
Introduction to Computer Science
II

CS112-2008S-01

Introduction
David Galles

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles


01-0: Syllabus

Office Hours

Course Text

Test Dates & Testing Policies
Check dates now!

Grading Policies

Coding Standards



01-1: How to Succeed

Come to class. Pay attention. Ask questions.



01-2: How to Succeed

Come to class. Pay attention. Ask questions.
A question as vague as “I don’t get it” is
perfectly acceptable.
If you’re confused, there’s a good chance
someone else is confused as well.



01-3: How to Succeed

Come to class. Pay attention. Ask questions.
A question as vague as “I don’t get it” is
perfectly acceptable.
If you’re confused, there’s a good chance
someone else is confused as well.

Come by my office
I am very available to students.



01-4: How to Succeed

Come to class. Pay attention. Ask questions.
A question as vague as “I don’t get it” is
perfectly acceptable.
If you’re confused, there’s a good chance
someone else is confused as well.

Come by my office
I am very available to students.

Start the Labs and Projects early



01-5: Class Format

First part of class will usually be lecture

Second part of class with usually be a lab

Might switch off between lecture and lab several
times during a single class period



01-6: Labs vs. Projects

Labs:
Typically done in class

may need to spend some time outside class
to finish labs

Lots and lots of help from TA and myself – often
do parts of the labs together as a clas

Projects
Typically done outside of class
Do more of the work on your own (but TA and I
will still help!)



01-7: Expectations

Come to class

Pay attention
No email, twitter, facebook, etc

Spend 10 hours / week outside of clas working on
labs, projects, and reading assignments

All submitted code must be your own original work
Absolutely no copying of code!



01-8: Python vs. Java

Last semester you programming in Python, this
semester we will be using Java

Similar in many ways – almost everything that you
learned last semester will transfer over

How you approach Python and Java programming
is quite different



01-9: Warning, Danger Ahead

Java is much more verbose than Python
Occasionally have to put off some explainations
for later – but will get to everything before the
end of the semester!

Java and Python are similar in many ways – almost
everything that you learned last semester will
transfer over

How you approach Python and Java programming
is quite different



01-10: Similarities

Start with similarities between languages

Show some simple constructs in Python, Java
equivalents

Go on to the real meat of the differences



01-11: Variables

Both Java and Python both have variables

Python is pretty lax
Use a variable, and the system figures out what
you want.
Can store pretty much any value in any variable

Java is much more strict
Must declare a variable before you use it, giving
the type of the variable
Can only store values of the declared type in
that variable



01-12: Variables

Python

principal = 3000

Java

int principal;
principal = 3000;

Declare the variabe to be of type integer
Now can only store integers in variable principal
(strongly typed)
Semicolins are like end-of-lines in Python (more
on formatting in a bit)



01-13: Variables

int principal = 3000;

We can both declare a variable, and give it an inital
value, at the same time

Looks very similar to Python – but principal can
now only hold integer values (not strings, lists, etc)



01-14: Conditionals

Python

if principal > 5000:
print "you’re rich"

Java

if (principal > 5000)
{

System.out.println("you’re rich");
}



01-15: Conditionals

if (principal > 5000)
{

print "you’re rich";
}

() required around test

whitespace (including end of lines!) is optional

Java uses ; for end of lines, and { } to group code
blocks

For if statements with one line, { } is optional (for
compiler, not for this class!)



01-16: Iteration

Python

number = 0
while number < 5

print number
number = number + 1

Java

int number = 0;
while (number < 5)
{

System.out.println(number);
number++;

}



01-17: Iteration

int number = 0;
while (number < 5)
{

System.out.println(number);
number++;

}

for (int number = 0; number < 5; number++)
{

System.out.println(number);
}



01-18: Formatting

Python
Denote end of statements with end-of-line
character
Block grouping using indenting / tabs

Java
Denote end of statements with semicolons
Block grouping using curly braces { and }
Whitespace (spaces, tabs, end-of-lines) are
completely ignored



01-19: Formatting

Compiles and runs just fine:

int number = 0;
while (number < 5)
{

System.out.println(number); number++; }



01-20: Formatting

Compiles and runs, but doesn’t do what you want
...

int number = 0;
while (number < 5)

System.out.println(number);
number++;



01-21: Objects!

Python is (typically) a functional language
Python code is a collection of funtions
Can create / use objects in Python, not required
“Verb based”

Java is an Object Oriented langage
Java code is a collection of objects
*Must* use objects in Java
“Noun Based”



01-22: Objects?

What is an object?
Collection of data and functions

Think of an old-fashioned calculator, that allows
you to store and recal numbers

Similar to a Java object: Store data, do calclations
on that data



01-23: Designing a Program

Java programs are collections of classes

A class is NOT AN OBJECT. A class is a template
that allows you to create objects

From a single class, you can create multiple
objects

We could create a whole fleet of calculator
objects, each of which has its own store/recall
data



01-24: Classes

Java Classes contain
data, usually called instance variables
code, usually called methods
Special method, called a constructor, which is
invoked when objects of this class are created



01-25: Classes
// Filename must match class name

// For instance, this class would need to be saved as

// NameOfClass.java

public class NameOfClass

{

// Data Members (also called instance variables)

// * ‘‘private’’ means that only methods defined in

// this class can see/modify sampleVariable

private int sampleVariable;

// Constructor

// * Same name as the name of the class

// * May take parameters, though this is not required

// * Must be public

public NameOfClass()

{

}

}



01-26: Classes

“Name” class from website

public / private modifiers

Constructor



01-27: Creating Objects

Creating a .class file does not create any objects

Just a template for creating objects

Objects need to be created with a call to “new”

NameOfClass silly = new NameOfClass();
Name name1 = new Name("John", "Adams");
Name name2 = new Name("Abraham", "Lincoln");



01-28: Static

Classes are templates, not objects

Need to create a new object using a class method
before we can use it

Chicken and egg problem – how do we create our
first object?

Static methods are special: One per class instead
of one per object

“main” is a special case function: entry point for the
start of the code



01-29: Driver Class
public class Driver

{

public static void main(String args[])

{

// Main Program

// Typically create one or more objects

// Call methods on these objects

// The "real work" is done in the classes/objects

Name name1 = new Name("John", "Adams");

Name name2 = new Name("Abraham", "Lincoln");

}

}



01-30: Methods

Methods are like functions in Python, with a few
key differences

Need to declare the return type, and type of all
parameters
Methods are associated with a class / object

We need to call method from a created object
We can access object data from within
method, using “this”



01-31: Methods

public static void main(String argss[])
{

Name n1 = new Name("John", "Smith");
System.out.println(n1.getFirst());
n1.setFirst("Adam");
System.out.println(n1.getFirst());

}



01-32: Methods

public static void main(String argss[])
{

Adder addr = new Adder();
int value = addr.add(5,7);
System.out.println(value);

}



01-33: Project Composition

For this class, projects / labs will consist of:
Collection of one or more classes (each in a
separate file)
Driver class, which contains a (small!) main
static method. This method will create one or
more objects, and call their methods

So for each executable program in this class, you
will have at least two different files


	{small lecturenumber -	heblocknumber :} Syllabusaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Formataddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Labs vs. Projectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expectationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Python vs. Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Warning, Danger Aheadaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Similaritiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Conditionalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Conditionalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Formattingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Formattingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Formattingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Objects!addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Objects?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Designing a Programaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Creating Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Staticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Driver Classaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Project Compositionaddtocounter {blocknumber}{1}

