
EJ Jung
11/10/10

Internet Key Exchange (IKE)

Secure Key Establishment

Goal: generate and agree on a session key
using some public initial information

What properties are needed?
• Authentication (know identity of other party)
• Secrecy (generated key not known to any others)
• Forward secrecy (compromise of one session key

does not compromise keys in other sessions)
• Prevent replay of old key material
• Prevent denial of service
• Protect identities from eavesdroppers
• Other properties you can think of???

Key Management in IPSec

Manual key management
• Keys and parameters of crypto algorithms exchanged

offline (e.g., by phone), security associations
established by hand

 Pre-shared symmetric keys
• New session key derived for each session by hashing

pre-shared key with session-specific nonces
• Standard symmetric-key authentication and encryption

Online key establishment
• Internet Key Exchange (IKE) protocol
• Use Diffie-Hellman to derive shared symmetric key

Diffie-Hellman Key Exchange

Authentication?
Secrecy?
Replay attack?
Forward secrecy?
Denial of service?
Identity protection?

ga mod p

gb mod p
A B

No
Only against passive attacker
Vulnerable
Yes

Yes
Vulnerable

Participants can’t tell gx mod p
from a random element of G:
send them garbage and they’ll
do expensive exponentiations

IKE Genealogy

Diffie-Hellman
1976

Station-to-Station
Diffie, van Oorschot, Wiener 1992+ authentication,

 identity protection

Photuris
Karn, Simpson 1994-99

+ defense against
 denial of service

ISAKMP
NSA 1998

“generic” protocol for
establishing security associations
+ defense against replay

Oakley
Orman 1998

+ compatibility with ISAKMP

IKE
Cisco 1998

IKEv2
Internet standard December 2005

Design Objectives for Key Exchange

 Shared secret
• Create and agree on a secret which is known only to

protocol participants

Authentication
• Participants need to verify each other’s identity

 Identity protection
• Eavesdropper should not be able to infer participants’

identities by observing protocol execution

 Protection against denial of service
• Malicious participant should not be able to exploit the

protocol to cause the other party to waste resources

Ingredient 1: Diffie-Hellman

 A → B: ga

 B → A: gb

• Shared secret is gab, compute key as k=hash(gab)
– Diffie-Hellman guarantees perfect forward secrecy

• Authentication
• Identity protection
• DoS protection

Ingredient 2: Challenge-Response

 A → B: m, A
 B → A: n, sigB(m, n, A)
 A → B: sigA(m, n, B)

• Shared secret
• Authentication

– A receives his own number m signed by B’s private key and
deduces that B is on the other end; similar for B

• Identity protection
• DoS protection

DH + Challenge-Response

ISO 9798-3 protocol:
 A → B: ga, A
 B → A: gb, sigB(ga, gb, A)
 A → B: sigA(ga, gb, B)

• Shared secret: gab

• Authentication
• Identity protection
• DoS protection

m := ga

n := gb

Ingredient 3: Encryption

Encrypt signatures to protect identities:
 A → B: ga, A
 B → A: gb, EncK(sigB(ga, gb, A))
 A → B: EncK(sigA(ga, gb, B))

• Shared secret: gab

• Authentication
• Identity protection (for responder only!)
• DoS protection

k=hash(gab)

Refresher: DoS Prevention

Denial of service due to resource clogging
• If responder opens a state for each connection

attempt, attacker can initiate thousands of connections
from bogus or forged IP addresses

Cookies ensure that the responder is stateless
until initiator produced at least 2 messages
• Responder’s state (IP addresses and ports) is stored in

an unforgeable cookie and sent to initiator
• After initiator responds, cookie is regenerated and

compared with the cookie returned by the initiator
• The cost is 2 extra messages in each execution

Storing Info Across Sessions

A cookie is a file created by an Internet site to
store information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Requests cookie

Returns data

HTTP is a stateless protocol; cookies add state

Refresher: Anti-DoS Cookie

Typical protocol:
• Client sends request (message #1) to server
• Server sets up connection, responds with message #2
• Client may complete session or not (potential DoS)

Cookie version:
• Client sends request to server
• Server sends hashed connection data back

– Send message #2 later, after client confirms his address

• Client confirms by returning hashed data
• Need an extra step to send postponed message #2

Ingredient 4: Anti-DoS Cookie

“Almost-IKE” protocol:

A → B: ga, A
 B → A: gb, hashKb(gb, ga)
 A → B: ga, gb, hashKb(gb, ga)

 EncK(sigA(ga, gb, B))
B → A: gb, EncK(sigB(ga, gb, A))

• Shared secret: gab

• Authentication
• Identity protection
• DoS protection?

