
Denial of Service

EJ Jung
11/08/10

Pop Quiz 3

Write one thing you learned from today’s
reading

Write one thing you liked about today’s reading
Write one thing you disliked about today’s

reading

Announcements

Quiz 2 distributed today
 Service lab progress report due this Wednesday
 Lab 2?
CS Night

• service lab presentations
• lab 2 reports

Denial of Service (DoS)

Goal: overwhelm victim machine and deny
service to its legitimate clients

 Exploits vulnerabilities in many network
protocols, anywhere in the stack

Internet Infrastructure

local network

Internet service
provider (ISP)

backbone

ISP

local network

 TCP/IP for packet routing and connections
 Border Gateway Protocol (BGP) for route discovery
 Domain Name System (DNS) for IP address discovery

OSI Protocol Stack

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

Ethernet

Data Formats

Application data

dataTCP
header dataTCP

header dataTCP
header

dataTCP
header

IP
header

dataTCP
header

IP
header

Ethernet
header

Ethernet
trailer

application
layer

transport
layer

network
layer

data link
layer

message

segment

packet

frame

TCP (Transmission Control Protocol)

 Sender: break data into packets
• Sequence number is attached to every packet

Receiver: reassemble packets in correct order
• Acknowledge receipt; lost packets are re-sent

Connection state maintained on both sides

book
remember received pages

and reassemblemail each
page

IP (Internet Protocol)

Connectionless
• Unreliable, “best-effort” protocol

Uses numeric addresses for routing
• Typically several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet
Source 128.255.44.135

72.14.203.104

3

Dest

Seq
128.255.44.135

72.14.203.104

ICMP (Internet Control Message Protocol)

 Extension of IP by RFC 792
 Provides feedback about network operation

• “Out-of-band” messages carried in IP packets
• Error reporting, congestion control, reachability, etc.

 Example messages:
• Destination unreachable
• Time exceeded
• Redirect to better gateway
• Reachability test (echo / echo reply)
• Message transit delay (timestamp request / reply)

DoS attacks in TCP/IP

 IP addresses are public
• Smurf attacks

TCP connection requires state
• SYN flooding

TCP state is easy to guess
• TCP spoofing and connection hijacking

Smurf Attack

gateway victim

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate
“Are you alive?” ping

request from the victim

Every host on the network
generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external packets to broadcast addresses at router

“Ping of Death”

 If an old Windows machine received an ICMP
packet with a payload longer than 64K, machine
would crash or reboot
• Programming error in older versions of Windows
• Packets of this length are illegal, so programmers of

Windows code did not account for them

Solution: patch OS, filter out ICMP packets

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Store data
(connection state, etc.)

Wait

Connected

SYN Flooding Attack

S

SYNC1 Listening…

Store dataSYNC2

SYNC3

SYNC4

SYNC5

… and more data

… and more

… and more

… and more

… and more

SYN Flooding Explained

Attacker sends many connection requests with
spoofed source addresses

Victim allocates resources for each request
• Connection state maintained until timeout
• Fixed bound on half-open connections

Once resources exhausted, requests from
legitimate clients are denied

This is a classic denial of service (DoS) attack
• Common pattern: it costs nothing to TCP initiator to

send a connection request, but TCP responder must
allocate state for each request (asymmetry!)

Preventing Denial of Service

DoS is caused by asymmetric state allocation
• If responder opens a state for each connection

attempt, attacker can initiate thousands of connections
from bogus or forged IP addresses

Cookies ensure that the responder is stateless
until initiator produced at least 2 messages
• Responder’s state (IP addresses and ports of the con-

nection) is stored in a cookie and sent to initiator
• After initiator responds, cookie is regenerated and

compared with the cookie returned by the initiator

SYN Cookies
[Bernstein & Schenk]

C S

SYNC Listening…

Does not store state

F(source addr, source port,
 dest addr, dest port,
 coarse time, server secret)

SYNS, ACKC
sequence # = cookie

Cookie must be unforgeable
 and tamper-proof (why?)
Client should not be able
 to invert a cookie (why?)

