
Tor Anonymity 
Network & Traffic 

Analysis	

Presented by Peter Likarish	




Tor: The Second 
Generation Onion 

Router	

Dingledine, Mathewson, Syverson	

Proceedings of USENIX Security ‘04	


This is NOT the presenter’s original work. This talk reviews:	


Available at: http://www.usenix.org/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf!



What is Tor?	

•  Sender/Responder anonymity network	


•  Circuit-based overlay network	


•  Low-latency	


•  2nd gen aims: 	


•  Perfect forward secrecy, congestion 
control, directory servers, integrity 
checking, location hidden servers...	




Overlay Networks	


= computer	

= link	




Overlay Networks	


= Overlay (Tor) nodes	

= link	




Overlay Networks	


= Tor node	

= secure link	




Tor Terminology	


Onion Router	


Onion Proxy	


Initiator	
 Responder	


Attacker	

Introduction 
point	


Directory Server	


Rendezvous Point	




Basic Tor ideas	


•  Each OR maintains TLS connection with the 
other ORs	


•  OPs get directory of ORs from Trusted 
Directory Server	


•  OP builds circuit of ORs. Default length: 3 
ORs. 	




Tor Threat Model	


• What type of adversary does Tor attempt 
to protect users against?	


•  Typical threat:	


•  Global Passive Adversary	


•  Tor’s threat:	


•  Partial-view passive adversary	




Partial-View Adversary	


•  Goal: Identify Initiator and Responder	


•  Can observe a portion of entire traffic	


•  Can generate, modify and delete traffic	


•  Can operate Onion routers (ORs) or 
compromise a % of ORs	




Threat Model 
Controversy	


• Weaker adversary, truly guarantee 
anonymity?	


•  Is this adversary realistic and dangerous?	


•  Does it matter? 	




1st Goal: Initiator 
Anonymity	


•  Initiator wants to contact Responder 
(website, etc) without Responder or any 
attacker knowing their identity.	




Building a Circuit	

•  1. I Gets list of ORs from 

Directory Server	


External attacker	


2. I Randomly selects an 
OR (entry point)	


3. I Randomly selects an 
OR, extends circuit	


4. I Randomly selects a 
final OR, (exit point)	


5. I Contacts R	


I	
 R	




Circuit Details	


•  Tor uses SOCKS proxy	


•  Creating & extending circuit requires Public 
Key Crypto	


•  Communicating over circuit = Diffie-
Helman (symmetric crypto)	


•  Can multiplex TCP connections over 
circuit, amortize cost of Public Key Crypto	


•  Rotate circuit to prevent linkability	




Circuit Details Cont’d	


Figure 1 from Dingledine et al.	




Cells: Transport over Circuits	


• 512 bytes	

• Header:	

• Circuit ID	

• Command	


• Create, extend, destroy circuit	

• relay data, relay begin, relay teardown	


• Payload: encrypted payload	




Onion Routing	


{{{payload}ORk,3}ORk,2}ORk,1	
I	


{{payload}ORk,3}ORk,2	
OR1	


{payload}ORk,3	
OR2	


payload	
OR3	


ORk,i = Ephemeral DH key for circuit	




Malicious Onion Routers	


I	
 R	

In general, circuits 
are secure if there 

is one non-
malicious OR in 

the circuit 	




Malicious Entry/Exit Points	


I	
 R	


If entry/exit points 
collude, they know 

that I and R are using 
Tor. Can conduct 

timing analysis to try 
and link I/R	


A colluding clique 
of size m can 

observe (m/N)2	


of the traffic	




“Leaky-pipe” Circuits	


I	
 R1	


Multiple possible exit points from circuit	


R2	




2nd Goal: Responder 
Anonymity	
•  Also known as Location Hidden Servers	


•  High-level view:	


•  Responders publish Introduction Points 
(IPs)	


•  Users contact IPs and select Rendezvous 
Point (RP)	


•  User and Responder establish circuit 
through RP	




2nd Goal: Responder 
Anonymity	


IP	


IP	


RP	




What Tor is/does	

•  Stream integrity checking (TLS)	


•  Forward Secrecy 	


•  after circuit demolished, traffic 
unreadable	


•  Rate limiting/fairness	


•  Application transparent	




What Tor isn’t/doesn’t	

•  Steganographic	


•  Does not conceal who is connected	


•  Prevent end-to-end timing attacks	


•  Do protocol normalization. No app-level 
anonymization (cookies/http info)	




Low-Cost Traffic 
Analysis of Tor	


Murdoch and Danezis	

IEEE Symp. on Security and Privacy ‘05	


This is NOT the presenter’s original work. This talk reviews:	


Available at: http://ieeexplore.ieee.org.proxy.lib.uiowa.edu/xpls/abs_all.jsp?arnumber=1425067!



Goal	

•  Show that even within Tor’s limited threat 

model, traffic analysis/timing attacks are 
possible.	


•  Intuition: Use the anonymity network as an 
oracle to infer network load.	


•  Assume encrypted tunnels effectively hide 
bit patterns.	




How: Covert Side 
Channels	


•  Covert side-channels	


•  Extra sources of information, does not 
“break” security used in algorithm.	


•  In this case, timing attack	




Idea behind attack	


•  Use the timing signature of an anonymous 
stream to track the stream through Tor. 	


•  Because Tor is low-latency, it does not 
engage in traffic-shaping or “mixing” (re-
ordering packets from different streams).	


•  Streams pass through Tor more or less 
unaltered.	




Incoming streams	


X	
X	
X	
X	
X	
X	
X	
X	
X	


X	
X	


X	
X	
X	
X	
X	
X	
X	


X	
X	
X	
X	


Multiplexed over circuit	




Why it works	

•  Tor nodes select which cell to route using 

a round robin of all streams rather than 
explicit mixing.	


•  Key: Load on a Tor node affects the latency 
of all connection streams through the 
node.	


•  Compare change in latencies to known 
traffic patterns	




Attack Set-up	


I	


We want to 
observe who 
I is talking to	


(dotted = 
hidden 
circuit)	


1.	


1. Malicious 
OR joins Tor 

network	

OR	


Dest	


2. Attacker 
controls/

corrupts a 
server that 
Tor users 

talk to	


3.	


3. User 
establishes 
link with 
corrupt 
server	


4. Dest returns 
traffic to I 

according to 
selected 
pattern	


5. OR sends probe traffic to each 
legitimate OR, if latency is correlated with 

signal, I is using that router	


2.	




Details	


•  Signal = bursty	


•  Corrupt server transmits for 10-25 sec	


•  Corrupt server is quiet for 30-75	


•  Corrupt OR measures latency of probe 
traffic. If it is monitoring an OR through 
which stream passes, latency should 
increase in correlation with victim signal.	




Measuring Correlation	


•  S(t) = Indicator variable. 	


•  1 if corrupt server is submitting, 0 
otherwise.	


•  L’(t) = normalized latency at time t 	


• Normalized by median latency	




Experimental evaluation	

•  Tested 13 Tor nodes (out of 50 available)	


•  11 of 13 cases: correctly identified case in which 
node was carrying victim traffic compared to 
stream flowing through other nodes	


•  Suggest increasing time of test to improve 
results.	


•  Also tested for FPs: no ‘echoes’ of stream at 
other nodes	




Good correlation	




No echoes	




Bad Correlation	




Results for 13 nodes	




Analysis of Attack	

• What is the actual reduction in security? 	


•  Is it doable?	


•  Are there countermeasures?	