Doesn’t quite work: B must
remember his DH exponent b
for every connection

k=hash(gab)

Medium-Term Secrets and Nonces

 Idea: use the same Diffie-Hellman value gab for
every session, update every 10 minutes or so
• Helps against denial of service

To make sure keys are different for each session,
derive them from gab and session-specific nonces
• Nonces guarantee freshness of keys for each session
• Re-computing ga, gb, gab is costly, generating nonces

(fresh random numbers) is cheap

This is more efficient and helps with DoS, but no
longer guarantees forward secrecy (why?)

(Simplified) Photuris

I R

[Karn and Simpson]

CookieI

Random number
(identifies connection)

CookieI, CookieR, offer crypto

Hash(source & dest IP addrs,
CookieI, ports, R’s local secret)

CookieI, CookieR, ga mod p, select crypto

CookieI, CookieR, gb mod p

switch to K=h(gab mod p) switch to K=h(gab mod p)

CookieI, CookieR, EncK(“I”, sigI(previous msgs))

CookieI, CookieR, EncK(“R”, sigR(previous msgs))

Alice is called
“Initiator” for

consistency with
IKE terminology

Bob is called
“Responder”

IKE Genealogy Redux

Diffie-Hellman
1976

Station-to-Station
Diffie, van Oorschot, Wiener 1992+ authentication,

 identity protection

Photuris
Karn, Simpson 1994-99

+ defense against
 denial of service

ISAKMP
NSA 1998

“generic” protocol for
establishing security associations
+ defense against replay

Oakley
Orman 1998

+ compatibility with ISAKMP

IKE
Cisco 1998

IKEv2
Internet standard December 2005

Cookies in Photuris and ISAKMP

 Photuris cookies are derived from local secret, IP
addresses and ports, counter, crypto schemes
• Same (frequently updated) secret for all connections

 ISAKMP requires unique cookie for each connect
• Add timestamp to each cookie to prevent replay attacks
• Now responder needs to keep state (“cookie crumb”)

– Vulnerable to denial of service (why?)

 Inherent conflict: to prevent replay, need to
remember values that you’ve generated or seen
before, but keeping state allows denial of service

IKE Overview

Goal: create security association between 2 hosts
• Shared encryption and authentication keys, agreement

on crypto algorithms

Two phases: 1st phase establishes security
association (IKE-SA) for the 2nd phase
• Always by authenticated Diffie-Hellman (expensive)

 2nd phase uses IKE-SA to create actual security
association (child-SA) to be used by AH and ESP
• Use keys derived in the 1st phase to avoid DH exchange
• Can be executed cheaply in “quick” mode

– To create a fresh key, hash old DH value and new nonces

Why Two-Phase Design?

 Expensive 1st phase creates “main” SA
Cheap 2nd phase allows to create multiple child

SAs (based on “main” SA) between same 2 hosts
• Example: one SA for AH, another SA for ESP
• Different conversations may need different protection

– Some traffic only needs integrity protection or short-key crypto
– Too expensive to always use strongest available protection

• Avoid multiplexing several conversations over same SA
– For example, if encryption is used without integrity protection

(bad idea!), it may be possible to splice the conversations

• Different SAs for different classes of service

Instead of running 2nd phase,
“piggyback” establishment of
child-SA on initial exchange

I R

ga mod p, crypto proposal, Ni

Initiator reveals identity first
Prevents “polling” attacks where
attacker initiates IKE connections
to find out who lives at an IP addr

Optional: refuse 1st message and
demand return of stateless cookie

CookieR

 CookieR, ga mod p, crypto proposal, Ni

gb mod p, crypto accepted, Nr

switch to K=f(Ni,Nr,crypto,gab mod p)

EncK(“I”, sigI(m1-4), [cert], child-SA)

EncK(“R”, sigR(m1-4), [cert], child-SA)

IKE: Phase One

IKE: Phase Two (Create Child-SA)

I R

EncK(proposal, Ni, [ga mod p], traffic)

EncK(proposal, Nr, [gb mod p], traffic)

Can run this several times to create multiple SAs

After Phase One, I and R share key K

IP address range,
ports, protocol id

Optional re-key
using old DH
value and fresh
nonces

Crypto suites, protocol
(AH, ESP or IPcomp)

Other Aspects of IKE

We did not talk about…
 Interaction with other network protocols

• How to run IPSec through NAT (Network Address
Translation) gateways?

 Error handling
• Very important! Bleichenbacher attacked SSL by

cryptanalyzing error messages from an SSL server

 Protocol management
• Dead peer detection, rekeying, etc.

 Legacy authentication
• What if one of the parties doesn’t have a public key?

Current State of IPSec

Best currently existing VPN standard
• For example, used in Cisco PIX firewall, many remote

access gateways

 IPSec has been out for a few years, but wide
deployment has been hindered by complexity
• ANX (Automotive Networking eXchange) uses IPSec

to implement a private network for the Big 3 auto
manufacturers and their suppliers