F=Rijndael or crypto hash

Recompute cookie,
compare with with the one
received, only establish
connection if they match

ACKS(cookie)

Compatible with standard TCP;
simply a “weird” sequence number scheme

More info: http://cr.yp.to/syncookies.html

Anti-Spoofing Cookies: Basic Pattern

Client sends request (message #1) to server
Typical protocol:

• Server sets up connection, responds with message #2
• Client may complete session or not (potential DoS)

Cookie version:
• Server sends hashed connection data back

– Send message #2 later, after client confirms he is listening

• Client confirms by returning hashed data
– If source IP address is bogus, attacker can’t confirm

• Need an extra step to send postponed message #2
– Ok in TCP since the extra step (SYN-ACK) is already there

Another Defense: Random Deletion

121.17.182.45

231.202.1.16

121.100.20.14

5.17.95.155

SYNC

 If SYN queue is full, delete random entry
• Legitimate connections have a chance to complete
• Fake addresses will be eventually deleted

 Easy to implement

half-open connections

TCP Connection Spoofing

 Each TCP connection has an associated state
• Sequence number, port number

TCP state is easy to guess
• Port numbers are standard, sequence numbers are

often predictable
• Can inject packets into existing connections

 If attacker knows initial sequence number and
amount of traffic, can guess likely current number
• Send a flood of packets with likely sequence numbers

DoS by Connection Reset

 If attacker can guess current sequence number
for an existing connection, can send Reset packet
to close it
• With 32-bit sequence numbers, probability of guessing

correctly is 1/232 (not practical)
• Most systems accept large windows of sequence

numbers ⇒ much higher probability of success
– Need large windows to handle massive packet losses

 Especially effective against long-lived connections
• For example, BGP (Border Gateway Protocol)

User Datagram Protocol (UDP)

UDP is a connectionless protocol
• Simply send datagram to application process at the

specified port of the IP address
• Source port number provides return address
• Applications: media streaming, broadcast

No acknowledgement, no flow control, no
message continuation

Denial of service by UDP data flood

Countermeasures

Above transport layer: SSL/TLS and SSH
• Protects against connection hijacking and injected data
• Does not protect against DoS by spoofed packets

Above transport layer: Kerberos
• Provides authentication, protects against spoofing
• Does not protect against connection hijacking

Network (IP) layer: IPSec
• Protects against hijacking, injection, DoS using

connection resets, IP address spoofing

Distributed Denial of Service (DDoS)

 First, scan hundreds of thousands of computers
on the Internet for known vulnerabilities

Turn vulnerable computers into “zombies”
• Exploit vulnerabilities to gain root access, install attack

and communication tools, use them for further scans

 Form a distributed attack network from zombies
• Choose a subset of compromised machines with

desired network topology and characteristics

Command zombies to stage a coordinated attack
on the victim

DDoS Architecture

Victim

Attacker

Master machines

Zombie machines

 Scan for known buffer overflows in Linux & Solaris
• Unpatched versions of wu-ftpd, statd, amd, …
• Root shell on compromised host returns confirmation

 Install attack daemon using remote shell access
 Send commands (victim IP, attack parameters,

etc.), using plaintext passwords for authentication
• Attacker to master: TCP, master to zombie: UDP
• To avoid detection, daemon issues warning if someone

connects when master is already authenticated

 In August of 1999, a network of 227 Trin00
zombies took U. of Minnesota offline for 3 days

DDoS Tools: Trin00

 Supports multiple DoS attack types
• Smurf; ICMP, SYN, UDP floods

Attacker runs masters directly via root backdoor;
masters talk to zombies using ICMP echo reply
• No authentication of master’s commands, but

commands are encoded as 16-bit binary numbers
inside ICMP packets to prevent accidental triggering

• Vulnerable to connection hijacking and RST sniping

 List of zombie daemons’ IP addresses is encrypted
in later versions of TFN master scripts
• Protects identities of zombies if master is discovered

DDoS Tools: Tribal Flood Network

Combines “best” features of Trin00 and TFN
• Multiple attack types (like TFN)

 Symmetric encryption for attacker-master
connections

Master daemons can be upgraded on demand
 February 2000: crippled Yahoo, eBay, Amazon,

