Public Key Cryptography

EJ Jung

Basic Public Key Cryptography

[t
B ? 0
Dz
== ,ice Bob ==

Given: Everybody knows Bob’s
- How is this achieved in practice?

Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

=" Requirements for Public-Key Crypto

» Key generation: computationally easy to generate
a pair (public key PK, private key SK)

e Computationally infeasible to determine private key PK
given only public key PK

» Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=E;((M)

» Decryption: given ciphertext C=E(M) and private
key SK, easy to compute plaintext M
¢ Infeasible to compute M from C without SK
e Decrypt(SK,Encrypt(PK,M))=M

Requirements for Public-Key
usice Cryptography

1. Computationally easy for a party B to generate
a pair (public key KUb, private key KRy)

2. Easy for sender to generate ciphertext:
C= EKUb (M)

3. Easy for the receiver to decrypt ciphertect
using private key:

M = DKRb (C) = DKRb [EKUb (M)]

Henric Johnson

Requirements for Public-Key
Cryptography

4. Computationally infeasible to determine
private key (KR,) knowing public key (KU,)

5. Computationally infeasible to recover message
M, knowing KU, and ciphertext C

6. Either of the two keys can be used for
encryption, with the other used for decryption:

M = DKRb [EKUb (M)] = DKUb [EKRb (M)]

Henric Johnson

Public-Key Cryptographic Algorithms

» RSA and Diffie-Hellman

> RSA - Ron Rives, Adi Shamir and Len Adleman
at MIT, in 1977.
e RSA is a block cipher
e The most widely implemented

> Diffie-Hellman

e Echange a secret key securely
o Compute discrete logarithms

Henric Johnson

</_Diffie-Hellman Protocol (1976)

» Alice and Bob never met and share no secrets

» Public info: p and g
e pis a large prime number, g is a generator of Z,*
- Z,*={1, 2 ... p-1}; VaeZ,* Ji such that a=g' mod p
— Modular arithmetic: numbers “wrap around” after they reach p

Pick secret, random X

gx mod p Pick secret, random Y

g¥ mod p

<
Alice Bob

Compute k=(g¥)*=g*¥ mod p Compute k=(g*)y=g*¥ mod p

= Diffie-Hellman Key Echange

User A User B
(Generate
random X, <g:
Caleulate
Y4 =0t mod g Y.i. Generate
random Xp <g;
Caleulate
Y“ = llxn miodl l?:

Yg Calculate
Calculate K=(Y,)*smod g

K=(Yy)*+ mod g

“SI“Why Is Diffie-Hellman Secure?

» Discrete Logarithm (DL) problem:
given g* mod p, it's hard to extract x
e There is no known efficient algorithm for doing this
e This is not enough for Diffie-Hellman to be secure!

» Computational Diffie-Hellman (CDH) problem:
given g and g, it's hard to compute g*¥ mod p
e ... unless you know x or y, in which case it's easy
» Decisional Diffie-Hellman (DDH) problem:

given g* and @, it's hard to tell the difference
between g*¥ mod pand g" mod p Where r is random

usice Properties of Diffie-Hellman

» Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers

e Eavesdropper can't tell the difference between
established key and a random value

e Can use new key for symmetric cryptography
— Approx. 1000 times faster than modular exponentiation

usics Limitations of Diffie-Hellman

» Diffie-Hellman protocol alone does not provide
authentication

» Why?
¢ authentication means associating a certain identity
¢ needs to know whose public key this is

USILo Rivest, Shamir and Adleman (1977)

Key Generation
Select p. g p and g both prime, p = g
Calculaten=p x q

Calculate ¢(n) = (p - 1)(g-1)

Select integer e gcd(p(n), e)=1; 1 <e <o)
Calculate d de mod ¢(n) =1
Public key KU = {e, n}

Private key KR ={d, n}

RSA en/decryption

Calculate d de mod ¢(n) =1
Public key KU = {e, n}
Private key KR ={d. n}
Encryption
Plaintext: M<n
Ciphertext: C = M°® (mod n)
Decryption
Ciphertext: C
Plaintext: M = C%(mod n)

Example of RSA Algorithm

Encryption Decryption
Plaintext 20807 with a 140 1.06...x10" with| Plaintext
AIneEx i dintex
19 —tie19 7§ = M= remainder of Llp:il;ﬂext i]H Sl = arem.um:lt-r of I-P 19
KU=5,11% KR = TT ll's'

Figure 3.9 Example of RSA Algorithm

Henric Johnson 14

usice Why Is RSA Secure?

