
CS112-2012S-04 Strings 1

04-0: Types in Java

• Primative Types

• Hold simple values

• Can be stored on the stack

• (but can be stored on the heap if they are instance variables in classes)

• integers:byte (8 bits),short (16 bit) int (32 bit) long (64 bit)

• real numbers:float (32 bit)double (64 bit)

• boolean: true or false value

• char: single character (16 bit, unicode)

• in C, a char is 8 bits, uses ASCII

04-1: Types in Java

• Objects

• Collection of data and methods

• Always stored on the heap

• Pointer to object can be on the stack

• Created with a call to “new”

04-2: Strings

• Strings in Java are objects

• Contain both methods and data

• Data is the sequence of characters (typechar) that make up the string

• Strings have a whole bunch of methods for string processing

04-3: Strings

• Strings in Java are objects

• Strings are stored on the heap, like all other objects

• Data is stored as an array of characters (more on arrays next week. Similar to python lists)

04-4: String Literals

String s;
s = "Dog";

• ”Dog” is called aString Literal

• Anything in quotation marks is a string literal

• System.out.println("Hello There")

04-5: String Literals

• Any time there is a string literal in your code, there is an implicit call to “new”

CS112-2012S-04 Strings 2

• A new string object is created on the heap

• Data is filled in to match the characters in the string literal

• Pointer to that object is returned

String s;
s = "MyString"; // Implicit call to new here!

04-6: Stack vs. Heap I

public void foo()
{

int x = 99;
char y = ’c’;
String z = "c";
String r = "cat";
float w = 3.14;

}

04-7: Immutable Strings

• Strings areimmutable

• Once you create a string, you can’t change it.

String s = "Car"; // Create a block of memory containing ’car’
// Return a pointer to this block of memory

unknown.foo(s); // This function can’t mess with contents of s

System.out.println(S); // s is guaranteed to be "Car" here

04-8: Immutable Strings

• Stringobjects are immutable

• Once a string object is created, it can’t be changed

• Stringvariables can be changed

• Create a new String object, assign it to the variable

String s = "dog";
s = "cat";

04-9: “Mutable” Objects

public class ICanChange
{

private int x;

public ICanChange(int initialX)
{

this.x = initialX;
}
public int getX()
{

return this.x;
}
publc void setX(int newX)
{

this.x = newX;
}

}

04-10: “Mutable” Objects

CS112-2012S-04 Strings 3

ICanChange c = new ICanChange(4);
c.setX(11); // Changed the value in object

// c points to
System.out.println(c.getX());

• Created an object of type ICanChange

• Changed the data within that object

04-11: “Mutable” Objects

ICanChange c = new ICanChange(4);
c = new ICanChange(11);
System.out.println(c.getX());

• Created an object of type ICanChange, with value 4

• Created anew object of type ICanChange, with value 11

• Throw away the old object

04-12: “Mutable” Objects

ICanChange c = new ICanChange(4);
StrangeClass s = new StrangeClass(); // Don’t know what this does ...

s.foo(c);

System.out.println(c.getX());

04-13: “Mutable” Objects

public class StrangeClass
{

void foo(ICanChange a)
{

a.setX(99);
}

}

04-14: “Immutable” Object

public class ICantChange
{

private int x;

public ICanChange(int initialX)
{

this.x = initialX;
}
public int getX()
{

return this.x;
}

}

04-15: “Immutable” Object

ICantChange c = new ICantChange(13);
System.out.println(c.getX());
c = new ICantChange(37);
System.out.println(c.getX());

• Create a new object, have c point to this new object

• Old object didn’t change, but the value of c did

CS112-2012S-04 Strings 4

04-16: “Immutable” Object

ICantChange c = new ICantChange(13);
Strange s = new Strange();

s.foo(c);
System.out.println(c.getX());

• Do we know anything about what the println will ouput?

04-17: “Immutable” Objects

public class Strange
{

void foo(ICantChange icc)
{

// We can’t change the value of x stored in icc
// directly (private, no setters)
//
// Best we can do is change what icc points to ...
icc = new ICantChange(99);
// icc.getX() would return 99 here, but what about
// the calling function?

}
}

04-18:Back to Strings

• Strings are objects, like any other object

• Stored on the heap, but immutable

• Whole host of useful methods for string manipulation

04-19:String Methods

• public char charAt(int i): returns the character at index i (starting at 0)

String s = "cartwheel";
char c = s.charAt(2);

• What value would c now have?

04-20:String Methods

• public int length(): returns the length of the string

String s = "cartwheel";
int len = s.length();

• What value would len now have?

04-21:String Methods

• pubic String substring(int beginIndex): returns a new string, starting with beginIndex

String s = "cartwheel";
String s2 = s.substring(4);

• s2 would have the value “wheel”

• What value would s now have?

CS112-2012S-04 Strings 5

04-22:String Methods

• public String substring(int beginIndex, endIndex): returns a new string, starting with beginIndex, with last char
at positn (endIndex - 1)

String s = "cartwheel;
String s2 = s.substring(1, 4);

• s2 would have the value “art”

• What value would s now have?

04-23:String Methods

• public String concat(String str) : returns a new string, consisting of this string concatenated with str

String s1 = "dog";
String s2 = "house";
Sring s3 = s1.concat(s2);

• s3 would have the value “doghouse”

• What value would s1, s2 have?

04-24:String Methods

• public String toLowerCase() : returns a new string, consisting of this string force into lower case

String s1 = "ThisIsAString";
String s2 = s1.toLowerCase();

• s2 would have the value “thisisastring”

• What value would s1 have?

04-25:String Methods

• public String toLowerCase() : returns a new string, consisting of this string force into lower case

String s1 = "ThisIsAString";
s1.toLowerCase();

• What value would s1 have?

• What just happened?

