
Public Key Cryptography

EJ Jung

Basic Public Key Cryptography

?

Given: Everybody knows Bob’s public key
- How is this achieved in practice?

 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Requirements for Public-Key Crypto

!Key generation: computationally easy to generate
a pair (public key PK, private key SK)
• Computationally infeasible to determine private key PK

given only public key PK

! Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

!Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Decrypt(SK,Encrypt(PK,M))=M

Henric Johnson 4

Requirements for Public-Key
Cryptography

1. Computationally easy for a party B to generate
a pair (public key KUb, private key KRb)

2. Easy for sender to generate ciphertext:

3. Easy for the receiver to decrypt ciphertect
using private key:

)(MEC KUb=

)]([)(MEDCDM KUbKRbKRb ==

Henric Johnson 5

Requirements for Public-Key
Cryptography

4. Computationally infeasible to determine
private key (KRb) knowing public key (KUb)

5. Computationally infeasible to recover message
M, knowing KUb and ciphertext C

6. Either of the two keys can be used for
encryption, with the other used for decryption:

)]([)]([MEDMEDM KRbKUbKUbKRb ==

Henric Johnson 6

Public-Key Cryptographic Algorithms

!RSA and Diffie-Hellman
!RSA - Ron Rives, Adi Shamir and Len Adleman

at MIT, in 1977.
• RSA is a block cipher
• The most widely implemented

!Diffie-Hellman
• Echange a secret key securely
• Compute discrete logarithms

Diffie-Hellman Protocol (1976)

!Alice and Bob never met and share no secrets
! Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; !a"Zp* #i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Henric Johnson 8

Diffie-Hellman Key Echange

Why Is Diffie-Hellman Secure?

!Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

!Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

!Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman

!Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers
• Eavesdropper can’t tell the difference between

established key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Limitations of Diffie-Hellman

!Diffie-Hellman protocol alone does not provide
authentication

!Why?
• authentication means associating a certain identity
• needs to know whose public key this is

Rivest, Shamir and Adleman (1977)

RSA en/decryption

Henric Johnson 14

Example of RSA Algorithm

Why Is RSA Secure?

!RSA problem: given n=pq, e such that
 gcd(e,(p-1)(q-1))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e)
by taking eth root of c

• There is no known efficient algorithm for doing this

! Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

! If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n

Henric Johnson 16

Other Public-Key
Cryptographic Algorithms

!Digital Signature Standard (DSS)
• Makes use of the SHA-1
• Not for encryption or key echange

! Elliptic-Curve Cryptography (ECC)
• Good for smaller bit size
• Low confidence level, compared with RSA
• Very complex

Applications of Public-Key Crypto

! Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

!Digital signatures for authentication
• Can “sign” a message with your private key

! Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Advantages of Public-Key Crypto

!Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

!Authentication without shared secrets
• Use digital signatures to prove the origin of messages

!Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure

that Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

!Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish

a shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

!Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

!Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

Henric Johnson 20

Encryption using Public-Key
system

Henric Johnson 21

Authentication using Public-
Key System

MAC in encryptions

MAC with secret value

Henric Johnson 24

Key Management
Public-Key Certificate Use

