
SSL/TLS

EJ Jung
10/18/10

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

! Public announcement or public directory
• Risks: forgery and tampering

! Public-key certificate
• Signed statement specifying the key and identity

– sigAlice(“Bob”, PKB)

!Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves

his identity and knowledge of the private key to obtain
CA’s certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Using Public-Key Certificates

Authenticity of public keys is reduced to
authenticity of one key (CA’s public key)

Hierarchical Approach

! Single CA certifying every public key is impractical
! Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures

!Root authority signs certificates for lower-level
authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“UI”, PKUI), sigUI(“EJ Jung”, PKE)

• What happens if root authority is ever compromised?

Alternative: “Web of Trust”

!Used in PGP (Pretty Good Privacy)
! Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid

!Trust can be transitive
• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)
sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Authentication Service

! ITU-T standard
! Specifies certificate format

• X.509 certificates are used in IPSec and SSL/TLS

! Specifies certificate directory service
• For retrieving other users’ CA-certified public keys

! Specifies a set of authentication protocols
• For proving identity using public-key signatures

!Does not specify crypto algorithms
• Can use it with any digital signature scheme and hash

function, but hashing is required before signing

X.509 Version 1

! Encrypt, then sign for authenticated encryption
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control

!Does this work?

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,
 encryptPublicKey(Bob)(message))

Attack on X.509 Version 1

! Receiving encrypted password under signature does not
mean that the sender actually knows the password!

! Proper usage: sign, then encrypt

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,
 encryptPublicKey(Bob)(password))

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,
 encryptPublicKey(Bob)(password))

Denning-Sacco Protocol

!Goal: establish a new shared key KAB with the
help of a trusted certificate service

Alice Bob

“I’m Alice”, certAlice, certBob,
encryptPublicKey(Bob)(sigAlice(TimeAlice, KAB))

Certificate server

“Alice”, “Bob”

certAlice, certBob

Attack on Denning-Sacco

!Alice’s signature is insufficiently explicit
• Does not say to whom and why it was sent

!Alice’s signature can be used to impersonate her

Alice Bob
(with an evil side)

“I’m Alice”, certAlice, certBob,
encryptPublicKey(Bob)(sigAlice(TimeAlice, KAC))

Nothing in this
signature says that it

was sent to Bob!

Charlie

“I’m Alice”, certAlice,
certCharlie,
encryptPublicKey(Charlie)(
 sigAlice(TimeAlice, KAC))

fresh random challenge C

Authentication with Public Keys

!" Only Alice can create a valid signature
#" Signature is on a fresh, unpredictable challenge

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

Potential problem: Alice will sign anything

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

XXX
Adult

entertainment

Over 21 only!

Mafia porn site

Picture 143!

Bank

Buy 10
gold coins

Sign ‘X’
Prove your age
by signing ‘X’

sigK(x)

PRIVATE
KEY K

sigK(x)

Early Version of SSL (Simplified)

! Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows

her private key… Alice must have signed NB… NB is fresh and
random and I sent it encrypted under KAB… Alice could have
learned NB only if she knows KAB… She must be the person who
sent me KAB in the first message...

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB(“Alice”, sigAlice(NB))

fresh session key

encryptKAB(NB)

fresh random number

Breaking Early SSL

!Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC(“Alice”, sigAlice(NB))
Charlie

(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB(NB)
encryptKAC(NB)

encryptKCB(“Alice”, sigAlice(NB))

slide 17

What is SSL / TLS?

!Transport Layer Security protocol, version 1.0
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers

!Based on Secure Sockets Layers protocol, ver 3.0
• Same protocol design, different algorithms

!Deployed in nearly every Web browser

slide 18

SSL / TLS in the Real World

slide 19

Application-Level Protection

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects againt application-level threats
(e.g.,server impersonation), NOT
against IP-level threats (spoofing, SYN
flood, DDoS by data flood)

slide 20

History of the Protocol

! SSL 1.0
• Internal Netscape design, early 1994?
• Lost in the mists of time

! SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

! SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

!TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of MAC; can run on any port

slide 21

“Request for Comments”

!Network protocols are usually disseminated in the
form of an RFC

!TLS version 1.0 is described in RFC 2246
! Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers

who will be implementing it and those who will be
doing protocol analysis

• Mixture of informal prose and pseudo-code

slide 22

Evolution of the SSL/TLS RFC

slide 23

TLS Basics

!TLS consists of two protocols
• Familiar pattern for key exchange protocols

!Handshake protocol
• Use public-key cryptography to establish a shared

secret key between the client and the server

!Record protocol
• Use the secret key established in the handshake

protocol to protect communication between the client
and the server

!We will focus on the handshake protocol

slide 24

TLS Handshake Protocol

!Two parties: client and server
!Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of

the protocol

!Authenticate client and server (optional)
• Use digital certificates to learn each other’s public keys

and verify each other’s identity

!Use public keys to establish a shared secret

slide 25

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finishedswitch to negotiated cipher

Finished
switch to negotiated cipher

Record of all sent and
received handshake messages

slide 26

ClientHello

C

ClientHello

S

Client announces (in plaintext):
 Protocol version he is running
 Cryptographic algorithms he supports

slide 27

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g.,

RSA or Diffie-Hellman)

slide 28

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
 Highest protocol version supported by
 both client and server
 Strongest cryptographic suite selected
 from those offered by the client

slide 29

ServerKeyExchange

C

Versions, suites, Ns,
ServerKeyExchange

SServer sends his public-key certificate
containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

slide 30

ClientKeyExchange

C

Versions, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

slide 31

struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys
} ClientKeyExchange

struct {
 ProtocolVersion client_version;
 opaque random[46];
} PreMasterSecret

ClientKeyExchange (RFC)

Random bits from which
symmetric keys will be derived
(by hashing them with nonces)

slide 32

“Core” SSL 3.0 Handshake

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

slide 33

Version Rollback Attack

C

Versions=2.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

slide 34

SSL 2.0 Weaknesses (Fixed in 3.0)

!Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

!Weak MAC construction
! SSL 2.0 uses padding when computing MAC in

block cipher modes, but padding length field is
not authenticated
• Attacker can delete bytes from the end of messages

!MAC hash uses only 40 bits in export mode
!No support for certificate chains or non-RSA

algorithms, no handshake while session is open

slide 35

“Chosen-Protocol” Attacks

!Why do people release new versions of security
protocols? Because the old version got broken!

!New version must be backward-compatible
• Not everybody upgrades right away

!Attacker can fool someone into using the old,
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

!Defense is hard: must authenticate version early
!Many protocols had “version rollback” attacks

• SSL, SSH, GSM (cell phones)

slide 36

Version Check in SSL 3.0

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” version
number into secret

Check that received version is equal to
the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

slide 37

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

