
CS112-2012S-14 Recursion I 1

14-0: Function (method) calls

• What happens when a function / method is called?

• Create space on the stack to store parameters / local variables of the method (including implicit this pa-
rameter for methods)

• Copy values of parameters onto the stack

• Execute the body of the method / function

14-1: Function Call Example

static int plus(int a, int b)
{

return a + b;
}

static void main(String args[])
{

int x, y;
x = plus(3,5);
y = plus(plus(1,2), plus(3,4));

}

14-2: Function Call Example

static int add(int a, int b) static void main(String args[])
{ {

while (b > 0) int x,y;
{ x = multiply(4,2);

a++; y = multiply(add(3,2), add(1,1));
b--; }

}
return a;

}

static int multiply(int a, b)
{

int result = 0;
while (b > 0)
{

result = result + a;
b--;

}
}

14-3: Recursion

• The way function calls work give us a fantastic tool for solving problems

• Make the problem slightly smaller

• Solve the smaller probelmusing the very function that we are writing

• Use the solution to the smaller problem to solve the originalproblem

14-4: Recursion

• What is a really easy (small!) version of the problem, that I could solve immediately? (Base case)

• How can I make the problem smaller?

• Assuming that I could magically solve the smaller problem, how could I use that solution to solve the original
problem (Recursive Case)

14-5: Recursion

• Example: Factorial

• n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 3 ∗ 2 ∗ 1

• 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120



CS112-2012S-14 Recursion I 2

• 8! = 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 40320

• What is the base case? That is, a small, easy version of the problem that we can solve immediately?

14-6: Recursion – Factorial

• Example: Factorial

• n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 3 ∗ 2 ∗ 1

• What is a small, easy version of the problem that we can solve immediately?

• 1! == 1.

14-7: Recursion – Factorial

• How do we make the problem smaller?

• What’s a smaller problem thann! ?

• (only a liitle bit smaller)

14-8: Recursion – Factorial

• How do we make the problem smaller?

• What’s a smaller problem thann! ?

• (n − 1)!

• If we could solve(n − 1)!, how could we use this to solven! ?

14-9: Recursion – Factorial

• How do we make the problem smaller?

• What’s a smaller problem thann! ?

• (n − 1)!

• If we could solve(n − 1)!, how could we use this to solven! ?

• n! = (n − 1)! ∗ n

14-10:Recursion – Factorial

int factorial(int n)
{

if (n == 1)
{

return 1;
}
else
{

return n * factorial(n - 1);
}

}

14-11:Recursion – Factorial

• 0! is defined to be 1

• We can modifyfactorial to handle this case easily



CS112-2012S-14 Recursion I 3

14-12:Recursion – Factorial

• 0! is defined to be 1

• We can modifyfactorial to handle this case easily

int factorial(int n)
{

if (n == 0)
{

return 1;
}
else
{

return n * factorial(n - 1);
}

}

14-13:Recursion

• To solve a recursive problem:

• Base Case:

• Version of the problem that can be solved immediately

• Recursive Case

• Make the problem smaller
• Call the function recursively to solve the smaller problem
• Use solution to the smaller problem to solve the larger problem

14-14:Recursion – ToH

• Towers of Hanoi

• Move a sequence of disks from starting tower to ending tower,using a temporary

• Move one disk at a time

• Never place a larger disk on top of a smaller disk

14-15:Recursion – ToH

• Writing a program to solve Towers of Hanoi intially seems a little tricky

• Becomes very easy with recursion!

void doMove(char startTower, char endTower)
{

System.out.print("Move a single disk from tower ");
System.out.println(startTower + "to tower " + endTower);

}

void towers(int nDisks, char startTower, char endTower, char tmpTower)
{

...
}

14-16:Recursion – ToH

• Base case:

• What is a small version of the problem that we could solve immediately?

14-17:Recursion – ToH

• Base case:



CS112-2012S-14 Recursion I 4

• What is a small version of the problem that we could solve immediately?

• Moving a single disk

void towers(int nDisks, char startTower, char endTower, char tmpTower)
{

if (nDisks == 1)
{

doMove(startTower, endTower);
}
...

