

Public Key Cryptography

EJ Jung

Basic Public Key Cryptography

Given: Everybody knows Bob's public key
- How is this achieved in practice?
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

USI CREQuirements for Public-Key Crypto

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key PK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Decrypt(SK,Encrypt(PK,M))=M

Requirements for Public-Key Cryptography Cryptography

- Computationally easy for a party B to generate a pair (public key KU_b, private key KR_b)
- 2. Easy for sender to generate ciphertext:

$$C = E_{KUb}(M)$$

3. Easy for the receiver to decrypt ciphertect using private key:

$$M = D_{KRb}(C) = D_{KRb}[E_{KUb}(M)]$$

Henric Johnson

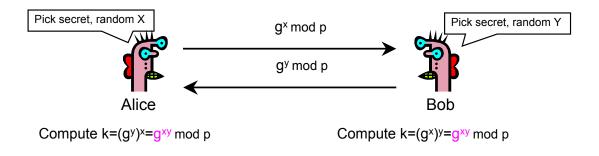
Requirements for Public-Key ustes Cryptography UNIVERSITY OF SAN FRANCISCO

- Computationally infeasible to determine private key (KR_h) knowing public key (KU_h)
- 5. Computationally infeasible to recover message M, knowing KU_h and ciphertext C
- Either of the two keys can be used for encryption, with the other used for decryption:

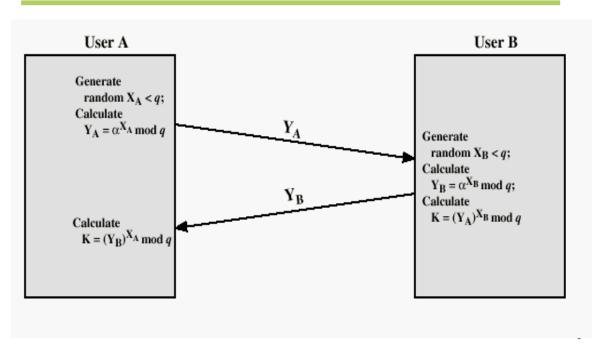
$$M = D_{KRb}[E_{KUb}(M)] = D_{KUb}[E_{KRb}(M)]$$

Henric Johnson

Public-Key Cryptographic Algorithms


- > RSA and Diffie-Hellman
- > RSA Ron Rives, Adi Shamir and Len Adleman at MIT, in 1977.
 - RSA is a block cipher
 - The most widely implemented
- Diffie-Hellman
 - Echange a secret key securely
 - Compute discrete logarithms

Henric Johnson


6

ust Chiffie-Hellman Protocol (1976)

- > Alice and Bob never met and share no secrets
- ➤ Public info: p and g
 - p is a large prime number, g is a generator of Z_n*
 - $-Z_p$ *={1, 2 ... p-1}; ∀a∈ Z_p * ∃i such that a=gⁱ mod p
 - Modular arithmetic: numbers "wrap around" after they reach p

ust Change Hellman Key Echange

usf why Is Diffie-Hellman Secure?

- Discrete Logarithm (DL) problem: given g^x mod p, it's hard to extract x
 - There is no known <u>efficient</u> algorithm for doing this
 - This is <u>not</u> enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem: given g^x and g^y, it's hard to compute g^{xy} mod p
 - ... unless you know x or y, in which case it's easy
- Decisional Diffie-Hellman (DDH) problem: given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between established key and a random value
 - Can use new key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation

- Diffie-Hellman protocol alone does not provide authentication
- ➤ Why?
 - authentication means associating a certain identity
 - needs to know whose public key this is

UNIVERSITY AN FRANCISCO Gepartment of computer science

Rivest, Shamir and Adleman (1977)

Key Generation

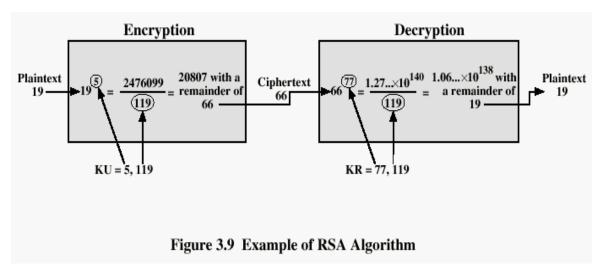
Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \mod \phi(n) = 1$


Public key $KU = \{e, n\}$ Private key $KR = \{d, n\}$

Calculate $d = de \mod \phi(n) = 1$ Public key $KU = \{e, n\}$ Private key $KR = \{d, n\}$