» RSA problem: given n=pq, e such that
gcd(e,(p-1)(g-1))=1 and ¢, find m such that
meé=c mod n

e i.e., recover m from ciphertext c and public key (n,e)
by taking et" root of ¢

e There is no known efficient algorithm for doing this
» Factoring problem: given positive integer n, find
primes py, ..., P, such that n=p,¢1p,®2...p, ek

» If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
¢ It may be possible to break RSA without factoring n

Other Public-Key
usice Cryptographic Algorithms

» Digital Signature Standard (DSS)
e Makes use of the SHA-1
* Not for encryption or key echange
> Elliptic-Curve Cryptography (ECC)
e Good for smaller bit size
e Low confidence level, compared with RSA
e Very complex

Henric Johnson 16

usiCiApplications of Public-Key Crypto

» Encryption for confidentiality

e Anyone can encrypt a message
— With symmetric crypto, must know secret key to encrypt

¢ Only someone who knows private key can decrypt
e Key management is simpler (maybe)
— Secret is stored only at one site: good for open environments
» Digital signatures for authentication
e Can “sign” a message with your private key

» Session key establishment
e Exchange messages to create a secret session key
e Then switch to symmetric cryptography (why?)

usiCAdvantages of Public-Key Crypto

» Confidentiality without shared secrets
e Very useful in open environments

e No “chicken-and-egg” key establishment problem

— With symmetric crypto, two parties must share a secret before
they can exchange secret messages

» Authentication without shared secrets
¢ Use digital signatures to prove the origin of messages
» Reduce protection of information to protection of
authenticity of public keys

¢ No need to keep public keys secret, but must be sure
that Alice’s public key is really her true public key

ust Disadvantages of Public-Key Crypto

» Calculations are 2-3 orders of magnitude slower
e Modular exponentiation is an expensive computation

e Typical usage: use public-key cryptography to establish
a shared secret, then switch to symmetric crypto
— We'll see this in IPSec and SSL

> Keys are longer
e 1024 bits (RSA) rather than 128 bits (AES)

» Relies on unproven number-theoretic assumptions

e What if factoring is easy?
— Factoring is believed to be neither P, nor NP-complete

Encryption using Public-Key
usice system

Bobs's
public key

Joy

s ?

Alice's public Alice 's private
key key

Transmitted

ciphertext >

Plaintext Plaintext
. Encryption algorithm Decryption algorithm
input y output

(e.g.. RSA) (reverse of encryption
algorithm)

20

Authentication using Public-
Key System

Alice's
public key

Mike Bob
Bob's private Bob's public
key key

Transmitted

ciphertext
’

Plaintext Plaintext
. Encryption algorithm Decryption algorithm
input . output
(e.g., RSA) (reverse of encryption
algorithm)

MAC in encryptions

< Source A > —Destination B =3

Message
Message

o v
& ¥
Z Z
z z
= <
—_ —
” -

(b) Using public-key encryption

~ MAC with secret value

s SOUTCE A e

Message

—Destination B =3

Message

(c) Using secret value

Compare

Figure 3.2 Message Authentication Using a One-Way Hash Function

Key Management

Public-Key Certificate Use

Unsigned certificate:
contains user [0,
user's public key

Generate hash

code of unsigned

certificate

d

>0 }——z77

b

E

Signed certficate:
Recipient can verify
signature using CA'S
public key.

Encrypt hash code
with CA's private key
o form sig nature

24

