
9/01/2010 CS 686

Stream Cipher

EJ Jung
ejung@cs.usfca.edu

CS 686 Special Topics in CS
Privacy and Security

9/01/2010 CS 686 slide 2

Basic Problem

?

Given: both parties already know the same secret

How is this achieved in practice?Goal: send a message confidentially

Any communication system that aims to guarantee
confidentiality must solve this problem

9/01/2010 CS 686 slide 3

One-Time Pad

= 10111101…

= 00110010…
 10001111… !

00110010… =

 !
 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ! key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ! key =
(plaintext ! key) ! key =
plaintext ! (key ! key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

9/01/2010 CS 686 slide 4

Advantages of One-Time Pad

! Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

!As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

9/01/2010 CS 686 slide 5

Problems with One-Time Pad

!Key must be as long as plaintext
• Impractical in most realistic scenarios
• Still used for diplomatic and intelligence traffic

!Does not guarantee integrity
• One-time pad only guarantees confidentiality
• Attacker cannot recover plaintext, but can easily

change it to something else

! Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

9/01/2010 CS 686

Stream Ciphers

!One-time pad
 Ciphertext(Key,Message)=Message!Key

• Key must be a random bit sequence as long as message

! Idea: replace “random” with “pseudo-random”
• Encrypt with pseudo-random number generator (PRNG)
• PRNG takes a short, truly random secret seed (key) and

expands it into a long “random-looking” sequence
– E.g., 128-bit key into a 106-bit
 pseudo-random sequence

!Ciphertext(Key,Message)=Message!PRNG(Key)
• Message processed bit by bit, not in blocks

9/01/2010 CS 686

9/01/2010 CS 686

9/01/2010 CS 686

Properties of Stream Ciphers

!Usually very fast
• Used where speed is important: WiFi, SSL, DVD

!Unlike one-time pad, stream ciphers do not
provide perfect secrecy
• Only as secure as the underlying PRNG
• If used properly, can be as secure as block ciphers

! PRNG must be unpredictable
• Given the stream of PRNG output (but not the seed!),

it’s hard to predict what the next bit will be
– If PRNG(unknown seed)=b1…bi, then bi+1 is “0” with

probability !, “1” with probability !

9/01/2010 CS 686

Weaknesses of Stream Ciphers

!No integrity
• Associativity & commutativity: (X!Y)!Z=(X!Z)!Y
• (M1!PRNG(key)) ! M2 = (M1!M2) ! PRNG(key)

!Known-plaintext attack is very dangerous if
keystream is ever repeated
• Self-cancellation property of XOR: X!X=0
• (M1!PRNG(key)) ! (M2!PRNG(key)) = M1!M2

• If attacker knows M1, then easily recovers M2
– Most plaintexts contain enough redundancy that knowledge of

M1 or M2 is not even necessary to recover both from M1!M2

9/01/2010 CS 686

Stream Cipher Terminology

! Seed of pseudo-random generator often consists
of initialization vector (IV) and key
• IV is usually sent with the ciphertext
• The key is a secret known only to the sender and the

recipient, not sent with the ciphertext

!The pseudo-random bit stream produced by
PRNG(IV,key) is referred to as keystream

! Encrypt message by XORing with keystream
• ciphertext = message ! keystream

9/01/2010 CS 686

RC4

! Designed by Ron Rivest for RSA in 1987
! Simple, fast, widely used

• SSL/TLS for Web security, WEP for wireless

Byte array S[256] contains a permutation of numbers from 0 to 255

i = j := 0

loop

i := (i+1) mod 256

j := (j+S[i]) mod 256

swap(S[i],S[j])

output (S[i]+S[j]) mod 256

end loop

9/01/2010 CS 686

Each DVD is encrypted with
a disk-specific 40-bit DISK KEY

Each player has its own PLAYER KEY
(409 player manufacturers,

each has its player key)

Content Scrambling System (CSS)
! DVD encryption scheme from Matsushita and Toshiba

KEY DATA BLOCK contains disk key encrypted
with 409 different player keys:
• EncryptDiskKey(DiskKey)
• EncryptPlayerKey1(DiskKey) … EncryptPlayerKey409(DiskKey)

This helps attacker
verify his guess of disk key

What happens if even a single
player key is compromised?

9/01/2010 CS 686

Generic LFSR
output

Feedback Functionfeedback path
taps

• The register is seeded with an initial value.

• At each clock tick, the feedback function is evaluated using
the input from the tapped bits. The result is shifted into the
leftmost bit of the register. The rightmost bit is shifted into the
output.

