
Buffer overflow exploits

11/22/10
EJ Jung

Announcements

 Grading of lab 2 almost finished
• visit count matrix in the Blackboard
• if you disagree, please contact the website owner
• website owner may send me an email to correct

 Lab 2 extra credit by reading others’ cookies
• due on Sunday, Nov. 28
• must show the implementation details
• must include the cookies you collected

 Quiz on Nov. 24

CS night poster

 Please let me know if you are interested
 I can make a mosaic of interesting bits

A Bit of History: Morris Worm

Worm was released in 1988 by Robert Morris
• Graduate student at Cornell, son of NSA chief scientist
• Convicted under Computer Fraud and Abuse Act,

sentenced to 3 years of probation and 400 hours of
community service

• Now a computer science professor at MIT

Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

Due to a coding error, it created new copies as
fast as it could and overloaded infected machines

 $10-100M worth of damage

Morris Worm and Buffer Overflow

One of the worm’s propagation techniques was a
buffer overflow attack against a vulnerable
version of fingerd on VAX systems
• By sending special string to finger daemon, worm

caused it to execute code creating a new worm copy
• Unable to determine remote OS version, worm also

attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

 For more history:
• http://www.snowplow.org/tom/worm/worm.html

Buffer Overflow These Days

Most common cause of Internet attacks
• Over 50% of advisories published by CERT (computer

security incident report team) are caused by various
buffer overflows

Morris worm (1988): overflow in fingerd
• 6,000 machines infected

CodeRed (2001): overflow in MS-IIS server
• 300,000 machines infected in 14 hours

 SQL Slammer (2003): overflow in MS-SQL server
• 75,000 machines infected in 10 minutes (!!)

Buffer is a data storage area inside computer
memory (stack or heap)
• Intended to hold pre-defined amount of data

– If more data is stuffed into it, it spills into adjacent memory

• If executable code is supplied as “data”, victim’s
machine may be fooled into executing it – we’ll see how

– Code will self-propagate or give attacker control over machine

 First generation exploits: stack smashing
 Second gen: heaps, function pointers, off-by-one
Third generation: format strings and heap

management structures

Attacks on Memory Buffers

Stack Buffers

 Suppose Web server contains this function
void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

When this function is invoked, a new frame with
local variables is pushed onto the stack

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Top of
stack

Stack grows this way

buf sfp ret
addr str

Local variables

Frame of the
calling function

Execute
code at

this address
after func()

finishes

ArgumentsPointer to
previous
frame

What If Buffer is Overstuffed?

Memory pointed to by str is copied onto stack…
void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

 If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

buf str

This will be
interpreted

as return address!

overflow Top of
stack

Frame of the
calling function

Executing Attack Code

 Suppose buffer contains attacker-created string
• For example, *str contains a string received from the

network as input to some network service daemon

When function exits, code in the buffer will be
 executed, giving attacker a shell

• Root shell if the victim program is setuid root

code str Frame of the
calling functionret

Attacker puts actual assembly
instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in

the location where the system
expects to find return address

Top of
stack

setuid

 available on Unix based operating systems
 setuid is a bit indicating temporary privilege

associated with the executable
• similarly setgid

 password change, shell change, …
 insecure executable with setuid is target for

buffer overflow

 Executable attack code is stored on stack, inside
the buffer containing attacker’s string
• Stack memory is supposed to contain only data, but…

Overflow portion of the buffer must contain
correct address of attack code in the RET position
• The value in the RET position must point to the

beginning of attack assembly code in the buffer
– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position
his buffer will be when the function is called

Buffer Overflow Issues

Problem: No Range Checking

 strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into

buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …)

 strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

 Potential overflow in htpasswd.c (Apache 1.3):
… strcpy(record,user);

 strcat(record,”:”);
 strcat(record,cpw); …

 Published “fix” (do you see the problem?):
 … strncpy(record,user,MAX_STRING_LEN-1);

 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

 Published “fix” for Apache htpasswd overflow:
 … strncpy(record,user,MAX_STRING_LEN-1);

 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {

 char buffer[512]; int i;

 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 notSoSafeCopy(argv[1]);
 }

Off-By-One Overflow

1-byte overflow: can’t change RET, but can change pointer to previous stack
frame

On little-endian architecture, make it point into buffer
RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!

