
CS112-2012S-24 Final Review I 1

24-0: Review

• Memory Basics (stack vs. heap)

• Creating Objects

• Control Structures (if, while, etc)

• Mutable and Immutable objects (Strings!)

• Methods (including recursion)

• Arrays

• Static fun

• For Wednesday:

• Linked Lists

• Inheritance (including polymorphism)

• Potpourri (Exceptions, etc)

24-1: Memory Basics

• Parameters and local variables are all stored on the stack

• Instance variables in classes are stored on the heap

• Pointers to classes can be stored on the stack

• Primative types (int/boolean/double/etc – non-classes) are stored on the stackunless they are instance variables
within a class

• Heap memory is only created if you call “new”

24-2: Memory Basics

public class Foo
{

int x;
int y;

}

public static void main(String args[])
{

int x;
int y;
Foo f1, f2;
// What does the stack / heap look like?
f1 = new Foo();
f2 = new Foo();
// What about now?

}

24-3: Memory Basics

public class Foo public class Bar
{ {

int x; Foo f1;
int y; Foo f2;

} }

public static void main(String args[])
{

int x;
int y;
Bar b;
// What does the stack / heap look like?
b = new Bar();
// Now What does the stack / heap look like?
b.f1 = new Foo();
// What about now?
b.f2 = new Foo();
// What about now?

}

CS112-2012S-24 Final Review I 2

24-4: Memory Basics

public class Bar public class Foo
{ {

public Foo f1; int x;
public Foo f2; int y;
public Bar() }
{

f1 = new Foo();
f2 = new Foo();

}
}
public static void main(String args[])
{

int x,y;
Foo f;
bar b;
// What does the stack / heap look like?
b = new Bar();
// Now What does the stack / heap look like?
f = new Foo();

}

24-5: Memory Basics

• Classes areTemplates

• Need to call “new” to create instance of classes

• Can only get memory on heap by calling new

24-6: Java Control Structures

• If:

if (<test>)
<statement>

or

if (<test>)
<statement1>

else
<statement2>

• A statement is either a single statment (terminated with ;),or a block of statements inside{ }

24-7: If test

• What can we have as the test of an if statement?

• Boolean valued expression

24-8: If test

• What can we have as the test of an if statement?

• boolean variable

• function that returns a boolean value

• comparisonx < y or x != 0

• Combination of boolean expressions, using not (!), and (&&), or (||)

24-9: Boolean Variables

CS112-2012S-24 Final Review I 3

• Hold the value true or false

• Can be used in test (if, while, etc)

boolean b;
boolean c;
b = true;
c = b || false;
b = (3 < 10) && (5 > 11);
c = !b && c;

24-10: if Gotchas

• What is (likely) wrong with the following code?

if (x != 0)
z = a / x;
y = b / x;

24-11: if Gotchas

• What is (likely) wrong with the following code?

if (x != 0)
{

z = a / x;
y = b / x;

}

• Moral: Always use{} in if statements, even if they are not necessary

24-12:while loops

while(test)
{

<loop body>
}

• Evaluate the test

• If the test is true, execute the body of the loop

• Repeat

• Loop bodymay be executed 0 times

24-13:do-while loops

do
{

<loop body>
} while (<test>);

• Execute the body of the loop

• If the test is true, repeat

CS112-2012S-24 Final Review I 4

• Loop body isalways executed at least once

24-14:while vs. do-while

• What would happen if:

• Found a while loop in a piece of code

• Changed to to a do-while (leaving body of loop and test the same)

• How would the execution be different?

24-15:while vs. do-while

• What would happen if:

• Found a while loop in a piece of code

• Changed to to a do-while (leaving body of loop and test the same)

• How would the execution be different?

• If the while loop were to execute 0 times, do-while will execute (at least!) one time

• If the while loop were to execute 1 or more times,should to the same thing ...

• ... except if the test had side effects

24-16:Side Effects

class BoolFun
{

private int size;
boolean calledTooMuch()
{

return (++size > 4)
}

}
// in main:
BoolFun bf = new BoolFun();
while (!bf.calledTooMuch())
{

System.out.print("x");
}

24-17:Side Effects

class BoolFun
{

private int size;
boolean calledTooMuch()
{

return (++size > 4)
}

}
// in main:
BoolFun bf = new BoolFun();
do
{

System.out.print("x");
} while (!bf.calledTooMuch());

24-18: for loops

for (<init>; <test>; <inc>)
{

<body>
}

• Equivalent to:

CS112-2012S-24 Final Review I 5

<init>
while(<test>)
{

<body>
<inc>

}

24-19: for loops

for (number = 1; number < 10; number++)
{

System.out.print("Number is " + number);
}

• Equivalent to:

number = 1;
while(number < 10)
{

System.out.print("Number is " + number);
number++;

