
CS245-2017S-10 Huffman Codes 1

10-0: Text Files

• All files are represented as binary digits – including text files

• Each character is represented by an integer code

• ASCII – American Standard Code for Information Interchange

• Text file is a sequence of binary digits which represent the codes for each character.

10-1: ASCII

• Each character can be represented as an 8-bit number

• ASCII for a = 97 = 01100001

• ASCII for b = 98 = 01100010

• Text file is a sequence of 1’s and 0’s which represent ASCII codes for characters in the file

• File “aba” is 97, 97, 98

• 011000010110001001100001

10-2: ASCII

• Each character in ASCII is represented as 8 bits

• We need 8 bits to represent all possible character combinations

• (including control characters, and unprintable characters)

• Breaking up file into individual characters is easy

• Finding the kth character in a file is easy

10-3: ASCII

• ASCII is not terribly efficient

• All characters require 8 bits

• Frequently used characters require the same number of bits as infrequently used characters

• We could be more efficient if frequently used characters required fewer than 8 bits, and less frequently

used characters required more bits

10-4: Representing Codes as Trees

• Want to encode 4 only characters: a, b, c, d (instead of 256 characters)

• How many bits are required for each code, if each code has the same length?

10-5: Representing Codes as Trees

• Want to encode 4 only characters: a, b, c, d (instead of 256 characters)

• How many bits are required for each code, if each code has the same length?

• 2 bits are required, since there are 4 possible options to distinguish

10-6: Representing Codes as Trees



CS245-2017S-10 Huffman Codes 2

• Want to encode 4 only characters: a, b, c, d

• Pick the following codes:

• a: 00

• b: 01

• c: 10

• d: 11

• We can represent these codes as a tree

• Characters are stored at the leaves of the tree

• Code is represented by path to leaf

10-7: Representing Codes as Trees

• a: 00, b: 01, c: 10, d:11

a b c d

0 1

0 01 1

10-8: Representing Codes as Trees

• a: 01, b: 00, c: 11, d:10

ab cd

0 1

0 01 1

10-9: Prefix Codes

• If no code is a prefix of any other code, then decoding the file is unambiguous.

• If all codes are the same length, then no code will be a prefix of any other code (trivially)

• We can create variable length codes, where no code is a prefix of any other code



CS245-2017S-10 Huffman Codes 3

10-10: Variable Length Codes

• Variable length code example:

• a: 0, b: 100, c: 101, d: 11

• Decoding examples:

• 100

• 10011

• 01101010010011

10-11: Prefix Codes & Trees

• Any prefix code can be represented as a tree

• a: 0, b: 100, c: 101, d: 11

c

d

0 1

0

0

1

1a

b

10-12: File Length

• If we use the code:

• a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20 characters?

10-13: File Length

• If we use the code:

• a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20 characters?

• 20 characters * 2 bits/character = 40 bits

10-14: File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20 characters?



CS245-2017S-10 Huffman Codes 4

10-15: File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20 characters?

• It depends upon the number of a’s, b’s, c’s and d’s in the file

10-16: File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of:

• 11 a’s, 2 b’s, 2 c’s, and 5 d’s?

10-17: File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of:

• 11 a’s, 2 b’s, 2 c’s, and 5 d’s?

• 11*1 + 2*3 + 2*3 + 5*2 = 33 ¡ 40

10-18: Decoding Files

• We can use variable length keys to encode a text file

• Given the encoded file, and the tree representation of the codes, it is easy to decode the file

c

d

0 1

0

0

1

1a

b

• 0111001010011

10-19: Decoding Files

• We can use variable length keys to encode a text file

• Given the encoded file, and the tree representation of the codes, it is easy to decode the file

• Finding the kth character in the file is more tricky



CS245-2017S-10 Huffman Codes 5

10-20: Decoding Files

• We can use variable length keys to encode a text file

• Given the encoded file, and the tree representation of the codes, it is easy to decode the file

• Finding the kth character in the file is more tricky

• Need to decode the first (k-1) characters in the file, to determine where the kth character is in the file

10-21: File Compression

• We can use variable length codes to compress files

• Select an encoding such that frequently used characters have short codes, less frequently used characters

have longer codes

• Write out the file using these codes

• (If the codes are dependent upon the contents of the file itself, we will also need to write out the codes at

the beginning of the file for decoding)

10-22: File Compression

• We need a method for building codes such that:

• Frequently used characters are represented by leaves high in the code tree

• Less Frequently used characters are represented by leaves low in the code tree

• Characters of equal frequency have equal depths in the code tree

10-23: Huffman Coding

• For each code tree, we keep track of the total number of times the characters in that tree appear in the input file

• We start with one code tree for each character that appears in the input file

• We combine the two trees with the lowest frequency, until all trees have been combined into one tree

10-24: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15b:20 e:1
10-25: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1



CS245-2017S-10 Huffman Codes 6

a:100 d:30c:15b:20 e:1

 :16

10-26: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15

b:20

e:1

 :16

 :36

10-27: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

10-28: Huffman Coding

• Example: If the letters a-e have the frequencies:



CS245-2017S-10 Huffman Codes 7

• a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166

10-29: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10
10-30: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20

10-31: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20 :20

10-32: Huffman Coding



CS245-2017S-10 Huffman Codes 8

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10

e:10:20 :20

:30

10-33: Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10

d:10c:10

b:10 e:10

:20

:20

:30

:30

10-34: Huffman Trees & Tables

• Once we have a Huffman tree, decoding a file is straightforward – but encoding a tree requires a bit more

information.

• Given just the tree, finding an encoding can be difficult

• ... What would we like to have, to help with encoding?

10-35: Encoding Tables



CS245-2017S-10 Huffman Codes 9

a 0

b 100

c 1010

d 11

e 1011

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166

10-36: Creating Encoding Table

• Traverse the tree

• Keep track of the path during the traversal

• When a leaf is reached, store the path in the table

10-37: Huffman Coding

• To compress a file using huffman coding:

• Read in the file, and count the occurrence of each character, and built a frequency table

• Build the Huffman tree from the frequencies

• Build the Huffman codes from the tree

• Print the Huffman tree to the output file (for use in decompression)

• Print out the codes for each character

10-38: Huffman Coding

• To uncompress a file using huffman coding:

• Read in the Huffman tree from the input file

• Read the input file bit by bit, traversing the Huffman tree as you go

• When a leaf is read, write the appropriate file to an output file

10-39: Printing out Trees

• To print out Huffman trees:

• Print out nodes in pre-order traversal

• Need a way of denoting which nodes are leaves and which nodes are interior nodes

• (Huffman trees are full – every node has 0 or 2 children)

• For each interior node, print out a 0 (single bit). For each leaf, print out a 1, followed by 8 bits for the

character at the leaf



CS245-2017S-10 Huffman Codes 10

10-40: Compression?

• Is it possible that huffman compression would not compress the file?

• Is it possible that huffman compression could actually make the file larger?

• How?

10-41: Compression?

• What happens if all the charcters have the same frequency?

• What does the tree look like?

• What can we say about the lengths of the codes for each character?

• What does that mean for the file size?

10-42: Compression?

• What happens if all the charcters have the same frequency?

• All nodes are at the same depth in the tree (that is, 8)

• Each code will have a length of 8

• The encoded file will be the same size as the original file – plus the size required to encode the tree