Plaintext: M < n Ciphertext: $C = M^e \pmod{n}$

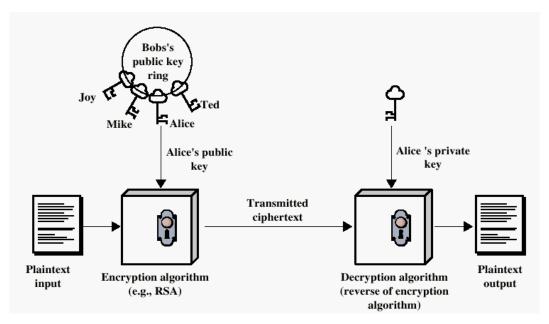
Example of RSA Algorithm

- ➤ RSA problem: given n=pq, e such that gcd(e,(p-1)(q-1))=1 and c, find m such that me=c mod n
 - i.e., recover m from ciphertext c and public key (n,e) by taking eth root of c
 - There is no known efficient algorithm for doing this
- Factoring problem: given positive integer n, find primes $p_1, ..., p_k$ such that $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$
- ➤ If factoring is easy, then RSA problem is easy, but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring n

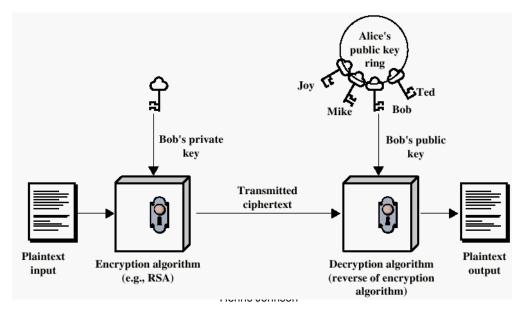
- Digital Signature Standard (DSS)
 - Makes use of the SHA-1
 - Not for encryption or key echange
- Elliptic-Curve Cryptography (ECC)
 - Good for smaller bit size
 - Low confidence level, compared with RSA
 - Very complex

SApplications of Public-Key Crypto

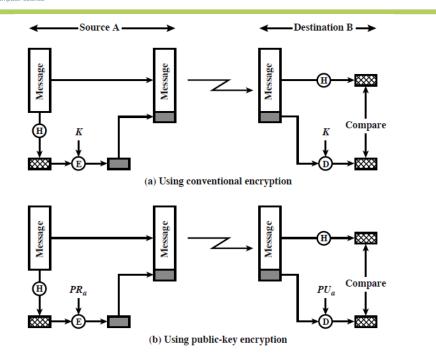
- Encryption for confidentiality
 - Anyone can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
 - Only someone who knows private key can decrypt
 - Key management is simpler (maybe)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)


SECAdvantages of Public-Key Crypto

- Confidentiality without shared secrets
 - Very useful in open environments
 - No "chicken-and-egg" key establishment problem
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
- Reduce protection of information to protection of authenticity of public keys
 - No need to keep public keys secret, but must be sure that Alice's public key is really her true public key


usf Public-Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - We'll see this in IPSec and SSL
- Keys are longer
 - 1024 bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is believed to be neither P, nor NP-complete


Encryption using Public-Key system

Authentication using Publicusics Key System

MAC in encryptions

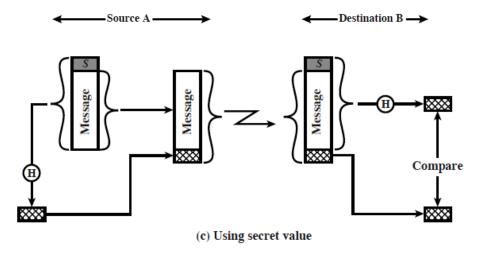
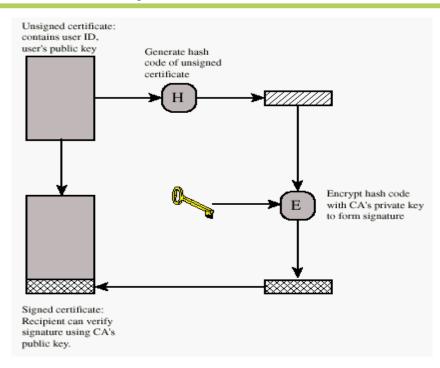



Figure 3.2 Message Authentication Using a One-Way Hash Function

Key Management Usi Public-Key Certificate Use