9/01/2010 CS 686

9/01/2010 CS 686

Linear Feedback Shift Register
! Pseudo-random bit stream
! Linear Feedback Shift Register (LFSR)

• The LFSR is one popular technique for generating a pseudo-random bit
stream. After the LFSR is seeded with a value, it can be clocked to
generate a stream of bits.

• Unfortunately, LFSRs aren’t truly random – they are periodic and will
eventually repeat.

• In general, the larger the LFSR, the greater its period. There period
also depends on the particular configuration of the LFSR.

• If the initial value of an LFSR is 0, it will produce only 0’s, this is
sometimes called null cycling

9/01/2010 CS 686

CSS: LFSR Addition

LFSR-17

LFSR-25

1 byte

1 byte

first 2 bytes of key + 4th bit 1

last 3 bytes of key + 4th bit 1

Optional bit-wise inverter

+ 8-bit add

carry-out

Output byte

carry-out
from prior
addition

8 ticks

8 ticks
Optional bit-wise inverter

9/01/2010 CS 686

Weakness #1: LFSR Cipher
! Brainless: disk key is 40 bit long

• 240 isn’t really very big – just brainlessly brute-force the keys

! With 6 Output Bytes O(216) :
• Guess the initial state of LFSR-17 O(216).
• Clock out 4 bytes.
• Use those 4 bytes to determine the corresponding 4 bytes of

output from LFSR-25.
• Use the LFSR-25 output to determine LFSR-25’s state.
• Clock out 2 bytes on both LFSRs.
• Verify these two bytes. Celebrate or guess again.

9/01/2010 CS 686

CSS: LFSR Addition

LFSR-17

LFSR-25

1 byte

1 byte

first 2 bytes of key + 4th bit 1

last 3 bytes of key + 4th bit 1

Optional bit-wise inverter

+ 8-bit add

carry-out

Output byte

carry-out
from prior
addition

8 ticks

8 ticks
Optional bit-wise inverter

9/01/2010 CS 686

9/01/2010 CS 686

Weakness #1: LFSR Cipher (Cont.)

! With 5 Output Bytes O(217) :
• Guess the initial state of LFSR-17 O(216)
• Clock out 3 bytes
• Determine the corresponding output bytes from LFSR-25
• This reveals all but the highest-order bit of LFSR-25
• Try both possibilities: O(2)

– Clock back 3 bytes
– Select the setting where bit 4 is 1 (remember this is the initial

case).
– It is possible that both satisfy this – try both.

• Clock out 2 bytes on both LFSRs.
• Verify these two bytes. Celebrate or guess again.

9/01/2010 CS 686

9/01/2010 CS 686

Weakness #2: Mangled Output

!With Known ciphertext and plainttext
• Guess Lk (1 byte)
• Work backward and verify input byte
• This is a O(28) attack.
• Repeat for all 5 bytes – this gives you the 5 bytes of

known output for prior weakness.

9/01/2010 CS 686

CSS decryption algorithm

1 30 2 4

2 41 3 5

Bytes of
Ciphertext

Bytes of
Plaintext

Table
lookup

Table
lookup

Table
lookup

Table
lookup

Table
lookup

+ + + + +

Table
lookup

Table
lookup

Table
lookup

Table
lookup

Table
lookup

+ + + + +

Lk Lk
Lk Lk

Lk

Lk Lk
Lk Lk Lk

9/01/2010 CS 686

Attack on CSS Decryption
Scheme

" Knowing encrypted and decrypted title key, try 256 possibilities to
 recover 40 output bits of the LFSRs – this takes O(28)
Guess 16 bits of the key contained in LFSR-17 – this takes O(216)

$ Clock out 24 bits out of LFSR-17, use them to determine the corresponding
 output bits of LFSR-25 (this reveals all of LFSR-25 except the highest bit)
% Clock back 24 bits, try both possibilities – this takes O(2)

& Verify the key

…

…

LFSR-17

disk key

LFSR-25
24 key bits

16 key bits

“1” seeded in 4th bit

“1” seeded in 4th bit

invert

+mod 256

carry

Encrypted title key
Table-based
“mangling”

Decrypted title key!"
#

$

%

EncryptDiskKey(DiskKey)
stored on disk &

This attack takes O(225)

[due to Frank Stevenson]

9/01/2010 CS 686

Reading assignment

!Aircrack-ng
• http://www.aircrack-ng.org/doku.php