}

24-20:Strings

• Strings in Java are objects

• Contain both methods and data

• Data is the sequence of characters (typechar) that make up the string

• Strings have a whole bunch of methods for string processing

24-21:Strings

• Strings in Java are objects

• Strings are stored on the heap, like all other objects

• Data is stored as an array of characters

• Strings are immutable (once created, can’t be changed)

24-22:String Literals

String s;
s = "Dog";

• ”Dog” is called aString Literal

• Anything in quotation marks is a string literal

• System.out.println("Hello There")

24-23:String Literals

• Any time there is a string literal in your code, there is an implicit call to “new”

CS112-2012S-24 Final Review I 6

• A new string object is created on the heap

• Data is filled in to match the characters in the string literal

• Pointer to that object is returned

String s;
s = "MyString"; // Implicit call to new here!

24-24:Stack vs. Heap I

public void foo()
{

int x = 99;
char y = ’c’;
String z = "c";
String r = "cat";
float w = 3.14;

}

24-25: Immutable Strings

• Strings areimmutable

• Once you create a string, you can’t change it.

String s = "Car"; // Create a block of memory containing ’car’
// Return a pointer to this block of memory

unknown.foo(s); // This function can’t mess with contents of s

System.out.println(S); // s is guaranteed to be "Car" here

24-26: Immutable Strings

• Stringobjects are immutable

• Once a string object is created, it can’t be changed

• Stringvariables can be changed

• Create a new String object, assign it to the variable

String s = "dog";
s = "cat";

24-27: “Mutable” Objects

public class ICanChange
{

private int x;

public ICanChange(int initialX)
{

this.x = initialX;
}
public int getX()
{

return this.x;
}
publc void setX(int newX)
{

this.x = newX;
}

}

24-28: “Mutable” Objects

CS112-2012S-24 Final Review I 7

ICanChange c = new ICanChange(4);
c.setX(11); // Changed the value in object

// c points to
System.out.println(c.getX());

• Created an object of type ICanChange

• Changed the data within that object

24-29: “Mutable” Objects

ICanChange c = new ICanChange(4);
c = new ICanChange(11);
System.out.println(c.getX());

• Created an object of type ICanChange, with value 4

• Created anew object of type ICanChange, with value 11

• Throw away the old object

24-30: “Mutable” Objects

ICanChange c = new ICanChange(4);
StrangeClass s = new StrangeClass(); // Don’t know what this does ...

s.foo(c);

System.out.println(c.getX());

24-31: “Mutable” Objects

public class StrangeClass
{

void foo(ICanChange a)
{

a.setX(99);
}

}

24-32: “Immutable” Object

public class ICantChange
{

private int x;

public ICanChange(int initialX)
{

this.x = initialX;
}
public int getX()
{

return this.x;
}

}

24-33: “Immutable” Object

ICantChange c = new ICantChange(13);
System.out.println(c.getX());
c = new ICantChange(37);
System.out.println(c.getX());

• Create a new object, have c point to this new object

• Old object didn’t change, but the value of c did

CS112-2012S-24 Final Review I 8

24-34: “Immutable” Object

ICantChange c = new ICantChange(13);
Strange s = new Strange();

s.foo(c);
System.out.println(c.getX());

• Do we know anything about what the println will ouput?

24-35: “Immutable” Objects

public class Strange
{

void foo(ICantChange icc)
{

// We can’t change the value of x stored in icc
// directly (private, no setters)
//
// Best we can do is change what icc points to ...
icc = new ICantChange(99);
// icc.getX() would return 99 here, but what about
// the calling function?

}
}

24-36:Methods

• Classes can contain both data and methods

• When a method is called:

• Calculate values of all method parameters (including implicit this parameter)

• Copy values of parameters into activation record of new method

• Execute method, using activation record for local variables

• When method is completed, pop activation record off the stack

24-37:Methods

class MyClass public static void main(String args[])
{ {

public int x; int x;
public int y; MyClass c = new MyClass();

x = 3;
int foo(int w) c.x = 4;
{ c.y = 5;

int q; x = c.foo(x);
q = x + w; System.out.println(x);
return q+y; }

}
}

24-38:Methods

class MyClass public static void main(String args[])
{ {

public int x; int x;
public int y; MyClass c = new MyClass();

x = 3;
int foo(int w) c.x = 4;
{ c.y = 5;

int q; x = c.bar(x);
q = x + w; System.out.println(x);
return q+y; }

}
int bar(int p)
{

return foo(x) + foo(p);
}

}

24-39:Collections of Data

• We want to bundle a bunch of values together

CS112-2012S-24 Final Review I 9

• Want to represent several different values using a single variable

• We can:

• Create a class with several instance variables

• Create an array

24-40:Arrays

• Arrays are objects

• Access elements using [] notation

• Need to declare the size of the array when it is created

• Can’t change the size of an array once it is created

• Get the length of the array using public length instance variable

24-41:Arrays

• Two ways to declare arrays:

<typename>[] variableName;
<typename> variableName[];

• Examples:

int A[]; // A is an array of integers
int[] B; // B is an array if integers
String C[]; // C is an array of strings

24-42:Arrays: New

• Like all other objects, Arrays are stored on the heap

• int A[] just allocates space for a pointer

• Need to call new to create the actual array

new <type>[<size>]

24-43:Arrays: New

• Show contents of memory after each line:

int A[];
int B[];
A = new int[10];
B = new int[5];
A[7] = 4;
B[2] = 5;
B[5] = 13; /// RUNTIME ERROR!

