID=5

» Query syntax (mostly) independent of vendor

slide 4

usice Sample PHP Code
» Sample PHP
$selecteduser = $_GE
$sqgl = "SELECT Username, Key FROM Key " .

"WHERE Username="$selecteduser™;
$rs = $db->executeQuery($sqal);

» What if ‘user’ is a malicious string that changes
the meaning of the query?

slide 5

usice SQL Injection: Basic Idea

Victim server

icloJ
Attacker @ post rnall

unintended
query

¢ This is an input validation vulnerability
Unsanitized user input in SQL query to back- end
database changes the meaning of query
¢ Specific case of more general command injection

Victim SQL DB

slide 6

usice Typical Login Prompt

A User Login - Microsoft Internet Explorer

File Edit View Favorites

@ Back ~ d

i)q la \.h /':) Search

Enter User Name: smith

Enter Password:

Login

slide 7

User Input Becomes Part of Query

Web
browser
(Client)

Enter
Username

&
Password

A

Web
server

SELECT passwd
FROM USERS
WHERE uname
IS ‘$user’

A

\4

DB

slide 8

Normal Login

Web
browser
(Client)

Enter
Username

&
Password

A

Web
server

SELECT passwd
FROM USERS
WHERE uname
IS ‘smith’

A

\4

DB

slide 9

usice Malicious User Input

A User Login - Microsoft Internet Explorer

File Edit View Favorites Tools Help

@ Back ~ \J D @ Search \/\(Favorites e\

Address @ C:\LearnSecurity\hidden parameter example\authuser. html

—_
Enter User Narhe: | DROP TABLE USERS; --)

/
Enter Password: | eee 1

Login

slide 10

SQL Injection Attack

SELECT passwd

Enter FROM USERS
Username WHERE uname
& 1S DROP TABLE
Web Password Web< USERS; --' >
browser sorver ——s B DB
(Client) \ ”

Eliminates all user
accounts

slide 11

usf

yartment of computer science

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

Exploits of a Mom

http://xkcd.com/327/

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;-~ 7

~OH.YES UTTLE
BOBRY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
t TOSANMIZE YOUR
DATARASE INPUTS.

slide 12

Authentication with Back-End
wwice DB

» set UserFound=execute(
“SELECT * FROM UserTable WHERE
username="'" & form(“user”) & ™" AND

password="" & form(“pwd”) &" " "),

o User supplies username and password, this SQL query
checks if user/password combination is in the database

» If not UserFound.EOF _
_ _ Only true if the result of SQL
AUt 1ent|cat|0n CorrEN g\lil%ni'sl&i?nntc;ceecrlr;?% z;::;ee" user/

else Fail

slide 13

Using SQL Injection to Steal Data

> User gives username ’

OR 1=1 --

» Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username=" OR/\l =1--..);
Always true! Everything after -- is ignored!

e Now all records match the query
» This returns the entire database!

slide 14

Another SQL Injection

usf Example

[From Kevin Mitnick’s “The Art of Intrusion”]

» To authenticate logins, server runs this SQL
command against the user database:

SELECT * WHERE user='name’ AND pwd="passwd’

» User enters " OR WHERE pwc

LIKE ‘% as both

name and passwd

Wildcard matches any password

» Server executes

w

SELECT * WHERE user="OR WHERE pwd LIKE "%’
AND pwd=" OR WHERE pwd LIKE "%’

» Logs in with the credentials of the first person in
the database (typically, administrator!)

slide 15

usice Tt Gets Better

» User gives username
" exec cmdshell ‘net user badguy badpwd’ / ADD --
» Web server executes query
set UserFound=execute(
SELECT * FROM UserTable WHERE
username=""exec ... -- ...);
» Creates an account for badguy on DB server

slide 16

Pull Data From Other
<iCc Databases

» User gives username
"AND 1=0
UNION SELECT cardholder, number,
exp_month, exp_year FROM creditcards
» Results of two queries are combined

» Empty table from the first query is displayed
together with the entire contents of the credit
card database

slide 17

usice More SQL Injection Attacks

» Create new users
'y INSERT INTO USERS (‘uname’,'passwd’,'salt’)
VALUES (‘hacker’,'38a74f", 3234),

» Reset password

" UPDATE USERS SET email=hcker@root.org
WHERE email=victim@yahoo.com

slide 18

usiCS Uninitialized Inputs

/* php-files/lostpassword.php */ S;ﬁaé‘?ﬁ ?;h%arzscﬁorf a\;\g;czn%ing
for ($i=0; $i<=7; $i++) $new_pass is set to NULL
$new_pass .= chr(rand(97,122))

$result = dbquery("UPDATE ".$db_prefix."users
SET user_password=md5('$new_pass’)
WHERE user_id="".$data['user_id"]." ');

SQL query setting
. . password in the DB
In normal execution, this becomes

WHERE user id="userid’

slide 19

usice Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%:2c

user_level=%27103%27%2cuser_aim=%28%27
N

This sets $new_pass to
badPwd"), user_level="103’, user_aim=_'

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’),

user_level="103’, user_aim=(‘??????j\\
WHERE User_idw User’s password is
set to ‘badPwd’

... with superuser privileges

slide 20

usics Second-Order SQL Injection

» Second-order SQL injection: data stored in
database is later used to conduct SQL injection

» For example, user manages to set uname to
admin’ --

e This vulnerability could exist if string escaping is
applied inconsistently (e.g., strings not escaped)

o UPDATE USERS SET passwd="cracked’
WHERE uname='admin’ --’ why does this work?