Schwab, E*Trade, CNN, Buy.com, ZDNet
• Smurf-like attack on Yahoo consumed more than a

Gigabit/sec of bandwidth
• Sources of attack still unknown

DDoS Tools: Stacheldraht

Date: Fri, 19 Mar 2004
Quote from email:

“The campus switches have been bombarded with these packets
[…] and apparently 3Com switches reset when they get these
packets. This has caused the campus backbone to be up and
down most of yesterday. The attack seems to start with
connection attempts to port 1025 (Active Directory logon, which
fails), then 6129 (DameWare backdoor, which fails), then 80
(which works as the 3Com’s support a web server, which can’t be
disabled as far as we know). The HTTP command starts with
‘SEARCH /\x90\x02\xb1\x02’ […] then goes off into a continual
pattern of ‘\x90’ ”

U. of Toronto, 2004(from David Lie’s slides)

Authenticate packet sources
• Not feasible with current IP (unless IPSec is used)

 Filter incoming traffic on access routers or rate-
limit certain traffic types (ICMP and SYN packets)
• Need to correctly measure normal rates first!

 Force clients to do an expensive computation or
to prove that they are human
• If connection requested, ask client to solve a “puzzle”

– E.g., invert a short hash value or solve a graphical Turing test

• Honest clients can easily do this, but zombies can’t
• Requires modification of TCP/IP stack (not feasible?)

Defending Against DDoS

Note: this will only locate zombies
• Forensics on zombie machines can help find masters

and the attacker who remotely controls them

Can use existing IP routing infrastructure
• Link testing (while attack is in progress)
• Packet logging (for post-mortem path reconstruction)

…or propose changes to routing infrastructure
• IP traceback (e.g., via packet marking)
• … and dozens of other proposals
• Changing routing infrastructure is hard!

Finding Attack Sources

Only works while attack is in progress
 Input debugging

• Victim reports attack to upstream router
• Router installs a filter for attack traffic, determines

which upstream router originated it
• Repeat upstream (requires inter-ISP cooperation)

Controlled flooding
• Iteratively flood each incoming link of the router; if

attack traffic decreases, this must be the guilty link
– Use a form of DoS to throttle DoS traffic (!!)

• Need a good network map and router cooperation

Link Testing

How to determine
the path traversed
by attack packets?

Assumptions:
• Most routers remain

uncompromised
• Attacker sends many

packets
• Route from attacker

to victim remains
relatively stable

R6 R7 R8

A4 A5A1 A2 A3

R9 R10

R12

Victim

IP Traceback Problem

Obvious Solution Doesn’t Work

Obvious solution: have each router on the path
add its IP address to packet; victim will read
path from the packet

 Problem: requires space in the packet
• Paths can be long
• Current IP format provides no extra fields to store

path information
• Changes to packet format are not feasible

DDoS involves many
packets on the same path

With some probability,
each router marks packet
with router’s address
• Fixed space per packet
• Large number of packets

means that each router on
the path will appear in
some packet

R6 R7 R8

A4 A5A1 A2 A3

R9 R10

R12

Victim

Probabilistic Packet Marking

Node and Edge Sampling

Node sampling
• With probability p, router stores its address in packet
• Router at distance d shows up with probability p(1-p)d

 Edge sampling
• Packet stores an edge and distance since it was stored

– More space per packet, but fewer packets to reconstruct path

• With probability p, router stores the current edge and
sets distance to 0, else increments distance by 1

R

p 1-p 1-p 1-p

V

d

Storing Edges in IP Packets

 16-bit Identification field
• Used for fragmentation
• Fragmentation is rare

 Storing an edge in 16 bits

• Store start⊕end

• Work backwards to get path:
(start⊕end)⊕end = start

Version Header length
Type of service

Total length
Identification

Flags

Time to live
Protocol

Header checksum

Source address of originating host

Destination address of target host

Options

Padding

IP Data

Fragment offset

Identification

offset distance edge chunk

0 2 3 7 8 15

a ⊕ b b ⊕ c c ⊕ d d
a b c d V