Overflowing buffers on heap can change pointers
that point to important data
• Sometimes can also transfer execution to attack code
• Can cause program to crash by forcing it to read from

an invalid address (segmentation violation)

 Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use
it to write into a normally inaccessible file
• For example, replace a filename pointer with a pointer

into buffer location containing name of a system file
– Instead of temporary file, write into AUTOEXEC.BAT

Heap Overflow

C uses function pointers for callbacks: if pointer to
F is stored in memory location P, then another
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)

 Proper use of printf format string:
… int foo=1234;

 printf(“foo = %d in decimal, %X in hex”,foo,foo); …

– This will print
 foo = 1234 in decimal, 4D2 in hex

 Sloppy use of printf format string:
… char buf[13]=“Hello, world!”;

 printf(buf);
 // should’ve used printf(“%s”, buf); …

– If buffer contains format symbols starting with %, location
pointed to by printf’s internal stack pointer will be interpreted
as an argument of printf. This can be exploited to move
printf’s internal stack pointer.

Format Strings in C

%n format symbol tells printf to write the number
of characters that have been printed

… printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

What if printf does not have an argument?
… char buf[16]=“Overflow this!%n”;

 printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will
be interpreted as address into which the number of characters
will be written.

Writing Stack with Format Strings

Using %n to Mung Return Address

RET“… attackString%n”, attack code &RET

Overwrite stack with RET address;
printf(buffer) will write the number of

characters in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied
input string

Number of characters in
attackString must be equal

to stack address where
attack code starts

 See “Exploting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols:
%Nx will print exactly N bytes (taking them from the stack).
If attackString contains enough “%Nx” so that its total length

is equal to the address of attack code, this address will be written into
RET and execution will be passed to attack code when function exits.

This portion contains
enough % symbols
to advance printf’s

internal stack pointer

More Buffer Overflow Targets

Heap management structures used by malloc()
URL validation and canonicalization

• If Web server stores URL in a buffer with overflow, then
attacker can gain control by supplying malformed URL

– Nimda worm propagated itself by utilizing buffer overflow in
Microsoft’s Internet Information Server

 Some attacks don’t even need overflow
• Naïve security checks may miss URLs that give attacker

access to forbidden files
– For example, http://victim.com/user/../../autoexec.bat may

pass naïve check, but give access to system file
– Defeat checking for “/” in URL by using hex representation

Preventing Buffer Overflow

Use safe programming languages, e.g., Java
• What about legacy C code?

Mark stack as non-executable
Randomize stack location or encrypt return

address on stack by XORing with random string
• Attacker won’t know what address to use in his string

 Static analysis of source code to find overflows
Run-time checking of array and buffer bounds

• StackGuard, libsafe, many other tools

Black-box testing with long strings

Non-Executable Stack

NX bit on every Page Table Entry
• AMD Athlon 64, Intel P4 “Prescott”, but not 32-bit x86
• Code patches marking stack segment as non-

executable exist for Linux, Solaris, OpenBSD

 Some applications need executable stack
• For example, LISP interpreters

Does not defend against return-to-libc exploits
• Overwrite return address with the address of an

existing library function (can still be harmful)

…nor against heap and function pointer overflows

 Embed “canaries” in stack frames and verify their
integrity prior to function return
• Any overflow of local variables will damage the canary

Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous
frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

 StackGuard requires code recompilation
Checking canary integrity prior to every function

return causes a performance penalty
• For example, 8% for Apache Web server

 PointGuard also places canaries next to function
pointers and setjmp buffers
• Worse performance penalty

 StackGuard can be defeated!
• Phrack article by Bulba and Kil3r

Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

Run-Time Checking: Libsafe

Dynamically loaded library
 Intercepts calls to strcpy(dest,src)

• Checks if there is sufficient space in current
stack frame

|frame-pointer – dest| > strlen(src)
• If yes, does strcpy; else terminates application

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main

PointGuard

Attack: overflow a function pointer so that it points
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it

will dereference to a “random” memory address

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

PointGuard Issues

Must be very fast
• Pointer dereferences are very common

Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values

end up in memory and can be overwritten there

Attacker should not be able to modify the key
• Store key in its own non-writable memory page

 PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?