24-44:Arrays: Copying

CS112-2012S-24 Final Review I 10

int A[] = new int[SIZE];
int B[] = new int[SIZE];

// Code to store data in B
A = B;

• What do you think this code does?

• What happens when we assignany object to another object?

24-45:Arrays: Copying

int A[] = new int[SIZE];
int B[] = new int[SIZE];

// Code to store data in B
A = B;

• How could we copy the data from B into A

• (A and B should point to different memory locations, have same values

24-46:Arrays: Copying

int A[] = new int[SIZE];
int B[] = new int[SIZE];

// Code to store data in B
for (int i = 0; i < B.length; i++)
{

A[i] = B[i];
}

24-47:Array: Copying

int A[] = new int[5];
int B[] = new int[5];
int C[];

for (int i = 0; i < 5; i++)
A[i] = i;

for (int i = 0; i < 5; i++)
B[i] = A[i];

C = A;

B[2] = 10;
C[2] = 15;

24-48:Arrays of Objects

• We can have arrays of objects, as well as arrays of integers

CS112-2012S-24 Final Review I 11

...
Point pointArray[] = new Point[10];
pointArray[3].setX(3);

• What happens?

• (refer to Java documentation for Point objects)

24-49:Arrays of Objects

Point pointArray[] = new Point[10];

for (int i = 0; i < 10; i++)
{

pointArray[i] = new Point(i, i);
}

• How would you calculate the averagex value of all elements in the array?

24-50:Arrays of Objects

• How would you calculate the averagex value of all elements in the array?

Point pointArray[] = new Point[10];

// Fill in pointArray
//

double sum = 0.0;
for (int i = 0; i < pointArray.length; i++)
{

sum = sum + pointArray[i].getX();
}
sum = sum / pointArray.length;

24-51:2D Arrays

• We can create 2D arrays as well as 1D arrays

• Like matrices

• 2D array is really just an array of arrays

24-52:2D Arrays

int x[][]; // Declare a 2D array
int[][] y; // Alternate way to declare 2D array

x = new int[5][10]; // Create 50 spaces
y = new int[4][4]; // create 16 spaces

24-53:2D Arrays

int x[][]; // Declare a 2D array
x = new int[5][5]; // Create 25 spaces

x[2][3] = 11;
x[3][3] = 2;
x[4][5] = 7; // ERROR! Index out of bounds

CS112-2012S-24 Final Review I 12

24-54:2D Arrays

• How would we create a 9x9 array, and set every value in it to be 3?

24-55:2D Arrays

• How would we create a 9x9 array, and set every value in it to be 3?

int board[][];
board = new int[9][9];
for (int i = 0; i < 9; i++)

for int (j = 0; j < 9; j++)
board[i][j] = 3;

24-56:Using Arrays

• Need to declare array size before using them

• Don’t always know ahead of time how big our array needs to be

• Allocate more space than we need at first

• Maintain a second size variable, that has the number of elements in the array we actually care about

• Classes that use arrays often will have an array instance variable, and a size instance variable (how much of the
array is used)

24-57:Arrays

• On board: What memory looks like for the following:

public static void main(String args)
{

int A[];
int x;
String B[]; <-- Show memory here
A = new int[5];
B = new String[3];

<-- Show memory here
}

24-58:Recursion

• The way function calls work give us a fantastic tool for solving problems

• Make the problem slightly smaller

• Solve the smaller probelmusing the very function that we are writing

• Use the solution to the smaller problem to solve the originalproblem

24-59:Recursion

• What is a really easy (small!) version of the problem, that I could solve immediately? (Base case)

• How can I make the problem smaller?

CS112-2012S-24 Final Review I 13

• Assuming that I could magically solve the smaller problem, how could I use that solution to solve the original
problem (Recursive Case)

24-60:Recursion

• Example: Factorial

• n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 3 ∗ 2 ∗ 1

• 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120

• 8! = 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 40320

• What is the base case? That is, a small, easy version of the problem that we can solve immediately?

24-61:Recursion – Factorial

• Example: Factorial

• n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 3 ∗ 2 ∗ 1

• What is a small, easy version of the problem that we can solve immediately?