» Solution: treat all parameters as dangerous

slide 21

SQL Injection in the Real World (1)

http://www.ireport.com/docs/DOC-11831
» Oklahoma Department of Corrections divulges

thousands of social security numbers (2008)
e Sexual and Violent Offender Registry for Oklahoma
o Data repository lists both offenders and employees
» “Anyone with a web browser and the knowledge from
Chapter One of SQL For Dummies could have eaS|Iy

accessed — and possibly, h
\S m“@% r i

changed — any data within
-~ ‘(w y

the DOC's databases” P

;

.. K&
45-35 I 4

slide 22

SQL Injection in the Real World (2)

» Ohio State University has the largest enrolment of
students in the United States; it also seems to be vying
to get the largest number of entries, so far eight, in the
Privacy Rights Clearinghouse breach database . One of
the more recent attacks that took
place on the 31st of March 2007
involved a SQL injection attack
originating from China against a
server in the Office of Research.
The hacker was able to access
14,000 records of current and
former staff members.

slide 23

CardSystems Attack (June
usice 2005)

» CardSystems was a major credit card processing
company
» Put out of business by a SQL injection attack
e Credit card numbers stored unencrypted
e Data on 263,000 accounts stolen
e 43 million identities exposed ‘

slide 24

April 2008 Attacks

department of computer science

soft Web Servers Hacked... Q@@

| ! Bl Wl 000 REE D B W1} A% 10078 10079500907 k X ‘ ‘ p
SECURTTY Flen€d i 1 a-5- - i
Brian Krebs on Computer Security : v

a post to one of its blogs, Microsoft
About This Blog | Archives | ELII RSS Feed (What's RS5?) aw in IIS: "__our investigation has
. vn vulnerabilities being exploited. i
Hundreds of Thousands of Microsoft Web Servers ity in Internet Information Services
Hacked ;0 determined that these attacks are
Hundreds of thousands of Web sites - including several at the United ' Advisory (951306). The attacks
Nations and in the UK. government -- have been hacked recently and s and are not issues related to IIS
seeded with code that tries to exploit security flaws in Microsoft Windows . technologies. SQL injection attacks
to install malicious software on visitors' machines. nands in an application’s database.
¢s the developer of the Web site or
The attackers appear to be breaking into the sites with the help of a security jces outlined here. Our counterparts
vulnerability in Microsoft's Internet Information Services (IIS) Web servers. it with a wealth of information for
In an alert issued last week. Microsoft said it was investigating reports of an an take to minimize their exposure to
unpatched flaw in IIS servers, but at the time it noted that it wasn't aware of : attack surface area in their code
anyone trying to exploit that particular weakness.
Shadowserver.org has a nice writeup with a great deal more information
about the mechanics behind this attack,. as does the SANS Internet Storm
Center.
v
< 3
| AlDone |0 & Internet H100% ~

slide 25

Main Steps in April 2008
Attack

» Use Google to find sites using a particular ASP
style vulnerable to SQL injection

» Use SQL injection to modify the pages to include
a link to a Chinese site nihaorrl.com

e Do not visit that site — it serves JavaScript that exploits
vulnerabilities in IE, RealPlayer, QQ Instant Messenger

» Attack used automatic tool; can be configured to
inject whatever you like into vulnerable sites

» There is some evidence that hackers may get
paid for each victim’s visit to nihaorrl.com

slide 26

Part of the SQL Attack String

DECLARE @T varchar(255),@C varchar(255)

DECLARE Table_Cursor CURSOR

FOR select a.name,b.name from sysobjects a,syscolumns b where
a.id=b.id and a.xtype='u' and

(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)

OPEN Table_Cursor

FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN

exec('update ['+@T+'] set ['+@C+']=rtrim(convert(varchar,['+@C+']))
+)

FETCH NEXT FROM Table_Cursor INTO @T,@C

END CLOSE Table_Cursor
DEALLOCATE Table_Cursor;

DECLARE%20@S5%20NVARCHAR(4000);SET%20@S=CAST(
%20AS%20NVARCHAR(4000)); EXEC(@S);--

slide 27

usice Preventing SQL Injection

puter s

» Input validation

e Filter

— Apostrophes, semicolons, percent symbols, hyphens,
underscores, ...

— Any character that has special meanings
e Check the data type (e.g., make sure it's an integer)

» Whitelisting

o Blacklisting “"bad” characters doesn’t work
— Forget to filter out some characters
— Could prevent valid input (e.g., last name O’Brien)

e Allow only well-defined set of safe values

— Set implicitly defined through regular expressions
slide 28

usice Escaping Quotes

» For valid string inputs use escape characters to
prevent the quote becoming part of the query
e Example: escape(o’connor) = o”connor
e Convert ' into \
e Only works for string inputs
o Different databases have different rules for escaping

slide 29

Prepared Statements

» Metacharacters such as ' in queries provide
distinction between data and control

» In most injection attacks data are interpreted as
control — this changes the semantics of a query
or a command

» Bind variables: ? placeholders guaranteed to be
data (not control)

» Prepared statements allow creation of static
queries with bind variables. This preserves the
structure of intended query.

slide 30

Prepared Statement: Example

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "
+ "FROM orders WHERE userid="? AND order_month=?");
ps.setInt(1, session.getCurrentUserId()); ! t
ps.setInt(2, Integer.parselnt(request.getParamenter("month™)));
ResultSet res = ps.executeQuery();

Bind variable:
data placeholder

» Query parsed without parameters
» Bind variables are typed (int, string, ...)

slide 31

Mitigating Impact of Attack

» Prevent leakage of database schema and other
information

» Limit privileges (defense in depth)

» Encrypt sensitive data stored in database
» Harden DB server and host OS

» Apply input validation

slide 32