}

14-18:Recursion – ToH

• How can we moven disks?

• We can assume that we can magically move(n − 1) disk from any tower to any other tower.

• How can this help us?

14-19:Recursion – ToH

• How can we moven disks?

• If we could only moven − 1 disks from the intial disk to the final disk, we could solve theproblem

• Move then − 1 disks to the temporary peg

• Move the bottom disk to the final peg

• Move then − 1 disks from the temporary peg to the final peg

14-20:Recursion – ToH

void towers(int nDisks, char startTower, char endTower, char tmpTower)
{

if (nDisks == 1)
{

doMove(startTower, endTower);
}
else
{

towers(n - 1, startTower, tmpTower, endTower);
doMove(startTower, endTower);
towers(n - 1, tmpTower, endTower);

}
}

14-21:Recursion – ToH

• Trace through Towers of Hanoi

14-22:Recursion – Tips

• When writing a recursive function

• Don’t think about how the recursive function works all the way down

• Instead,assume that the function just works for a smaller problem

• Recursive Leap of Faith

• Use the solution to the smaller problem to solve the larger problem

14-23:Recursion – Fibonacci

• Fibonacci Sequence:

• 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,. . .



CS112-2012S-14 Recursion I 5

• F (0) = 1, F (1) = 1, F (n) = F (n − 1) + F (n − 2)

• Recursive solution?

14-24:Recursion – Fibonacci

int fib(int n)
{

if (n <= 1)
{

return 1;
}
else
{

return fib(n - 1) + fib(n - 2);
}

}

14-25:Recursion – Fibonacci

• Problems with this version of fib?

• What about efficientcy?

• Can we do it faster?

14-26: Iterative Fibonacci

int fib(int n)
{

if (n <= 1)
{

return 1;
}
int fibValues = new int[n+1];
fibValues[0] = 1;
fibValues[1] = 1;
for (int i = 2; i <= n; i++)
{

fibValues[i] = fibValues[i-1] + fibValues[i-2];
}
return fibValues[n];

}

14-27: Iterative Fibonacci

int fib(int n)
{

if (n <= 1)
{

return 1;
}
int next = 1;
int prev = 1;
for (int i = 2; i <= n; i++)
{

oldNext = next;
next = next + prev;
prev = next;

}
return next;

}

14-28:Recursion – Fibonacci

int fib(int n)
{

return fib(n, 1, 1);
}

int fib(int n, int next, int prev)
{

if (n <= 1)
{

return next;
}
else
{

return fib(next + prev, next);
}

}

14-29:Recursion – Reversing Digits



CS112-2012S-14 Recursion I 6

• Function that takes as input an integer

• Writes out the digits in reverse order

void printReversed(int n)
{
...

}

14-30:Recursion – Reversing Digits

• What’s a easy number to print reversed?

void printReversed(int n)
{
...

}

14-31:Recursion – Reversing Digits

• What’s a easy number to print reversed?

void printReversed(int n)
{

if (n < 10)
{

System.out.println(n);
}
...

}

14-32:Recursion – Reversing Digits

• How can we make the problem smaller

• We have to make the problem smaller such that a solution to thesmaller problem helps us solve the original
problem

14-33:Recursion – Reversing Digits

• How can we make the problem smaller

• Remove the last digit (dividing by 10)

• How can this help?

14-34:Recursion – Reversing Digits

void printReversed(int n)
{

if (n < 10)
{

System.out.println(n);
}
else
{

System.out.print(n % 10);
printReversed(n / 10);

}
}

14-35:Recursion – Hands on

• Write a method power

public static int power(int x, int n)

• Returnx
n

• What is the base case?



CS112-2012S-14 Recursion I 7

• How can we make the problem smaller?

• How can we use the solution to the smaller problem to solve theoriginal problem?

14-36:Recursion – Reverse

• Write a function to reverse a string

• What is a string that is easy to reverse?

• How do you make the string smaller

• How do you use the solution to the smaller problem to solve theoriginal problem?

• String Functions

• s.substring(k) returns a substring starting from index k

• s.charAt(k) returns the character at index k in the string