• 1! == 1.

24-62:Recursion – Factorial

• How do we make the problem smaller?

• What’s a smaller problem thann! ?

• (only a liitle bit smaller)

24-63:Recursion – Factorial

• How do we make the problem smaller?

• What’s a smaller problem thann! ?

• (n − 1)!

• If we could solve(n − 1)!, how could we use this to solven! ?

24-64:Recursion – Factorial

• How do we make the problem smaller?

• What’s a smaller problem thann! ?

• (n − 1)!

• If we could solve(n − 1)!, how could we use this to solven! ?

• n! = (n − 1)! ∗ n

24-65:Recursion – Factorial

CS112-2012S-24 Final Review I 14

int factorial(int n)
{

if (n == 1)
{

return 1;
}
else
{

return n * factorial(n - 1);
}

}

24-66:Recursion – Factorial

• 0! is defined to be 1

• We can modifyfactorial to handle this case easily

24-67:Recursion – Factorial

• 0! is defined to be 1

• We can modifyfactorial to handle this case easily

int factorial(int n)
{

if (n == 0)
{

return 1;
}
else
{

return n * factorial(n - 1);
}

}

24-68:Recursion

• To solve a recursive problem:

• Base Case:

• Version of the problem that can be solved immediately

• Recursive Case

• Make the problem smaller

• Call the function recursively to solve the smaller problem

• Use solution to the smaller problem to solve the larger problem

24-69:Recursion – Tips

• When writing a recursive function

• Don’t think about how the recursive function works all the way down

• Instead,assume that the function just works for a smaller problem

• Recursive Leap of Faith

• Use the solution to the smaller problem to solve the larger problem

24-70:Recursion – NumDigits

• Write a method that returns the number of base-k digits in a number n

int numDigits(int n, int k)

• numDigits(20201, 10) == 5

CS112-2012S-24 Final Review I 15

• numDigits(34, 10) == 2

• numDigits(3050060,7) == 7

• numDigits(137, 2) == 8

• What is the base case?

• How can we make the problem smaller?

• How can we use the solution to the smaller problem to solve theoriginal problem?

24-71:Recursion – NumDigits

int numDigits(int n, k)
{

if (n < k)
{

return 1;
}
else
{

return 1 + numDigits(n / k);
}

}

24-72:Recursion Problems

• Write a recursive function that returns the smallest value in the firstsize elements of an array of integers

• int minimum(int A[], int size)

24-73:Recursion Problems

int minimum(int A[], int size)
{

if (size == 0)
return null;

if (size == 1)
return A[0];

int smallest = minimum(A, size - 1);
if (smallest < A[size - 1])

return smallest;
else

return A[size - 1];
}

24-74:Static

• Normally, can only call methods on classes when we created aninstance of the class

• Methods can rely on instance variables to work properly

• Need to create an instance of a class before there are any instance variables

• What would the size() method return for an ArrayList if therewas not an instance to check the size of?

24-75:Static

• Some methods don’t operate on an instance of the class – pure functions that don’t use instance variables at all

• Math functions like min, or pow

• parseInt – takes a string as an input parameter, and returns the integer value of the string parseInt(”123”)
returns 123

• Seems silly to have to instantiate an object to use these methods

• static to the rescue!

24-76:Static

CS112-2012S-24 Final Review I 16

• If we declare a method as static, it does not rely on an instance of the class

• Can call the method without creating an instance first

• Use theClass Name to invoke (call) the method

double x = Math.min(3.4, 6.2);
double z = Math.sqrt(x);

24-77:Consants

• Having 3.14159 appearing all over your code is considered bad style

• Could end up using different values for pi in different places (3.14159 vs. 3.1415926)

• If you want to change the value of pi (to add more digits, for instance), need to search through all of your
code to find it

• In general, any time you have a “magic number” (that is, an arbitrary numeric literal) in your code, it should
probably be a symbolic constant instead.

• The “final” modifier is used to prevent you from changing the value of a variable

24-78:Consants

class Calendar
{

final int MONTHS_IN_YEAR = 12;
final int DAYS_IN_WEEK = 12;
final int DAYS_IN_YEAR = 365;

// Methods that use the above constants
}

• Every instance of class Calendar will contain those 3 variables

• Somewhat wasteful

• Need to instantiate an object of type Calendar to access them

24-79:Consants: Static

• We can declare variables to be static as well as methods

• Typically used for constants (Math.pi, Math.e)

• Access them using class name, not instance name (just like static methods)

• You shouldonly use static variables for constants

• public static final float pi = 3.14159;

24-80:Globals: Static

• It is technically possible to have a variable that is public and static, but not final

• Can be accesed anywhere

• Can bechanged anywhere

• While the compiler will allow it, this is (usually!) avery bad idea. Why?

